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Abstract

The origin of the asymmetry in the fragment mass distribution of low-energy nuclear fission is
considered from the semiclassical point of view. Using the semiclassical periodic-orbit theory,
one can define and quantify the shell effect associated with spatially localized nascent-fragment
(prefragment) part of the potential. We investigate the roles of prefragments in the deformed
shell effect using a simple cavity potential model, but with realistic shape degrees of freedom
for describing the fission processes. The results suggest that the prefragment magic numbers
play essential roles in determining the shapes at the fission saddles, which should have a close
relation to the fragment mass distribution.

1. Introduction

In the low-energy fission process of a heavy nucleus, nucleon
distribution is elongated in one direction and a neck is formed
which begins to separate the system into two nascent frag-
ments, which we shall call “prefragments” for shortness. By
the Coulomb repulsion between two prefragments, the system
is finally divided into two fragments. According to the exper-
imental results [1], the fragment mass distributions are asym-
metric in most of the actinide nuclei, namely, those nuclei are
likely to break up into two fragments with different sizes. Since
the fragment mass distribution is determined by the shape of
the nucleus on the fission saddle, the system is expected to fa-
vor an asymmetric shape in the fission deformation processes.
The fission process is first studied with the liquid-drop model
(LDM) [2, 3]. However, the asymmetric fragment-mass distri-
bution cannot be explained within the LDM: symmetric shapes
are favored throughout the fission deformation processes (see
Sec. 3 below). The above problem is known to be solved by
taking account of the quantum shell effect. Both static and dy-
namic theoretical approaches have achieved great successes in
the systematic reproduction of the experimental results [4].

The most remarkable feature of the experimental results in
the fissions of actinide nuclei would be the preference of heav-
ier fragments around A ∼ 140 regardless of the parent species.
It was considered as due to the strong shell effect of the spher-
ical fragments near the doubly-magic Sn132

50 82 isotope. Further
theoretical studies have revealed that the evolution of deformed
shell effect in the fission process is essential in determining
the fragment distribution, and the shell effect associated with

spatially localized prefragments should be present. However,
the standard quantum mechanical mean-field approaches can-
not extract such prefragment shell effect out of that in the total
system. The parity splitting of levels in the two-center shell
model potential is investigated as the indication of fragment
shell effect [5, 6], but it is limited to symmetric shapes. Shell
effects of the independent fragments are discussed in some re-
cent works [7, 8], but it is not trivial to clarify how they reflect
the effect of the prefragment embedded in the total system. We
should say that the physical mechanism of the asymmetric fis-
sion has not been sufficiently clarified. Since the asymmetry
itself can be reproduced in mean-field calculations, its origin
must be explained within the mean-field theory. However, it is
hard to define the shell effect associated with each of the pre-
fragments because most of the single-particle wave functions
are delocalized in the mean-field potential.

It was pointed out by Strutinsky et al. that the semiclassical
periodic-orbit theory (POT) [9,10] would be able to explain the
origin of such prefragment shell effect [11]. In the POT, single-
particle level density is represented as the sum over the contri-
butions of classical periodic orbits (POs). If a neck is formed
upon the elongated potential, a set of POs appear which are
confined in each of the prefragments, and their contributions to
the level density can be regarded as the prefragment shell effect.
However, such kind of analysis hasn’t been carried out in de-
formed potential models for the fission processes. In this work,
we apply the POT to a simple deformed cavity potential model
and discuss the effect of prefragment shell effect to elucidate
the underlying mechanism of asymmetric fission.
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Figure 1. Fragment mass distribution in the neutron-induced fission
of 236U. Dots with error bars represent the experimental data taken
from ENDF nuclear database [12]. Solid curves show the Gaussians
fitted to each of the two peaks corresponding to the heavier and lighter
fragments.

2. Asymmetric fission

Figure 1 shows the distribution of fragment mass yields for the
neutron-induced fission of 236U. It consists of two peaks with
the heavier component around A = 140 and the lighter compo-
nent around A = 96. In the figure, each of the peaks is fitted
by the Gaussian. This two-peak structure in the fragment-mass
distribution is common among all other actinide nuclei. The
positions of the centers of those peaks and the standard devia-
tions around them are summarized in Figure 2. The outstand-
ing feature is that the peak of the heavier fragment is always
found around A ∼ 140 (Z ∼ 55 and N ∼ 85) independently of
the parent species. Since these numbers are close to the magic
numbers Z = 50 and N = 82, the energy gain due to the shell
effect of the fragment has been considered as the primary driv-
ing force behind the above asymmetric fissions.

For lighter nuclei, the fissions had been expected to occur
in more symmetric manners because such strong shell effect
that advantages the fragment mass asymmetry seems to be ab-
sent. However, substantially asymmetric fragment mass distri-
butions were observed in the fissions of some neutron-deficient
mercury isotopes. In the relatively recent experiment [13], the
fission of 180Hg is turned out to be asymmetric although the
symmetric fission product Zr90

40 50 with neutron number at magic
N = 50 and proton number at submagic Z = 40 is very stable.

The origin of the above asymmetry, what they call a new type
of asymmetric fission, has been theoretically studied in several
approaches: see [14,15] for instance. These works have pointed
out the significance of finding the optimum fission path on the
potential energy surface which runs through the normally de-
formed ground state and the elongated saddle points. In the
case of 180Hg, one finds a deep valley along the line of the
symmetric shapes at large elongation in the potential energy
surface due to the low energy of the symmetric fission products
90Zr. But it is inaccessible from the fission path consisting of
a sequence of minima and saddles from the normal deformed
minima because they are separated from each other by a high
potential ridge (see, e.g., Fig. 7 of Ref. [14]). It tells us that
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Figure 2. Fragment mass-number distribution in the spontaneous and
neutron-induced fissions of actinide nuclei is shown in the panel (a).
Dots show the center of the Gaussians that fit the heavier and lighter
components of the experimental fragment mass-number distributions
(see Fig. 1), and the standard deviations around them are indicated
by the vertical bars. The same plots as the panel (a) but for proton
and neutron numbers are shown in the panels (b) and (c), respectively.
Broken lines represent AF = 140 and AF = AP − 140 in the panel
(a), ZF = 55 and ZF = ZP − 55 in the panel (b), and NF = 85 and
NF = NP − 85 in the panel (c).

the energies of the final states alone are not sufficient to under-
stand the asymmetric fission. It is also important to consider
the potential landscape in the shape parameter and find the en-
ergetically favored fission path along which the shape of the
system likely to evolve towards the scission.

In Ref. [15], it is found that a prefragment whose density
distribution is quite similar to that of isolated 90Zr comes up in
the elongated parent nucleus 180Hg. With such a configuration,
the other prefragment necessarily becomes lighter since there
must be some nucleons in the neck part between the two pre-
fragments. From this observation, they concluded that the shell
effect associated with the prefragment corresponding to 90Zr
plays a role to make the fission asymmetric rather than sym-
metric, contrary to the first expectation. More recently, nucleon
localization functions [16] were investigated in the microscopic
calculations for fission deformation processes [17, 18], which
clearly indicate the formation of prefragments similar to rela-
tively stable isolated nuclei. For fissions of superheavy nuclei,
it is predicted that the shell structure of doubly magic 208Pb,
as well as that of 132Sn, plays an important role [19–21] (see
also [22, 23]).

The above numerical outcomes indicate the significance of
shell effect associated with prefragments formed in the elon-
gated nuclear body. In those works, realistic models are used
which take into account various effects such as Coulomb force,
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pairing correlations, and realistic nucleon distributions. Those
effects are all important to reproduce the individual experimen-
tal data. However, to answer the fundamental question what
the essential mechanism for the asymmetric fission is, it may
be useful to study a simplified model that captures the essence
of the relation between the shell evolution and the shape change
during the fission process. In the following part, we shall use
extremely simplified mean-field potential model to focus our
attention on the role of the shape evolution in the fission defor-
mation processes. The prefragment shell effect is considered
by the POT in line with Strutinsky’s view [11].

3. Three-Quadratic-Surfaces parametrization

For describing the fission deformation processes, several types
of shape parametrization have been proposed. Two-center shell
model potential, consisting of two oscillators centered at two
different points and the neck part smoothly connecting them,
have been utilized in several static and dynamical calculations
[5, 6, 24]. It includes the five essential parameters to describe
the shape of the potential: elongation, fragment mass asymme-
try, neck radius, and quadrupole deformations of the two pre-
fragments. Although it is important to fully consider those five
shape degrees of freedom, parameter sets with reduced num-
bers have also been used for simpler analyses. The (c-h-α)
model with three parameters controlling the elongation, neck
shape and asymmetry, was employed in the review article [25]
on the application of the shell correction method to the fission
problem. Semiclassical analysis was made in the cavity model
with the same shape parametrization [26], and the role of POs
in generating fission path leading to the asymmetric shape was
discussed.

Since our aim is to discuss the prefragment shell effect,
the three-quadratic-surfaces (3QS) parametrization proposed
by R. Nix [28] is convenient with which one can easily control
the shapes of the prefragments [29]. In the 3QS, the surface of
the axially symmetric potential ρ = ρs(z) is divided into three
regions along the axis of symmetry direction, and each of them
is expressed as a quadratic surface,

ρ2
s(z) =



































a2
1 −

a2
1

c2
1
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a2
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a2
3

c2
3
(z − l3)2, (z1 < z < z2)

a2
2 −

a2
2

c2
2
(z − l2)2. (z2 ≤ z ≤ l2 + c2)

(1)

These three parts are smoothly connected at the joints z = z1

and z2. The established surface is described by the five inde-
pendent shape parameters {q2, αg, σ2, ǫ1, ǫ2} under the center-
of-mass and volume-conservation conditions. q2 is the dimen-
sionless elongation parameter proportional to the quadrupole
moment Q2, defined as [30]

Q2 =

∫

ρc(r)(2z2 − x2 − y2)dV =
ZeR2

0

4π/3
q2, (2)

where the charge density ρc(r) is assumed to be uniform inside
the surface, and R0 is the nuclear radius in the spherical limit.
αg is the prefragment mass asymmetry

αg =
M1 − M2

M1 + M2
=

a2
1c1 − a2

2c2

a2
1c1 + a2

2c2
, (3)

q2=1.0

αg=0.0

q2=4.0 q2=8.0

αg=0.1

q2=4.0

αg=0.2 αg=0.3

Figure 3. Shapes of the 3QS surface with several values of the elonga-
tion parameter q2 and prefragment mass asymmetry αg. Prefragments
deformation parameters are put to ǫ j = 0 (spherical) and the neck pa-
rameter is fixed at σ2 = −0.6. The vertical broken lines represent the
joints between adjacent quadratic surfaces. Dotted lines indicate the
symmetry axis and the position of the center of mass.

where the mass M j of the jth prefragment ( j = 1, 2) is calcu-
lated assuming a uniform-density spheroidal body. σ2 is the
curvature of the middle surface

σ2 =
a2

3

c2
3

, (4)

which takes negative values (c2
3 < 0) when the neck is formed

and the nuclear surface turns a dumbbell shape. ǫ j ( j = 1, 2) is
the spheroidal deformation parameters of the jth prefragment,

ǫ j =
3(c j − a j)

2a j + c j

. (5)

In the present work, we shall fix the shapes of the prefragments
to be spherical (ǫ j = 0). We also fix the neck parameter to
σ2 = −0.6, which is close to its values for some actinide nuclei
along the fission paths obtained in the realistic macroscopic-
microscopic calculations [14]. Then, we consider the deformed
shell structure against the elongation and fragment mass asym-
metry. Shapes at several values of {q2, αg} are displayed in
Fig. 3. Consideration of the roles of the prefragment defor-
mations is left for future studies.

Using this parametrization, let us first examine the deforma-
tion energy in the liquid-drop model (LDM). The LDM defor-
mation energy consists of surface and Coulomb parts

∆ELDM(q) = bS (q)A2/3
+ bC(q)

Z2

A1/3
, (6)

where the coefficients bS (q) and bC(q) are dependent on the
deformation q = {q2, αg}.

Figure 4 shows the LDM deformation energies for the nu-
cleus 236U as functions of the elongation parameter q2 and the
asymmetry parameter αg, with the prefragment deformations
and the neck parameter fixed at ǫ1 = ǫ2 = 0 and σ2 = −0.6.
One sees that the asymmetric configuration (αg > 0) is disfa-
vored through the fission deformation processes. Thus, the ori-
gin of the asymmetric fission cannot be found in the classical
LDM energy.

4. Shell structures in the fission processes and the periodic-

orbit theory

In this section, we first give a brief introduction to the general
aspects of semiclassical periodic orbit theory. The advantage
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Figure 4. LDM deformation energy for 236U as function of the elon-
gation parameter q2 and the asymmetry parameter αg. Contour curves
are shown on the bottom plane.

of the semiclassical theory in considering the prefragment shell
effect is emphasized. Then, we apply the theory to the 3QS
cavity model and investigate the shell structures in the fission
deformation processes.

4.1. Semiclassical theory of shell structures

The single-particle level density for the mean-field Hamiltonian
ĥ is given by

g(e) =
∑

n

δ(e − en) =
∫

dteiet/~ Tr K(r, r; t). (7)

en is the nth energy eigenvalue of ĥ from the bottom. The tran-
sition amplitude K(r

′, r, t) = 〈r′|e−itĥ/~|r〉 can be expressed in
the path integral representation. Semiclassical evaluation of
the path integral using the stationary-phase method will extract
contributions of classical POs, and one obtains the so-called
trace formula which expresses the quantum level density in
terms of the classical POs as

g(e) ≃ ḡ(e) +
∑

β

Aβ(e) cos

(

1
~

S β(e) −
π

2
µβ

)

. (8)

In the right-hand side, ḡ(e) represents the average part of the
level density which is generally a moderate and monotonous
function of energy, and the second term represents the oscil-
lating part. The sum is taken over all the POs in the clas-
sical counterpart of the system, where β specifies the orbit.
S β(e) =

∮

β
p · dr is the action integral along the orbit β, µβ is

the Maslov index related to the geometric property of the orbit,
and the amplitude Aβ is determined by the degeneracy, stability
and period of the orbit.

In a cavity potential, the classical particle moves rectilinearly
and is reflected ideally at the boundary, and one has the same
set of POs independent of energy. Since the modulus of mo-
mentum p = ~k is constant, action integral along the orbit is
simply given by

S β(k) = ~kLβ, (9)

where Lβ is the geometric length of the orbit. In this case, it
is more useful to rewrite the trace formula (8) in terms of the
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Figure 5. Comparison between quantum and semiclassical calcula-
tions for the shell structures in the symmetric 3QS cavity model with
the elongation parameter q2 = 4.0. In the panel (a) and (b), oscillating
parts of the single-particle level densities (12) with the averaging pa-
rameter γ = 0.1 and 0.3 are shown as functions of the wave number k.
In the panel (c), shell energy is plotted as a function of the Fermi wave
number kF . The solid (red) curves represent the quantum results, and
the long-dashed (blue) curves represent the results of trace formula
(10) and (15). The short-dashed (green) curves show the contribution
of the triangle orbit family (3,1) in the prefragments (discussion will
be conducted in Sec. 4.2).

wave number variable k, instead of energy e:

g(k) = g(e)
de

dk

≃ ḡ(k) +
∑

β

Aβ(k) cos
(

kLβ −
π

2
µβ

)

. (10)

The contribution of each orbit gives a regularly oscillating func-
tion of k, and the period of the oscillation δk is inversely pro-
portional to the length of the orbit

δk =
2π
Lβ
. (11)

Accordingly, the shorter orbits are responsible for the gross
shell effect with large δk. Generally a complicated structure in
the level density fluctuation is built up with the superposition
of the contributions of various orbits having different lengths.

In Fig. 5, we show the oscillating part of the level density
coarse-grained with the averaging width γ,

δgγ(k) =
∫

dk′{g(k′)− ḡ(k′)} exp















−1
2

{

(k′ − k)R0

γ

}2












(12)

for the symmetric 3QS shape with the elongation parameter
q2 = 4.0. With the averaging width γ, contributions of long
POs having the lengths Lβ & R0/γ are integrated out and only
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the shorter POs prevail. With γ = 0.1, many orbits up to
L ∼ 10R0 contribute and one sees a complicated fine structure.
With γ = 0.3, one finds a simple oscillating pattern governed by
only a few shortest orbits. In the panel (b) of Fig. 5, one sees
that the gross structures in quantum level densities are nicely
reproduced by the semiclassical trace formula taking account
of only five shortest PO families confined in the prefragments.

Shell energy is directly related to the oscillating part of the
level density as [25]

δE(N) =
∫ eF

(e − eF )δg(e)de, (13)

with the Fermi energy eF satisfying
∫ eF

g(e)de = N. (14)

δE depends essentially on the gross shell structures of δg since
the fine structures are mostly integrated out. By inserting the
PO sum (8) into δg(e), one obtains the semiclassical formula
for shell energy [11, 27]

δE(N) =
∑

β

~
2

T 2
β

Aβ(eF) cos
(

kF Lβ − π2µβ
)

, (15)

with the Fermi wave number kF =
√

2MeF/~. In Eq. (15), the
contribution of each PO has an additional factor proportional to
T−2
β

, which plays a role to suppress the contributions of longer
POs. In the panel (c) of Fig. 5, shell energy of the 3QS cavity
system with the same shape as that used in the two upper panels
is plotted as a function of the Fermi wave number. One sees
that the oscillating pattern is nicely reproduced simply by the
contributions of some shortest POs.

In general, shell structures are known to be very sensitive
to the shape of the potential. In semiclassical point of view,
it can be explained by the sensitivity of the stability of POs to
the potential shape, as well as the changes of the orbit lengths
which lead to the different kinds of interference effects.

4.2. Prefragment shell effect — relation to classical periodic

orbits

As stated above, one can extract the prefragment contribution
out of the total shell energy using the POT. Periodic orbits in
our model can be classified into the following three groups:

1. orbits confined in the 1st prefragment

2. orbits confined in the 2nd prefragment

3. orbits staying in the middle surface or those traveling be-
tween two prefragments

as illustrated in Fig. 6. An unambiguous definition of the pre-
fragment shell effect can be given by the contributions of or-
bits confined in the corresponding prefragment. According to
the above classification of POs, we decompose the shell energy
into three parts as

δE(N) = δE1(N) + δE2(N) + δE3(N). (16)

The orbits included in the third category generally have less
contributions to the shell energy because of the small degener-
acy compared to the prefragment orbits. Thus, the prefragment

1 2
3

Figure 6. Classification of classical POs in the fissioning cavity po-
tential model.

shell effect dominates the total shell effect with developing neck
configuration. In this way, shape stabilities of the prefragments
are expected to play a crucial role in the deformed shell effect
in the fission process.

To estimate the prefragment shell effect, one has to calculate
the classical POs and their characteristics such as periods, de-
generacies and stabilities. All the classical periodic orbits in
the spherical cavity potential are obtained analytically. They
are specified by the two indices (p, t): p counts the number of
reflections on the surface, and t the number of rotations around
the center of the sphere. Regular polygon orbits (p > 2t) such
as triangle (3,1) and square (4,1) orbits form three-parameter
families generated by the three-dimensional rotation, while the
diameter orbits (p = 2t) form two-parameter families [10]. In
the 3QS cavity potential under consideration, one has the same
diameter and polygon orbits confined in prefragments which
are truncated spheres. By considering the restricted ranges of
rotation angles for those orbit families in the prefragments, the
reduction factor fp of the amplitude relative to that for the fam-
ily in non-truncated spherical cavity can be obtained. The prin-
cipal part of the contribution of the PO family is given by the
amplitude

A
(pr)
pt = fpA

(sph)
pt . (17)

However, the above contribution is insufficient to reproduce the
quantum results, and one needs to take into account the end-
point corrections to the contribution of the truncated family. By
extending the Balian-Bloch trace formula [10], we have derived
the formula for the contribution of such truncated family [31,
32] in the form

δgpt(k) =
∑

D

A
(D)
pt (k) cos(kLpt − π2µ

(D)
pt )

= Re
[(

∑

D

A
(D)
pt e−i π2 µ

(D)
pt

)

eikLpt

]

≡ Apt(k) cos(kLpt − π2µpt), (18)

where the sum in the first line is taken over the principal part
(with degeneracy D = Dmax) and several orders of the end-point
corrections (with D < Dmax). In the next subsection, we will
compare the quantum results with our semiclassical formula.

4.3. Quantum-Classical correspondence in Fourier transfor-

mation

In the cavity model, one can easily extract information on
the contributions of classical POs by Fourier transformation of
quantum level density. Practically, quantum spectra is available
up to a finite maximum value, and we truncate the high-energy

5
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Figure 7. Squared moduli of the Fourier transform of quantum level
density, |F(L; q2)|2, plotted as a function of the length parameter L

(in unit of R0) and the elongation parameter q2. The classical POs
associated with the peaks are indicated by the inserted pictures.

part of the spectrum with the Gaussian and consider the follow-
ing Fourier transform:

F(L) =

√

2
π

1
kc

∫

dk g(k)eikLe−
1
2 (k/kc)2

. (19)

Inserting the trace formula (10), one obtains

F sc(L) = F0(L) +
∑

β

Aβe
−iπµβ/2

× exp
[

−1
2
{kc(L − Lβ)}2

]

. (20)

Using this relation, one can extract information on the contribu-
tions of classical POs out of the quantum spectrum. The modu-
lus of the Fourier transform exhibits successive peaks centered
at the lengths of the classical POs L = Lβ, and the amplitude Aβ
of a certain orbit β is available from the height of the peak by

Aβ ≈ |F(Lβ)| (21)

if there is no other peak in the vicinity. Eq. (20) is derived
by ignoring the k dependence of the amplitude for simplicity.
The expression taking account of the correct k dependence is
given in [31, 32], which just replaces the gaussian with another
similar function.

Figure 7 shows the Fourier transform of the quantum me-
chanical level density for the symmetric 3QS cavity. Squared
modulus of the Fourier amplitude, |F(L; q2)|2, calculated for
varying q2 is plotted on the (L, q2) plane. At the spherical
shape, q2 = 0, one sees two pronounced peaks correspond-
ing to the triangle and square PO families having the lengths
L31 = 3

√
3 ≃ 5.20 and L41 = 4

√
2 ≃ 5.66, respectively, in

units of R0. The peak corresponding to the diameter orbit at
L = L21 = 4 is much smaller because of the small degeneracy.
With increasing q2, the above two peaks rapidly decrease, and
instead, a peak corresponding to the prefragment triangle orbit
grows up and makes a significant contribution at large q2.

In Fig. 8, the Fourier peak of the quantum level density at
the lengths of the prefragment diameter (2,1) and triangle (3,1)
orbits are compared with the semiclassical amplitudes derived
in [31], according to Eq. (21). As we discussed in Sec. 4.2, one
has the same families of the diameter and regular polygon orbits
in the prefragments as those in the non-truncated spherical cav-
ity, but with the restricted ranges of the parameters. The dotted
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Figure 8. Quantum Fourier amplitudes at the lengths of the PO (dot-
ted curves) compared with the semiclassical trace formula for (a) the
diameter and (b) the triangle orbit families confined in the spherical
prefragments. Their values relative to those for non-truncated spheri-
cal cavity are plotted as functions of the elongation parameter q2. The
solid curves represent the results of the trace formula where the end-
point corrections are fully taken into account. The dashed curves
represent the principal parts of the semiclassical amplitudes alone,
namely, the reduction factors f2 and f3 (see Sec. 4.2) in the panels
(a) and (b), respectively.

curves in Fig. 8 represent the moduli of the Fourier transform
(19) at the length of the diameter and triangle POs, divided by
their values at the spherical shape q2 = 0. The corresponding
semiclassical results shown by the solid lines are the amplitudes
Apt in Eq. (18), including principal parts and all the end-point
corrections, divided by those for non-truncated spherical cavity.
The dashed curves show the principal parts, namely, the reduc-
tion factor fp of the truncated family (p, t), which considerably
underestimate the quantum results. By taking into account the
end-point corrections, quantum results are nicely reproduced
both for the diameter and triangle POs.

4.4. Semiclassical analysis of the prefragment shell effect

In the following part, we investigate the prefragment shell effect
in the 3QS cavity model using the trace formula (15) for shell
energy.

Figure 9 shows the shell energy δE(N) for the symmetric
3QS cavity model, where POs confined in one of the prefrag-
ments and those in the other are equivalent, and they make con-
structive contributions. Quantum results are nicely reproduced
by the semiclassical trace formula taking into account the five
shortest prefragment POs. One finds a modulation in the gross
shell structure. This modulation is caused by the interference
between POs with different lengths. In Fig. 10, contributions of
the diameter and triangle orbits are shown. The diameter orbit
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Figure 9. Shell energy δE(N) divided by N3/2 as a function of particle
number N for the symmetric 3QS cavity model with the elongation
parameter q2 = 4.0. The thin solid line with dots (in red) represents
the quantum result and the thick solid curve (in blue) represents the
semiclassical trace formula taking some shortest prefragment POs into
account.
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Figure 10. Decomposition of the shell energy into the contribution
of individual PO for the symmetric 3QS cavity model with the same
shapes as in Fig. 9. Thin solid line with dots represents the quantum
results equivalent to the one in Fig. 9, solid and dashed curves repre-
sent the contributions of triangle and diameter orbits, respectively.

has small amplitude in the Fourier analysis (see Fig. 7) but it has
significant contribution to the shell energy due to the shortness
[see Eq. (15)]. Especially deep minima around N = 200 for
q2 = 4.0 are caused by the constructive contributions of those
two orbits. For particle numbers where those contributions are
destructive, shell effect becomes relatively weak.

The results for asymmetric shapes (αg > 0) with q2 = 4.0
are shown in Figs. 11 and 12. Quantum shell energy is nicely
reproduced by the trace formula in Fig. 11, except for some fine
structures. In Fig. 12, contributions of heavy and light prefrag-
ments are shown. Due to the asymmetry, the orbits of the same
type but in the different prefragments have different lengths,
and one finds an interference between them. For αg = 0.1, con-
tributions of two prefragments are out of phase in the plotted
particle number region and the shell effects are relatively weak.
For αg = 0.25, those contributions turn more constructive and
one finds larger shell effects.

4.5. Effect of prefragment magics on asymmetric fission

Since each spherical prefragment has the same set of PO fami-
lies as in the non-truncated spherical cavity, one can expect the
possibility of expressing the shell energy of the 3QS cavity in
terms of the spherical one. Let us define the factor w

( j)
β

by

A
( j)
β

(e) ≃ w
( j)
β

A
(sph)
β

(e; R j). (22)

It represents the value of the amplitude A
( j)
β

for the orbit β (in-
cluding the principal part and all the end-point corrections) in
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Figure 11. Shell energy of the 3QS cavity model with the elongation
parameter q2 = 4.0 and asymmetry parameter αg = 0.1 and 0.25. The
thin line with dots represents quantum result, and the thick solid curve
represents the result of semiclassical trace formula taking account of
some shortest prefragment POs.
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Figure 12. Decomposition of the shell energy into the contributions
of POs in each of the prefragments for the asymmetric 3QS cavity
model with the same shapes as those in Fig. 11. The thin line with
dots represents the quantum results equivalent to the one in Fig. 11.
Solid and dashed curves represent the contributions of POs in heavy
and light prefragments, respectively.

the jth prefragment relative to that in the non-truncated spher-
ical cavity A

(sph)
β

with the same radius R j. The values of wβ
are found to be similar among all the important POs, and let us
just replace them with w

( j)
31 for the most important triangle or-

bit. Then, the contributions of POs in the jth prefragment can
be approximately given by

δE j(N) =
∑

β

~
2

T 2
β

A
( j)
β

cos
(

S β(eF ; R j)/~ − πµβ/2
)

≈ w
( j)
31

∑

β

~
2

T 2
β

A
(sph)
β

cos
(

S β(eF ; R j)/~ − πµβ/2
)

= w
( j)
31δE

(sph)(N j,R j), (23)
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Figure 13. Shell energy of the symmetric 3QS cavity model with the
elongation parameter q2 = 4.0 as a function of the particle number
N. The dots represent the exact quantum result and the thick solid
curves represent the sum of shell energies of the spherical cavities.
Prefragment magic numbers N1(= N2) are indicated by the arrows.
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Figure 14. Same as Fig. 13 but for asymmetric shapes. The upper
panel is for the elongation parameter q2 = 4.0 and the asymmetry
parameter αg = 0.1. The lower panel is for the same elongation pa-
rameter but larger asymmetry parameter αg = 0.25.

where the prefragment particle number N j is related to the total
particle number by

N j(eF) ≈
(

R j

R0

)3

N(eF ). (24)

Thus, the shell energy of the 3QS cavity can be approximated
by the sum of shell energies in the spherical cavity δE(sph) as

δE(N) ≈
∑

j=1,2

w
( j)
31δE

(sph)(N j; R j). (25)

Since the spherical cavity model has magic numbers N =

· · · , 34, 58, 92, 138, · · · , (see e.g., Fig. 2.4 of [33]) the system
will achieve shell energy gain when the prefragment particle
numbers coincide with those magic numbers.

Figures 13 and 14 compare the exact shell energies with the
sum of spherical ones given on the right-hand side of Eq. (25).
For symmetric shapes shown in Fig. 13, one sees nice agree-
ment between the two results, and the shell energy minima are
corresponding to the prefragment magic numbers. For asym-
metric shapes, the agreement between the two results is not as
good as the symmetric case, but one clearly sees the effect of
prefragment magic numbers. For αg = 0.25, magic numbers of
two prefragments make constructive contributions to give the
deep shell energy minima, e.g., around N = 100 and 160.
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Figure 15. Prefragment particle numbers at optimized asymmetries
for fixed value of the elongation q2. The upper panel is for q2 = 4.0
around the saddle, and the lower panel is for the larger elongation
q2 = 6.0.

Let us consider the effect of these prefragment magic num-
bers to the asymmetric fission. We calculated the shell energy
δE(N) as a function of q2 and αg, and find the value of αg which
minimizes the shell energy for each fixed value of q2. At those
values of the asymmetry parameter, prefragment particle num-
bers are calculated and plotted in Fig. 15. The horizontal dotted
lines indicate the spherical magic numbers. It is found that the
heavier prefragment particle number sticks to one of the magic
number and jumps to the next magic number in a stepwise man-
ner with increasing total particle number N. The result for
q2 = 6.0 is almost the same as that for q2 = 4.0, and these
prefragment particle numbers successfully explain the behav-
ior of the experimental data for the fragment mass distributions
shown in Fig. 2.

Figure 16 shows the contour plots of the shell energy for
several particle numbers in the deformation space (q2, αg). One
sees valleys running through the strongly elongated asymmetric
shapes. This curve approximately corresponds to the constant-
action curve of the triangle orbits

kF (N)L(i)
31(q2, αg) −

π

2
µ31 = (2n + 1)π,

L
(i)
31(q2, αg) =

(2n + 1 + µ31/2)π
kF(N)

, (n = 0, 1, 2, · · · ) (26)

where contribution of triangle orbit to the shell energy (15)
takes minima. It approximately gives the condition for the pre-
fragment particle number to coincide with the spherical magic
number.

To see the role of the prefragment shell effect in more
realistic situations, we examined the results of the realistic
macroscopic-microscopic calculations carried out by one of the
authors (T. I.) and his collaborators [14]. The potential energy
surface was calculated as a function of five shape parameters in
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Figure 16. Contour maps of the shell energies in the shape param-
eter space (q2, αg) for particle numbers N = 100 and 150, that are
chosen for the proton and neutron numbers in actinide region. Solid
(in blue) and broken (in red) contour lines represent the negative and
positive shell energy, respectively. The pale thick solid and broken
curves represent the constant-action curves (26) for the prefragment
triangle orbits in heavier and lighter prefragments, respectively, where
the prefragment particle numbers take the spherical magic numbers.
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Figure 17. Prefragment proton and neutron numbers along the fis-
sion paths of 236U and 240Pu obtained by the realistic macroscopic-
microscopic calculations [14]. The horizontal lines indicate the spher-
ical magic numbers 50 and 82.

the 3QS parametrization, and then the fission path was deter-
mined by the immersion method. Looking at the shapes at the
minima and saddles along the fission paths for 236U and 240Pu,
we noticed that the heavier prefragment remains spherical and
its radius R1 is approximately constant. In Fig. 17, the prefrag-
ment proton and neutron numbers evaluated by

Z1 =

(

R1

R0

)1/3

Z, N1 =

(

R1

R0

)1/3

N. (27)

are plotted against the elongation parameter q2. One sees that
both proton and neutron numbers stick to the magic numbers
Z1 = 50 and N1 = 82. This strongly suggests the significance of
prefragment shell effect to determine the shapes of the nucleus
along the fission path in realistic situations.

In the realistic calculation for 180Hg, both of the prefrag-
ments are deformed in the fission process. We expect that our
semiclassical prescription will also be useful in investigating
the role of the prefragment shell effect on the asymmetric fis-
sions in this region.

5. Summary

In this work, we investigated the shell structures in fission pro-
cesses with the 3QS cavity model. Using the POT, prefragment
shell effect is evaluated as the contributions of POs confined
in each of the prefragments. As the nuclear body is elongated,
neck configuration develops and the prefragment triangle or-
bit family makes a dominant contribution to the shell effect.
The energy valleys are formed along the constant-action curves
where the contribution of the triangle orbit takes minima. Since
the spherical magic numbers are approximately given by the
action condition of the triangle orbit family, one has significant
prefragment shell effect along the above constant-action curves,
and they are playing significant roles in determining the fission
path on the potential energy surface.

In the present study, the prefragments are fixed at spheri-
cal shapes for simplicity. This successfully reproduces the ex-
perimental features of the fissions in actinide nuclei where the
spherical shell effect of the heavier prefragments are signifi-
cant. However, the lighter prefragments are usually deformed
and the prefragment deformation should be taken into account
for more extensive description of the fission processes. This
should be critical in analyzing the asymmetric fission of other
mass regions, where both of the prefragments are expected to
be deformed. In recent realistic mean-field calculations, the
importance of the octupole shape degree of freedom for the
prefragments was suggested [7, 8]. It would be an interesting
future subject to consider which kinds of shape degrees of free-
dom to be taken into account to describe the optimum fission
path. When the octupole degree of freedom is taken into ac-
count, the effect of local symmetry restorations associated with
the PO bifurcations might play some important roles [34].
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