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1. Introduction and the summary

The energy–momentum tensor (EMT) Tµν(x) is a fundamental physical observable in quan-

tum field theory. It has been pointed out in Refs. [1, 2] that a “universal” representation of

the EMT can be written down if one utilizes the so-called gradient flow [3–7] and its small

flow time expansion [6]. This representation of the EMT is universal in the sense that it

is independent of the adopted regularization. The representation can thus be employed in

particular with the lattice regularization that makes nonperturbative computations possi-

ble. An advantage of this approach to the lattice EMT is that the expression of the EMT is

known a priori and it is not necessary to compute the renormalization constants involved in

the lattice EMT [8].1 This approach instead requires the limit t → 0, where t is the flow time

(see below), because the representation is obtained in the small flow time limit. In actual

lattice simulations, however, since t is limited as t ≳ a2 by the lattice spacing a, the t → 0

limit requires the extrapolation for t → 0; this t → 0 extrapolation can be a source of the

systematic error. By employing this gradient flow representation of the EMT, expectation

values and correlation functions of the EMT have been computed to study various physical

questions [12–20].

One of important applications of the lattice EMT is the thermodynamics of gauge theory

at finite temperature. See Refs. [21–25] and more recent works in Refs. [26–31]. Both of two

independent thermodynamic quantities, such as the energy density ε and the pressure p, can

be directly computed as the finite temperature expectation value of the traceless part and

the trace part of the EMT, respectively. That is,2

ε+ p = −4

3

⟨
T00(x)−

1

4
Tµν(x)

⟩
, (1.1)

ε− 3p = −⟨Tµµ(x)⟩ . (1.2)

In the gradient flow approach, moreover, the computation of isotropic/anisotropic Karsch

coefficients (i.e., the lattice β function) is also not necessary, because the expression of the

EMT is a priori known.

In this paper, we consider the thermodynamics in the quenched QCD, i.e., the pure Yang–

Mills theory. Assuming the dimensional regularization, the EMT in the pure Yang–Mills

theory is given by

Tµν(x) =
1

g20

[
F a
µρ(x)F

a
νρ(x)−

1

4
δµνF

a
ρσ(x)F

a
ρσ(x)

]
, (1.3)

where g0 is the bare gauge coupling and F a
µν(x) ≡ ∂µA

a
ν(x)− ∂νA

a
µ(x) + fabcAb

µ(x)A
c
ν(x) is

the field strength.3 Note that this is an expression in the D ≡ 4− 2ϵ dimensional spacetime

and is not generally traceless.

One can express any composite operator in gauge theory such as the EMT (1.3) as a series

of flowed composite operators through the small flow time expansion [6]. That is, one can

1 See a review [9] and references cited therein. In particular, in Refs. [10, 11], the gradient flow is
applied to the construction of the EMT in the conventional approach [8].

2 For simplicity of expression, here and in what follows we omit the subtraction of the vacuum
expectation value of an expression; this is always assumed.

3 fabc denote the structure constants of the gauge group G.
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write4

Tµν(x) = c1(t)

[
Ga

µρ(t, x)G
a
νρ(t, x)−

1

4
δµνG

a
ρσ(t, x)G

a
ρσ(t, x)

]
+ c2(t)δµνG

a
ρσ(t, x)G

a
ρσ(t, x) +O(t), (1.4)

whereGa
µν(t, x) ≡ ∂µB

a
ν (t, x)− ∂νB

a
µ(t, x) + fabcBb

µ(t, x)B
c
ν(t, x) andDνG

a
νµ(t, x) ≡ ∂νG

a
νµ(t, x) +

fabcBb
ν(t, x)G

c
νµ(t, x). In these expressions, the “flowed” gauge field Ba

µ(t, x) is defined by the

gradient flow [3–5], i.e., a one-parameter evolution of the original gauge field by

∂tB
a
µ(t, x) = DνG

a
νµ(t, x), Ba

µ(t = 0, x) = Aa
µ(x). (1.5)

The parameter t ≥ 0, which possesses the mass dimension −2, is termed the flow time. Since

Eq. (1.4) is finite [6], one can set D = 4 and the first term in the right-hand side that is

proportional to c1(t) is traceless. The coefficients in this small flow time expansion, which are

analogous to the Wilson coefficients in OPE, can be calculated by perturbation theory [6],

as

c1(t) =
1

g2

∞∑
ℓ

k
(ℓ)
1

[
g2

(4π)2

]ℓ
, c2(t) =

1

g2

∞∑
ℓ=1

k
(ℓ)
2

[
g2

(4π)2

]ℓ
, (1.6)

where g denotes the renormalized gauge coupling. For this, throughout this paper, we assume

the MS scheme, in which

g20 =

(
µ2e−γE

4π

)ϵ

g2Zg, (1.7)

where µ is the renormalization scale, γE is the Euler constant, and Zg is the renormalization

factor. In Eq. (1.6),

k
(0)
1 = 1, (1.8)

because in the tree level (i.e., LO) approximation, F a
µρ(x)F

a
νρ(x) = Ga

µρ(t, x)G
a
νρ(t, x) +O(t).

On the other hand, there is no “k
(0)
2 ” in Eq. (1.6) because the EMT is traceless in the tree

level approximation (the trace anomaly emerges from the one-loop order).

In Eq. (1.6), the one-loop order (i.e., NLO) coefficients k
(1)
i (t) (i = 1, 2) were computed

in Refs. [1, 2] (see also Ref. [33]). Recently, in Ref. [32], Harlander, Kluth, and Lange

computed the two-loop order (i.e., NNLO) coefficients k
(2)
i (t) for general vector-like gauge

theories. See also Ref. [34]. The purpose of the present paper is to study the effect of the

two-loop corrections given in Ref. [32] by taking the lattice computation of thermodynamic

quantities in the quenched QCD as example. For the trace part of the EMT, we also examine

the use of the three-loop order coefficient, k
(3)
2 ; as we will explain below, for the quenched

QCD, this higher order coefficient can be obtained by combining a two-loop result in Ref. [32]

and the trace anomaly [35–37]. From analyses by using lattice data obtained in Ref. [14], we

find that the use of the two-loop order coefficients generally reduces the t dependence of the

expectation value of relevant flowed operators, where t is the flow time. We argue that this

tendency can be naturally understood as the reduction of the perturbative error contained

in the one-loop order coefficient. This understanding is obtained by a careful analysis of

the asymptotic behavior of relevant flowed operators for t → 0 (Sect. 3). With the use of

4 Note that our convention for c2(t) differ from that of Ref. [32]. Our c2(t) corresponds to c2(t) +
(1/4)c1(t) in Ref. [32].
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the two-loop order coefficients, therefore, the t → 0 extrapolation becomes less sensitive on

the fit function, the fit range, and the choice of the renormalization scale; the systematic

error associated with these factors is considerably reduced. We expect that this improvement

brought about by the two-loop order coefficients persists also in wider applications of the

gradient flow representation of the EMT, such as the thermodynamics of the full QCD.

2. Expansion coefficients

2.1. β function and the running gauge coupling constant

The β function corresponding to Eq. (1.7) is given by

β(g) ≡ µ
∂

∂µ
g

∣∣∣∣
g0

ϵ→0→ −g

∞∑
ℓ=1

βℓ−1

[
g2

(4π)2

]ℓ
, (2.1)

with coefficients [38–44]

β0 =
11

3
CA, (2.2)

β1 =
34

3
C2
A, (2.3)

β2 =
2857

54
C3
A, (2.4)

β3 =

[
150473

486
+

44

9
ζ(3)

]
C4
A +

[
−40

3
+ 352ζ(3)

]
C2
A, (2.5)

where CA is the quadratic Casimir for the adjoint representation,

facdf bcd = CAδ
ab. (2.6)

CA = N for the gauge group G = SU(N).

Now, to compute correlation functions of the EMT by employing the representation (1.4),

one has to take the limit t → 0 [1, 2]. First of all this limit removes the last O(t) term

in Eq. (1.4), the contribution of operators of higher (≥ 6) mass dimensions. Also, to jus-

tify finite order truncation of the perturbative expansion (1.6), one invokes the following

renormalization group argument [1, 2]: The EMT (1.3) and the operator Ga
µρ(t, x)G

a
νρ(t, x)

are bare quantities. Then the coefficients ci(t) (i = 1, 2) in Eq. (1.4) are independent of the

renormalization scale µ (when the bare coupling g0 is kept fixed). One then set µ ∝ 1/
√
t

and concurrently replaces the coupling constant g with the running gauge coupling g(µ)

satisfying

µ
dg(µ)

dµ
= β(g(µ)). (2.7)

Then the use of the perturbative calculation is justified for small t because the running gauge

coupling g(µ) gets smaller due to the asymptotic freedom.

Although the above argument shows that in principle the coefficients ci(t) are independent

of the choice of the relation between the renormalization scale µ and the flow time t, this

is not exactly the case in practical calculations based on fixed order perturbation theory. In

other words, the difference caused by different choices of µ implies the remaining perturbative
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uncertainty. Following Ref. [32], we introduce the combination,

L(µ, t) ≡ ln(2µ2t) + γE . (2.8)

A conventional choice of µ is given by

µ = µd(t) ≡
1√
8t

⇔ L = −2 ln 2 + γE . (2.9)

All the numerical experiments on the basis of the representation (1.4) so far [12–20] have

adopted this choice. On the other hand, in Ref. [32], it is argued that

µ = µ0(t) ≡
1√
2eγE t

⇔ L = 0, (2.10)

would be an optimal choice on the basis of the two-loop order coefficients. In following

numerical analyses, we will examine both choices µ = µ0(t) and µ = µd(t). The difference in

the results with these two choices gives an estimate of higher order uncertainty. We define our

central values by the usage of Eq. (2.10), while the higher order uncertainties are estimated

with Eq. (2.9), where µd(t) ≃ 0.667µ0(t).

Let us now list the known coefficients in Eq. (1.6).

2.2. One-loop order (NLO) coefficients

In the one-loop level, we have [1, 2, 33]

k
(1)
1 = −β0L− 7

3
CA

= CA

(
−11

3
L− 7

3

)
. (2.11)

k
(1)
2 =

1

8
β0

=
11

24
CA. (2.12)

The number L is defined by Eq. (2.8).

2.3. Two-loop order (NNLO) coefficients

he two-loop order coefficients in Ref. [32] specialized to the pure Yang–Mills theory are

k
(2)
1 = −β1L+ C2

A

(
−14482

405
− 16546

135
ln 2 +

1187

10
ln 3

)
= C2

A

(
−34

3
L− 14482

405
− 16546

135
ln 2 +

1187

10
ln 3

)
. (2.13)

k
(2)
2 =

1

8
β1 −

7

16
β0CA

= C2
A

(
− 3

16

)
. (2.14)

2.4. Three-loop order (N3LO) coefficient for c2(t), k
(3)
2

In the pure Yang–Mills theory, if one has the small flow time expansion of the renormalized

operator {F a
µνF

a
µν}R(x) in the ℓth loop order, one can further obtain the coefficient of c2(t) in
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a one loop higher, k
(ℓ+1)
2 , by using information of the trace anomaly [1]. The two-loop order

(NNLO) coefficient (2.14) can also be obtained in this way from a one-loop order calculation

and already has been used in numerical experiments in the quenched QCD. Repeating this

argument, we can now obtain the three-loop order coefficient, k
(3)
2 .

We recall the trace anomaly [35–37]

Tµµ(x) = −β(g)

2g3
{F a

µνF
a
µν}R(x), (2.15)

where the β function given by Eq. (2.1). According to Eq. (64) of Ref. [32], we now have the

small flow time expansion of {F a
µνF

a
µν}R(x) to the two-loop order:

{F a
µνF

a
µν}R(x)

=

[
1 +

g2

(4π)2

(
−7

2
CA

)
+

g4

(4π)4
C2
A

(
−3

2
L− 1427

180
+

87

5
ln 2− 54

5
ln 3

)]
×Ga

µν(t, x)G
a
µν(t, x) +O(t). (2.16)

Plugging this into Eq. (2.15) and using (2.1), we have

Tµµ(x)

=
1

g2

{
g2

(4π)2
1

2
β0 +

g4

(4π)4

(
1

2
β1 −

7

4
β0CA

)
+

g6

(4π)6

[
1

2
β2 −

7

4
β1CA + β0C

2
A

(
−3

4
L− 1427

360
+

87

10
ln 2− 54

10
ln 3

)]}
×Ga

µν(t, x)G
a
µν(t, x) +O(t). (2.17)

Comparing this with the trace of Eq. (1.4), we have Eqs. (2.12) and (2.14), and

k
(3)
2 =

1

8
β2 −

7

16
β1CA + β0C

2
A

(
− 3

16
L− 1427

1440
+

87

40
ln 2− 27

20
ln 3

)
= C3

A

(
−11

16
L− 2849

1440
+

319

40
ln 2− 99

20
ln 3

)
. (2.18)

We will also examine the use of this N3LO coefficient for the trace anomaly in the numerical

analyses below.

3. Asymptotic behavior for t → 0

As already elucidated, to compute expectation values and correlation functions of the EMT

by employing the representation (1.4), one has to take the t → 0 limit. In actual numerical

calculations based on the lattice simulation, however, it is not straightforward to take the

t → 0 limit. The representation (1.4) assumes a continuous spacetime and one has to take

a double limit, i.e., the continuum limit a → 0 first while the flow time t in physical units

is kept fixed and then the t → 0 limit. In other words, with a finite lattice spacing a, the

flow time t is practically limited from below as t ≳ a2 (the lattice data actually exhibits

violent diverging behavior for t ≲ a2). Then one has to carry out extrapolation for t → 0

by assuming a certain functional form. For this t → 0 extrapolation, therefore, it is quite
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desirable to know the t → 0 behavior of the combination,

c
(ℓ)
1 (t)

[
Ga

µρ(t, x)G
a
νρ(t, x)−

1

4
δµνG

a
ρσ(t, x)G

a
ρσ(t, x)

]
+ c

(ℓ)
2 (t)δµνG

a
ρσ(t, x)G

a
ρσ(t, x), (3.1)

where c
(ℓ)
i (t) denote the ℓth loop order truncation of the coefficients ci(t):

c
(ℓ)
1 (t) ≡ 1

g2

ℓ∑
n=0

k
(n)
1

[
g2

(4π)2

]n
, c

(ℓ)
2 (t) ≡ 1

g2

ℓ∑
n=1

k
(n)
2

[
g2

(4π)2

]n
. (3.2)

At first glance, this appears an impossible task because the matrix elements

of Ga
µρ(t, x)G

a
νρ(t, x) can have quite nontrivial t dependence. For this reason, in numeri-

cal experiments so far, the extrapolation by the linear function in t, which is suggested by

the presence of the last O(t) term of Eq. (1.4) has been mainly used. Here, we point out

that it is possible to argue the asymptotic t → 0 behavior of Eq. (3.1) in a theoretically solid

basis. If the flow time available in numerical simulations can be considered to be “sufficiently

small” in the sense elucidated below, one should use the following asymptotic form in the

t → 0 extrapolation.

We first take the traceless (TL) part of Eq. (1.4), which yields

T TL
µν (x) = c1(t)

[
Ga

µρ(t, x)G
a
νρ(t, x)−

1

4
δµνG

a
ρσ(t, x)G

a
ρσ(t, x)

]
+O(t). (3.3)

Multiplying this by c
(ℓ)
1 (t)c1(t)

−1, we have

c
(ℓ)
1 (t)

[
Ga

µρ(t, x)G
a
νρ(t, x)−

1

4
δµνG

a
ρσ(t, x)G

a
ρσ(t, x)

]
= c

(ℓ)
1 (t)c1(t)

−1T TL
µν (x) +O(t). (3.4)

Now, since T TL
µν (x) is independent of the flow time t., the combination c

(ℓ)
1 (t)c1(t)

−1 provides

the t dependence of the left-hand side up to the last O(t) term. c
(ℓ)
1 (t)c1(t)

−1 is almost unity

up to the perturbative error of the order[
g(µ)2

(4π)2

]ℓ+1
t→0∼ 1

[β0 ln(µ2/Λ2
MS

)]ℓ+1
, (3.5)

where we have used the leading µ → ∞ form of the running coupling; recall that the

renormalization scale µ and the flow time t are related by Eq. (2.8), i.e.,

µ =
1√

2e−L+γE t
. (3.6)

In the limit t → 0, the 1/[− ln(tΛ2
MS

)]ℓ+1 behavior of Eq. (3.5) is always dominant over

any power of t, tk ∼ exp{−(4π)2k/[β0g(µ)
2]}. Therefore, for t → 0, in the mathematical

sense, the last O(t) term in Eq. (3.4) is negligible compared with Eq. (3.5) and the leading

asymptotic behavior of Eq. (3.4) in the limit t → 0 is

c
(ℓ)
1 (t)

[
Ga

µρ(t, x)G
a
νρ(t, x)−

1

4
δµνG

a
ρσ(t, x)G

a
ρσ(t, x)

]
= c

(ℓ)
1 (t)c1(t)

−1T TL
µν (x) +O(t)

t→0∼ T TL
µν (x)

{
1 + s1

[
g(µ)2

(4π)2

]ℓ+1
}
, (3.7)
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where s1 is a constant and the renormalization scale µ is given by Eq. (3.6).5 From Eqs. (1.6),

(3.2), and (2.13), we have

s1 = −k
(2)
1 = −87.24 for ℓ = 1 (NLO), (3.8)

s1 = −k
(3)
1 for ℓ = 2 (NNLO), (3.9)

where the explicit number quoted for ℓ = 1 is for G = SU(3) and µ = µ0, i.e., L = 0.

A similar argument for the trace part of Eq. (1.4) yields6

4c
(ℓ)
2 (t)Ga

µν(t, x)G
a
µν(t, x)

= c
(ℓ)
2 (t)c2(t)

−1Tµµ(x) +O(t)

t→0∼ Tµµ(x)

{
1 + s2

[
g(µ)2

(4π)2

]ℓ}
, (3.10)

where s2 is another constant. Again, from Eqs. (1.6), (3.2), (2.12), (2.14), and (2.18),

s2 = −k
(2)
2

k
(1)
2

≃ 1.227 for ℓ = 1 (NLO), (3.11)

s2 = −k
(3)
2

k
(1)
2

≃ 37.09 for ℓ = 2 (NNLO), (3.12)

s2 = −k
(4)
2

k
(1)
2

for ℓ = 3 (N3LO). (3.13)

If the flow time t is sufficiently small such that the O(t) terms in the above expressions

are negligible compared with the perturbative error [g2/(4π)2]ℓ, the asymptotic behavior

of Eq. (3.1) for t → 0 is given by Eqs. (3.7)–(3.13). Whether t available in actual lattice

experiments can be regarded so small or not depends on lattice parameters such as the

lattice spacing, physical parameters such as ΛMS, the temperature and the volume, and also

on a physical quantity under consideration; this is because the above O(t) terms contain

higher dimensional operators whose matrix elements depend on these factors.

In the numerical analyses in the next section for thermodynamic quantities, we use two

reasonable fit ranges for the t → 0 extrapolation [14],

Range-1: 0.01 ≤ tT ≤ 0.015, (3.14)

Range-2: 0.005 ≤ tT ≤ 0.015. (3.15)

In Fig. 1, we plot tΛ2
MS

and g(µ)4/(4π)4, as a function of tT 2 for various temperature T

(Tc denotes the critical temperature) adopting µ = µ0(t) (2.10).7 We observe that within

our fitting range, tΛ2
MS

∼ 30g(µ)4/(4π)4. By considering the fact that the parameter s1
in Eq. (3.8) and the parameter s2 in Eq. (3.12) are ∼ −90 and ∼ 40, respectively, the

5 In this expression, it is natural to use the running gauge coupling g(µ) in the ℓth loop order.
6 The power is ℓ instead of ℓ+ 1, because the series (1.6) for c2(t) starts from g2, not g0.
7 Throughout this paper, we use three-loop ΛMS quoted in Eq. (270) of Ref. [45] and the four-loop

running gauge coupling in the MS scheme. For the latter, we use the approximate formula, Eq. (9.5)
in Ref. [46].
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t dependences arising from g(µ)4/(4π)4 and tΛ2
MS

can be comparable within the above

range. In the next section, we will see that numerical results strongly indicate that the

t dependence in Eq. (3.7) in the ℓ = 1 (NLO) is dominated by g(µ)4/(4π)4 rather than

the O(t) term. Nevertheless, for other cases, it is not obvious which factor is dominant.

Therefore, unfortunately, we cannot strongly insist the t → 0 extrapolation on the basis of

the asymptotic behaviors (3.7) and (3.10). It will be safe if one tries both the “traditional”

extrapolation by the linear function in t and the extrapolation of the forms (3.7) and (3.10).

The difference in the t → 0 limit should be regarded as the systematic error associated

with the t → 0 extrapolation; we will find that the new two-loop order (NNLO) coefficients

considerably reduces this error.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
tT2

10
6

10
5

10
4

10
3

10
2

10
1

t
2 M

S(
-)

 o
r g

4 /(
4

)4  
(

)

T/TC = 0.93
T/TC = 1.02
T/TC = 1.12
T/TC = 1.40
T/TC = 1.68
T/TC = 2.10
T/TC = 2.31
T/TC = 2.69

T/TC = 0.93
T/TC = 1.02
T/TC = 1.12
T/TC = 1.40
T/TC = 1.68
T/TC = 2.10
T/TC = 2.31
T/TC = 2.69

Fig. 1: tΛ2
MS

and g(µ)4/(4π)4 as a function of tT 2 for various temperature T (Tc denotes the

critical temperature). Here, we adopt µ = µ0(t) (2.10)).

4. Numerical results

In what follows, we use the lattice data obtained in Ref. [14] for the G = SU(3) pure Yang–

Mills theory, which allows detailed analyses.

Let us start with the entropy density, ε+ p. In Fig. 2, we plot the the thermal expectation

value

− 4

3T 4
c1(t)

⟨
Ga

0ρ(t, x)G
a
0ρ(t, x)−

1

4
Ga

ρσ(t, x)G
a
ρσ(t, x)

⟩
, (4.1)

as a function of tT 2; the temperature is T/Tc = 1.68. The plots for other temperatures listed

in the left most column of Table 1 are deferred to Appendix A.

According to Eqs. (1.4) and (1.1), the t → 0 limit of this expectation value gives rise to the

entropy density normalized by the temperature, (ε+ p)/T 4. In each panel of Fig. 2, we plot

Eq. (4.1) with three different lattice spacings; the coefficient c1(t) in each panel is, (a) the

one-loop order (i.e., NLO) with the choice of the renormalization scale µ0(t) (2.10), (b) the

NLO with µd(t) (2.9), (c) the two-loop order (i.e., NNLO or N2LO) with µ0(t), and (d) the

N2LO perturbation theory with µd(t), respectively. We then take the continuum limit at
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Fig. 2: Equation (4.1) as the function of tT 2. T = 1.68Tc. In each panel, the order of per-

turbation theory and the choice of the renormalization scale are indicated. The errors are

statistical only. The extrapolation of the continuum limit (the gray band) to t = 0 is plotted

by the black circle (obtained by the fit range (3.14)) and the white circle (obtained by the

fit range (3.15)).

each fixed value of tT 2. The continuum limit (the gray band) is then extrapolated to t = 0

by the fit of the form of the right-hand side of Eq. (3.7); ℓ = 1 for NLO and ℓ = 2 for N2LO.

We summarize the values of the slope parameter s1 in Table 2.

In Fig. 2 and in corresponding figures in Appendix A, Fig. A1–A7, we observe that the use

of the two-loop order coefficient generally reduces the t dependence of the continuum limit

(it becomes flatter in t). This implies that the t → 0 extrapolation becomes less sensitive on

the fit function, the fit range, and the choice of the renormalization scale.8 This tendency

can be naturally understood from the asymptotic behavior for t → 0 in Eqs. (3.7) and (3.8)

if we assume that the t-dependence with the one-loop order (NLO) coefficient is mainly

determined by the g(µ)4/(4π)4 term compared with the O(t) term. If this is the case, then the

8 The reduction of the renormalization scale dependence from the one-loop order to the two-loop
order is studied in detail in Ref. [32].
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(ε+ p)/T 4

T/Tc NLO N2LO FlowQCD 2016

0.93 0.077(47)(00)(00)(05) 0.082(38)(00)(00)(04) 0.082(33)(+3
−6)(0)

1.02 2.185(75)(00)(15)(35) 2.169(68)(02)(22)(09) 2.104(63)(+16
−2 )(8)

1.12 3.711(69)(14)(22)(22) 3.708(55)(10)(34)(04) 3.603(46)(+39
−0 )(13)

1.40 4.849(60)(00)(26)(16) 4.846(47)(00)(40)(05) 4.706(35)(+49
−0 )(17)

1.68 5.522(65)(04)(31)(46) 5.473(49)(06)(44)(16) 5.285(35)(+44
−0 )(18)

2.10 5.811(67)(00)(28)(24) 5.784(50)(00)(41)(06) 5.617(34)(+66
−0 )(18)

2.31 5.786(109)(00)(25)(03) 5.790(82)(00)(39)(06) 5.657(55)(+82
−15)(18)

2.69 6.161(70)(13)(29)(36) 6.106(52)(13)(41)(15) 5.914(32)(+70
−0 )(18)

(ε− 3p)/T 4

T/Tc N2LO N3LO FlowQCD 2016

0.93 0.054(41)(00)(01)(10) 0.064(34)(00)(00)(06) 0.066(32)(+3
−2)(0)

1.02 1.927(62)(00)(01)(14) 1.933(58)(00)(00)(03) 1.945(57)(+8
−7)(0)

1.12 2.535(42)(00)(01)(18) 2.544(35)(00)(00)(04) 2.560(33)(+12
−8 )(0)

1.40 1.767(38)(00)(00)(05) 1.769(29)(00)(00)(00) 1.777(24)(+14
−3 )(0)

1.68 1.220(31)(13)(00)(06) 1.207(24)(10)(00)(06) 1.201(19)(+10
−0 )(0)

Table 1: Summary of the entropy density and the trace anomaly obtained by using coefficients

in different orders of perturbation theory. The central values and the statistical errors (the 1st

parentheses) are computed by using the Range-1 (3.14) with the choice of the renormalization

scale µ = µ0(t) (2.10). The numbers in the 2nd, the 3rd, and the 4th parentheses are the

systematic errors associated with the fit range (estimated by another choice, the Range-

2 (3.15), the 3% uncertainty of ΛMS, and the renormalization scale (estimated from another

choice µ = µd(t) (2.9)), respectively. The results of Ref. [14] are also tabulated in the last

column.

t-dependence diminishes when we increase the order of loop approximation. Another support

on this picture is provided that the fact that the values of s1 in Table 2, the slope parameter

in Eq. (3.7), obtained by the fit is fairly consistent with −87.24 in Eq (3.8). For N2LO, on

the other hand, we do not have a clear idea which of the g(µ)6/(4π)6 term and the O(t)

term dominates the t dependence. In any case, we cannot be completely sure which the

perturbative error ∝ [g(µ)2/(4π)2]ℓ+1 and the (nonperturbative) O(t) term dominates the

t dependence. We should use (at least) both the linear function in t and the functional form

in Eq. (3.7) for the t → 0 extrapolation. The difference in the t → 0 limit should be regarded

as the systematic error associated with the t → 0 extrapolation. See Table 1 and Fig. 3 for

the summary of the results. In these results, for one-loop order (NLO) cases, we used the

extrapolation of the form (3.7). The linear t extrapolation was adopted in Ref. [14]. Thus

the different between these two is regarded as the systematic error in the NLO. For two-

loop order (N2LO), we examined both the extrapolation of the form (3.7) and the linear t

extrapolation and the difference is included in the systematic error; we found that the fit

by the sum of these two functions is unstable because the continuum limit is almost linear

in t. However, because of the reduction of the t dependence with the two-loop coefficient,
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s1

T/Tc NLO (ℓ = 1) N2LO (ℓ = 2)

0.93 398(1239)(+426
+0 )(+80

−71) 16503(38219)(+13877
+0 )(+2775

−2452)

1.02 −152(42)(+0
+0)(

+26
−23) −1902(1574)(+0

−120)(
+966
−834)

1.12 −95(34)(+0
−11)(

+32
−28) 185(1299)(+0

−430)(
+1224
−1073)

1.40 −96(33)(+3
+0)(

+33
−30) 160(1377)(+122

+0 )(+1415
−1256)

1.68 −202(36)(+0
−3)(

+28
−26) −4717(1653)(+0

−317)(
+1265
−1123)

2.10 −159(43)(+3
+0)(

+33
−30) −2965(2141)(+34

+0 )(+1617
−1455)

2.31 −79(76)(+54
+0 )(+39

−36) 1056(3835)(+2792
+0 )(+1971

−1785)

2.69 −251(51)(+0
−12)(

+31
−29) −8193(2771)(+0

−935)(
+1618
−1460)

s2

T/Tc N2LO (ℓ = 2) N3LO (ℓ = 3)

0.93 1216(2116)(+120
+0 )(+93

−86) 31549(46881)(+5673
+0 )(+2954

−2695)

1.02 60(31)(+14
+0 )(+5

−4) 669(1020)(+534
+0 )(+173

−158)

1.12 69(28)(+14
+0 )(+5

−5) 1027(987)(+589
+0 )(+193

−177)

1.40 44(57)(+9
+0)(

+3
−3) 193(2219)(+366

+0 )(+131
−120)

1.68 −98(73)(+0
−44)(

+3
−3) −5883(3170)(+0

−2214)(
+186
−197)

Table 2: The slope parameters s1 in Eq. (3.7) and s2 in Eq. (3.10) obtained from the fit

of the continuum limit. The renormalization scale µ = µ0(t) (2.10) is adopted. The central

value is obtained from the fit in the Range-1 (3.14). Each parentheses show the statistical

error, the systematic error associated with the fit range (estimated by another choice, the

Range-2 (3.15), and the systematic error associated with the the 3% uncertainty of ΛMS.

the systematic error in N2LO is much small. This clearly shows a great advantage of the

two-loop order coefficient.

In Fig. 3, we also the results of Refs. [14, 21, 23, 29, 31]. That our N2LO results are

consistent with other references, especially with Refs. [21, 31], is encouraging.

We now turn to the so-called trace anomaly, ε− 3p. The expectation value

− 4

T 4
c2(t)

⟨
Ga

µν(t, x)G
a
µν(t, x)

⟩
, (4.2)

as a function of tT 2 is plotted in Fig. 4 for T/Tc = 1.68. (Results for other temperatures are

deferred to Appendix A). As we noted, the two-loop order (N2LO) and the three-loop order

(N3LO) coefficients are available for the trace anomaly. We observe that, already with the

N2LO coefficient, the continuum limit (the gray band) is almost constant in t within our fit

ranges. Thus, naturally, the extrapolation of the continuum limit to t = 0 is quite insensitive

on the choices N2LO or N3LO, and µ = µ0(t) or µ = µd(t). Similarly to the entropy density

above, for N2LO, we use the extrapolation of the form (3.10), (the results with the linear t

extrapolation in the N2LO is given by Ref. [14] (FlowQCD 2016)), while for the N3LO, we

used both Eq. (3.10) and the linear t extrapolation. All the results are almost degenerate as

also be seen in Fig. 5; as the 4th parentheses in Table 1 shows, however, the use of the N3LO

coefficient certainly reduces the dependence on the choice of the renormalization scale.
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Fig. 3: Summary of the entropy density as the function of T/Tc. In the lower panel, the

region 4.5 ≲ (ε+ p)/T 4 ≲ 6.5 is magnified. The results in the present paper are the red

circles (NLO) and the blue squares (N2LO). The error bars are including the systematic error

as well as the statistical error; see Table 1 and the main text for details. For comparison, we

also plotted the results of Refs. [14, 21, 23, 29, 31].
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Fig. 4: Equation (4.2) as the function of tT 2. T = 1.68Tc. In each panel, the order of per-

turbation theory and the choice of the renormalization scale are indicated. The errors are

statistical only. The extrapolation of the continuum limit (the gray band) to t = 0 is plotted

by the black circle (obtained by the fit range (3.14)) and the white circle (obtained by the

fit range (3.15)).

A. Numerical results (continued)

In this appendix, we include the plots of Eqs. (4.1) and (4.2) for temperatures T ̸= 1.68Tc.
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Fig. 5: Summary of the trace anomaly as the function of T/Tc. In the lower panel, the

region 1.00 ≲ (ε− 3p)/T 4 ≲ 2.75 is magnified. The results in the present paper are the red

circles (N2LO) and the blue squares (N3LO). The error bars are including the systematic

error as well as the statistical error; see Table 1 for details. For comparison, we also plotted

the results of Refs. [14, 21, 23, 29, 31].
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Fig. A1: Same as Fig. 2. T = 0.93Tc.

16



0.000 0.005 0.010 0.015 0.020 0.025 0.030
tT2

1.8

2.0

2.2

2.4

2.6

(
+

p)
/T

4

T/TC = 1.02 (NLO) = 0
643 × 12
963 × 16
1283 × 22

Range-1
Range-2

(a)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
tT2

1.8

2.0

2.2

2.4

2.6

(
+

p)
/T

4

T/TC = 1.02 (NLO) = d
643 × 12
963 × 16
1283 × 22

Range-1
Range-2

(b)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
tT2

1.8

2.0

2.2

2.4

2.6

(
+

p)
/T

4

T/TC = 1.02 (N2LO) = 0
643 × 12
963 × 16
1283 × 22

Range-1
Range-2

(c)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
tT2

1.8

2.0

2.2

2.4

2.6

(
+

p)
/T

4

T/TC = 1.02 (N2LO) = d
643 × 12
963 × 16
1283 × 22

Range-1
Range-2

(d)

Fig. A2: Same as Fig. 2. T = 1.02Tc.
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Fig. A3: Same as Fig. 2. T = 1.12Tc.
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Fig. A4: Same as Fig. 2. T = 1.40Tc.
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Fig. A5: Same as Fig. 2. T = 2.10Tc.
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Fig. A6: Same as Fig. 2. T = 2.31Tc.
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Fig. A7: Same as Fig. 2. T = 2.69Tc.
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Fig. A8: Same as Fig. 4. T = 0.93Tc.
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Fig. A9: Same as Fig. 4. T = 1.02Tc.
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Fig. A10: Same as Fig. 4. T = 1.12Tc.
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Fig. A11: Same as Fig. 4. T = 1.40Tc.
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