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Abstract. An extremely polarized mixture of an ultracold Fermi gas is expected

to reduce to a Fermi polaron system, which consists of a single impurity immersed

in the Fermi sea of majority atoms. By developing a many-body T -matrix theory,

we investigate spectral properties of the polarized mixture in experimentally relevant

regimes in which the system of finite impurity concentration at nonzero temperature

is concerned. We explicitly demonstrate presence of polaron physics in the polarized

limit and discuss effects of many polarons in an intermediate regime in a self-consistent

manner. By analyzing the spectral function at finite impurity concentration, we extract

the attractive and repulsive polaron energies. We find that a renormalization of

majority atoms via an interaction with minority atoms and a thermal depletion of

the impurity chemical potential are of significance to depict the many-polaron regime.

1. Introduction

Understanding effects of impurities immersed in an environment is one of the key issues

in physics. In nuclear physics, heavy hadrons in nuclear matter such as charm hadrons

are now discussed in context of impurity problems [1]. In condensed matter physics,

a number of impurities problems have been examined for a long time, depending on

conditions of impurities such as mobile or immobile and presence or absence of a spin-

exchange interaction [2]. A particularly fundamental class of the problems is the polaron

in which a mobile impurity interacts with an environment [3, 4]. The concept of

the polaron appears in a variety of the materials such as metal, semiconductor, and

superconductor systems [5, 6].

Currently, there is a growing interest in an ultracold atomic gas as a quantum

simulator of polaron physics [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The Feshbach

resonance available in an ultracold atomic gas allows us to control an interaction

between impurity and bath and to investigate the strong coupling regime, which is

generally challenging in quantum many-body physics [18]. In addition, by using radio-

frequency (rf) spectroscopy, we can address spectral properties of the systems including
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excited branches [19]. For example, rf spectroscopy experiments confirmed existence

of a repulsive polaron, which is a quasiparticle associated with a repulsive interaction

and is a metastable excited many-body state [10, 11, 12, 13, 14, 15, 16]. The repulsive

polaron also receives attention in terms of the realization of repulsive many-body states

such as itinerant ferromagnetism [20, 21, 22, 23, 24].

Interpretations of polaron experiments in ultracold atomic gases are grounded

on the theoretical analyses in which the system with a single impurity at the zero

temperature is assumed. In the case of the Fermi polaron whose bath consists

of fermions, due to such assumptions, theoretical treatments such as variational

methods [25, 26, 27, 28, 29, 30, 31], T -matrix approximation [32, 33, 34, 35], functional

renormalization [36, 37], and diagrammatic Monte Carlo [38, 39, 40, 41, 42] are

successfully applied. In the case of finite polarization, the polaron-polaron interaction is

discussed [43, 44, 45, 46, 47]. In reality, however, none of these theoretical assumptions

are exactly satisfied in corresponding experiments; the temperature is about from

centesimal to few tenths of the Fermi temperature [48] and impurity concentration is of

the order of 10 percent. Thus, it is important to directly analyze such regimes in terms

of many-body calculations accessible to the strong coupling regime.

In this paper, we examine spectral properties in the polarized mixture of an

ultracold Fermi gas with a many-body T -matrix theory, which allows us directly to plug

in the finite temperature and the impurity concentration effects. We demonstrate that

by shifting impurity concentration, the spectral function of impurities shows crossover

behaviors from a single polaron to many polarons. By analyzing the spectral function

in detail, we extract the polaron energy as a function of impurity concentration. We

point out that a renormalization of majority atoms due to minority atoms plays a

crucial role in understanding the system at a finite density, which has been overlooked

in previous studies. In addition, we show that the impurity chemical potential is largely

affected by finite temperature effects compared to other quantities. We also predict

a quasiparticle-like peak in a high-energy regime of the spectral function of majority

atoms, which cannot be captured with single-impurity theories and may be measured

with rf spectroscopy.

2. Formulation

We consider the grand canonical Hamiltonian for the two-component Fermi mixture

interacting through the broad Feshbach resonance [18] (we set ~ = kB = 1),

H =
∑

k,σ

ξp,σc
†
p,σcp,σ + g

∑

p,q,k

c†p,↑c
†
q,↓cq+k,↓cp−k,↑, (1)

where cp,σ represents the fermionic annihilation operator with momentum p and

pseudospin σ =↑, ↓. ξp,σ = p2

2m
−µσ is the kinetic energy of atoms with mass m measured

from the chemical potential µσ. The interatomic interaction is local and the coupling

constant g (< 0) can be characterized with the s-wave scattering length as [18]. Notice
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that the system volume is taken to be unity. Below, without loss of generality, we

assume that ↑ (↓) is the majority (minority) spin.

We wish to examine the spectral function directly related to rf spectroscopy

experiments, which is defined as

Aσ(p, ω) = −1

π
ImGσ(p, iωn → ω + iδ), (2)

where the one-particle thermal Green’s function is given by

Gσ(p, iωn) =
1

iωn − ξp,σ − Σσ(p, iωn)
, (3)

with the self-energy Σσ(p, iωn). Here ωn = (2n + 1)πT is the fermionic Matsubara

frequency (T is the temperature) and δ is an infinitesimally small number. We note

that the analytic continuation in Eq. (2) is numerically done by the Padé approximation

with δ = 10−3εF where εF is the Fermi energy of majority atoms (see also Appendix

A). From the definitions above, it follows that the problem reduces to obtaining the

self-energy that contains bare essentials of the strongly interacting Fermi mixture.

To obtain the polaron energy ωqp ∈ R, we determine the pole ωpole ∈ C of

G↓(p, ω + iδ) by solving a self-consistent equation

ωpole = Σ↓(p = 0, ωpole + iδ)− µ↓. (4)

In general, ωpole locates on the complex plane of ω, and especially in the case of repulsive

polaron near the unitarity in which the s-wave scattering length diverges, the imaginary

part of the self-energy is non-negligible. Therefore, we rewrite Eq. (4) as

ωpole + µ↓ = ωqp − iΓ, (5)

with the decay rate Γ ∈ R. Here, ωqp and Γ are related to the self-energy as

ωqp = ReΣ↓(p = 0, ωqp − µ↓ − iΓ + iδ), (6)

Γ = −ImΣ↓(p = 0, ωqp − µ↓ − iΓ + iδ). (7)

By solving the above two equations, we can obtain ωqp and Γ, respectively.

In addition, the chemical potential µσ is obtained from the so-called number

equation

nσ(µσ) = T
∑

p,iωn

Gσ(p, iωn), (8)

where nσ represents the particle density of atoms with the state σ. In this work, we

define the impurity concentration y as y = n↓/(n↑ + n↓).

To obtain a reasonable self-energy, we use many-body T -matrix theories, which

are known to reproduce fundamental properties in spin-balanced [49, 50, 51, 52] and

polaron limits [32, 33, 34, 35]. The simplest type of the T -matrix theories is the

non-selfconsistent approximation whose self-energy is composed of the bare Green’s

function. However, such an approximation does not contain an interaction between

impurities, which is inevitable to discuss the finite impurity concentration case. To

overcome the drawback of the non-selfconsistent approximation, we adopt an extended
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Σ↓ = t
t

t
G↑

G↑G↑

↓ ↓

↓ ↓

↓ ↓(a)                          (b)

Figure 1. (a) Diagrammatic expression for the ETMA self-energy of impurities Σ↓,

where the non-selfconsistent T -matrix approximation is recovered if the dressed Green’s

function of medium G↑ (double solid line) is replaced by the non-interacting one.

This self-energy includes the induced polaron-polaron interaction diagrammatically

described by the process (b). Shaded circle represents the many-body T -matrix t.

T -matrix approximation (ETMA) [53, 54, 55, 56, 57], which contains the interaction

between impurities (see Fig. 1) and therefore meets the purpose of the paper. In this

formalism, as diagrammatically shown in Fig. 1(a), the self-energy Σσ(p, iωn) is given

by

Σσ(p, iωn) = T
∑

q,iνn

t(q, iνn)G−σ(q− p, iνn − iωn), (9)

where

t(q, iνn) =
g

1 + gχ(q, iνn)
, (10)

is the many-body T -matrix (νn = 2nπT is the bosonic Matsubara frequency). In Eq.

(10), the lowest-order-pair-correlation function χ(q, iνn) is given by

χ(q, iνn) = T
∑

p,iωj

G0
↑(p+ q, iωj + iνn)G

0
↓(−p,−iωn)

=
∑

p

1− f(ξp+q,↑)− f(ξ−p,↓)

ξp+q,↑ + ξ−p,↓ − iνn
(11)

where f(x) = 1/(ex/T +1) is the Fermi distribution function. In Eq. (11), G0
σ(p, iωj) =

1/(iωj − ξp,σ) is the bare Green’s function. Physically, t(q, iνn) describes superfluid

fluctuations in the particle-particle channel [51]. Since the dressed Green’s function G↑

in Eq. (9) [or Fig. 1(a)] involves the self-energy Σ↑, the polaron-polaron interaction

process described by Fig. 1 (b) is automatically included in the self-energy of minority

atoms Σ↓. We note that Σσ(p, iωn) is numerically obtained by self-consistently solving

Eq. (9) with calculating µσ from Eq. (8), as shown in Fig. A1.

Recently, it was shown that the ETMA well reproduces thermodynamic properties

in spin-balanced systems [58, 59]. In what follows, we demonstrate that the ETMA

also provides reasonable results on spectral properties in the polarized system such as

the polarons. In this work, we focus on the relevant parameter regimes to the recent

experiments. After discussing the comparison between our results and the previous
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Figure 2. (Left panel) Interaction dependence of the polaron energy near the zero

impurity density limit (y = n↓/(n↑ + n↓) . 10−3) at T = 0.03TF. Solid lines show

attractive (lower) and repulsive (upper) polaron energies calculated by the ETMA.

The dots represent the experimental results in 6Li Fermi gases [16]. (Right panel)

The effective mass of repulsive polarons m∗ near the zero impurity limit. The solid

line shows our result with the ETMA. The dashed line is the result in the previous

work [11]. The black dots are observed effective masses in Ref. [16]. The inset shows

the calculated temperature dependence of m∗ at (kFas)
−1 = 0.6.

works of experiments as well as theories at the low temperature and impurity density

regime, we clarify effects of finite temperature and impurity density.

3. Result

We first show how our many-body T -matrix theory works well even in the zero-impurity

density limit at the low temperature through a comparison between our numerical

results and the recent experimental measurements [16] as well as previous theoretical

studies. In our formalism, the zero-impurity density limit is achieved by putting

the large chemical potential difference µ↑ − µ↓ such that the impurity concentration

y = n↑/(n↑ + n↓) . 10−3 is enough small. The left panel of Fig. 2 shows the attractive

or repulsive polaron energy ωqp as a function of inverse scattering length (kFas)
−1 with

the Fermi momentum of majority atoms kF. In our calculation, the temperature is fixed

at T = 0.03TF (where TF is the Fermi temperature of majority atoms). Our results

show good agreements with recent experimental results in 6Li Fermi gases [16]. We

note that while the experiment [16] has been done at a bit higher impurity density and

higher temperature compared with our theoretical input, the differences do not lead

to significant consequences on the polaron energy as discussed below. In addition,

in the zero impurity density limit, the ETMA reduces to the non-selfconsistent T -

matrix approximation, which is known to describe polaron properties quantitatively,

since the majority one-particle Green’s function G↑(p, iωn) in the ETMA reduces to

non-interacting one G0
↑(p, iωn) = 1/(iωn − ξp,σ) [47] in the zero impurity density
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Figure 3. The left panel shows residue Z of each polaron calculated by the ETMA

(solid line) in the zero-impurity limit at T = 0.03TF and the functional renormalization

group (FRG) in Ref. [36] (dashed line). The right panel is the interaction dependence

of the decay rate of repulsive polarons Γ at T = 0.03TF. In this figure, the black dots

are experimental results [16]. ΓPF and ΓPP are the decay rate at T = 0 of polaron-to-

bare-atom and polaron-to-polaron processes, respectively [11].

limit. Thus, our approach based on the ETMA turns out to be a natural extension of

the non-selfconsistent T -matrix approximation with a single impurity to discuss finite

temperature and density in the Fermi polaron system.

Our result of the effective mass m∗ subtracted from G↓(p, ω + iδ) near the single

impurity limit is shown in the right panel of Fig. 2 and is consistent with the previous

work [11]. The small difference between the previous and our works comes from the

finite temperature effects as shown in the inset of the right panel of Fig. 2. It is quite

natural that m∗ decreases with increasing the temperature since the temperature effects

gradually suppress the interaction effects. This is the reason why our calculated m∗ at

T = 0.03TF is larger than that of the previous work obtained at T = 0. On the other

hand, the experimental results [16] show heavier effective masses than our evaluation in

spite of the fact that the experimental temperature T = 0.1TF is higher than our case.

We also numerically checked that the effect of a finite-impurity density does not lead

such significant difference. The large mass renormalization in the recent experiment [16]

cannot be explained by finite temperature or impurity density effect by means of the

ETMA.

The left panel of Fig. 3 shows the residue Z of minority Green’s function at

ω = ωpole, which is calculated as [36]

Z−1 = − ∂

∂ω
G−1

↓ (p = 0, ω + iδ)

∣

∣

∣

∣

ω=ωpole

. (12)

Our results of Z for attractive and repulsive polarons show good agreement with the

theoretical study based on the functional renormalization group at T = 0 [36], which

non-perturbatively involves higher order corrections such as three-body process. From
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Figure 4. Calculated chemical potential of majority atoms as a function of impurity

concentration y at T = 0.03TF. Inset shows results of minority atoms. In each figure,

we use the same line-style at each impurity concentration.The circle represents the

attractive polaron energy ωa
qp at the single-impurity limit.

this comparison, one can find that the reside Z is essentially described well by the

ladder-approximation scheme at the single-impurity limit.

However, the decay rate of repulsive polarons Γ obtained from Eqs. (6) and (7) is

generally smaller compared to FRG results [36] since our calculation does not incorporate

the effect of three-body decay associated with atom-dimer scatterings [60] as well as the

decay to attractive polarons, which can be considered by replacing G0
↓ in χ(q, iνn) with

dressed one G↓ [11]. Since G
0
↓ is concerned, the ETMA may reproduce the decay rate of

polaron-to-bare-atom transition ΓPF rather than that of polaron-to-polaron transition

ΓPP calculated in the previous work at the single-impurity limit with exactly T = 0 [11].

Although the correct physical process may be the latter, the former is closer to the

experimental result. In addition, our result involves finite temperature effects which

enhance the decay of the quasi-particles [47], which is visible in the weak repulsive

interacting regime where the collisional effects are relatively small.

We next look at how impurity concentration y affects the chemical potential µσ.

We note that µ↑ = εF in the single impurity case at T = 0. However, as shown in

Fig. 4, µ↑ deviates from the Fermi energy and decreases with increasing y due to the

self-energy shift ReΣ↑(p, ω + iδ) associated with the strong pairing interaction. This

renormalization effect on majority atoms becomes more remarkable when the pairing

interaction gets stronger. Furthermore, the shifts of µσ are not explained by the simple

mean-field shift ΣMF
σ = 4πas

m
n−σ, since the scattering length as diverges near the unitarity

limit. However, the shift of µ↑ is proportional to n↓ even at (kFas)
−1 = 0 at small y.

By using the linear fitting with respect to n↓/n↑ in the small impurity-density regime

(y < 0.2), we obtain

µ↑ = εF

[

1− 0.526
n↓

n↑

]

≡ εF

[

1− 0.526
y

1− y

]

. (13)
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Surprisingly, as pointed out in Ref. [61], this shift is the same-order of the mean-field

shift with a = 1/kF given by

ΣMF(a = 1/kF) =
4π

mkF
n↓ ≃ 0.424

n↓

n↑

εF. (14)

Since the chemical potential plays a crucial role in the thermodynamics of a unitary

Fermi gas in which µ↑/εF in the unpolarized case takes a universal constant called

Bertsch parameter [62], we expect that the origin of pre-factor 0.526 in the second term

of the right hand side of Eq. (13) would be important in terms of the thermodynamics of

the many polarons. We emphasize that these renormalization effects cannot be captured

with single-impurity theories. The renormalization is of the order of a tenth of the

Fermi energy in the typical cold-atom experiments whose impurity concentration is 0.1

to 0.3. We expect that such a significant shift can be measured with the state-of-the-art

precision thermodynamic measurement [59].

The inset of Fig. 4 shows the impurity chemical potential µ↓, which monotonically

increases with increasing y and decreases with increasing the interaction strength. At

the zero temperature, µ↓ is equivalent to the attractive polaron energy ωa
qp at y → 0,

since µ↓ = EN↓=1 − EN↓=0 is defined as the energy needed to add an impurity with

zero momentum to the system where EN↓
(N↓ ∈ Z) is the energy in the presence of N↓

impurities. Indeed, this definition is equivalent to µ↓ =
(

∂E
∂n↓

)

S
at the thermodynamic

limit, where E and S are the internal energy and entropy, respectively. At a finite

temperature, however, we have to carefully notice the difference between µ↓ and ωa
qp.

An important point is that at a finite temperature there is the contribution from thermal

excited states with nonzero momenta in addition to one from the ground state with the

zero momentum. Figure 5 (a) shows the impurity chemical potential µ↓ and ωa
qpof the

unitarity limit as a function of y at several temperatures. In general, µ↓ is smaller

than ωa
qp in the small impurity density region (y ≃ 0). In addition, µ↓ decreases

with increasing the temperature, whereas ωa
qp slightly shifts due to the temperature

effects. Except for the strong-coupling regime beyond polaron-molecule (or polaron-

BEC) transition, the number equation of impurities for µ↓ can approximately be given

by

n↓ ≃
∑

p

Zaf

(

p2

2m∗
a

− µ↓ + ωa
qp

)

, (15)

where Za andm∗
a are the residue and effective mass of an attractive polaron, respectively.

For simplicity, we neglect the decay rate of an attractive polaron as well as the repulsive

branch. At T = 0, the solution of Eq. (15) for the low impurity density limit (n↓ → 0) is

apparently µ↓ = ωa
qp since the Fermi distribution function f(x) becomes a step function

θ(−x). On the other hand, at finite temperature, such solution have to be µ↓ → −∞
because the summation over momenta in Eq. (15) involves the contribution from high

momentum region associated with the finite temperature. This large negative µ↓ reflects

the fact that a few polarons at finite temperature behave as a classical Boltzmann

ensemble. Indeed, if one measures the temperature by using the Fermi temperature of
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Figure 5. Impurity concentration dependence of (a) µ↓ (solid line) and ωa
qp (dashed

line) at T = 0.1TF, 0.2TF and 0.5TF, and (b) µ↑ at T = 0.03TF, 0.10TF and 0.20TF.

In each figure, the interaction strength is set at (kFas)
−1 = 0.

impurities TF,↓, one can obtain

T

TF,↓
=

(

n↑

n↓

)
2
3 T

TF

, (16)

which diverges in the limit of n↓ → 0 with fixed T/TF. In contrast, the region where

µ↓ > ωa
qp at the large impurity density can be regarded as the Fermi degenerate regime

of attractive polarons. In this case, they make a soft Fermi surface with the effective

Fermi energy εpF = µ↓ − ωa
qp. To access such a regime, the temperature must be much

smaller than TF,↓ = (n↓/n↑)
2
3TF. In Fig. 6, we summarize the different regimes in the

Fermi polaron system. We also note that the curves shown in Fig. 6 are shifted below

if the effective mass is considered, since TF,↓ is generally in inverse proportion to the

effective mass.

We note that in contrast to µ↓, the spectral property of the attractive polaron

at the single-impurity limit is relatively robust against the finite temperature effects,

since it is related to the thermodynamic property of majority atoms. At n↓ → 0 where

G↑(p, ω+ iδ) ≃ δ(ω− ξp,↑), the self-energy of impurities after the analytic continuation



Many Fermi polarons at nonzero temperature 10

0

0.1

0.2

0.3

���

0.5

0 0.1 0.2 0.3

T
/T

F

y

T

T F↓

T

TF↓

T TF↓

Figure 6. Different regimes in the Fermi polaron system obtained from Eq. (16). The

region above the red curve is approximated as a classical Boltzmann gas. On the other

hand, the region below the blue curve is described with a theory at T = 0. In between,

there exists a soft Fermi surface in which the finite temperature effect is significant.

is given by

Σ↓(p, ω + iδ) =
∑

q

∫ ∞

−∞

dν At(q, ν)
b(ν) + f(ξq−p,↑)

ω + iδ + ξq−p,↑ − ν
(17)

where At(q, ν) = − 1

π
Imt(q, iνn → ν+ iδ) is the spectral function of a diatomic pair and

b(x) = 1/(ex/T − 1) is the Bose distribution function. The finite temperature effects in

Eq. (17) originate from mainly f(ξq−p,↑) and µ↑ ≃ εF

[

1− π2

12

(

T
TF

)2
]

[4] [see Fig. 5

(b)] far away from the BEC critical point of molecules. In this way, one can find that

spectral polaron properties such as ωqp determined by Eq. (4) is deeply related to how

majority fermions are affected by the temperature. We also note that the large negative

µ↓ does not notably affect Σ↓(p = 0, ω+ iδ) since µ↓ in Eq. (17) is included in only the

molecular branch At(q, ν).

A renormalization of majority atoms is also visible in the spectral function A↑(p =

0, ω). In Fig. 7, we show the spectral function at y = 4 × 10−4, 0.18 and 0.26 at

(kFas)
−1 = 0.2. It turns out that the stable pole position shifts toward the lower energy

with increasing y due to the shift of µ↑. From Eq. (3), the shift of the peak in Fig.

7 is directly related to the change of the self-energy of majority atoms as given by

ReΣ↑(p = 0, ω + iδ). This is nothing but the renormalization effect of majority atoms.

In addition, we find that a metastable peak associated with the upper branch appears

at finite impurity concentration even in the spectral function of majority atoms. The

presence of such a peak originates from the upper peak of the minority Green’s function

that is explicitly contained in the self-energy of majority atoms. We also confirm that

the metastable-peak structure is enhanced in the vicinity of the strong coupling limit.

By considering that the intensity of such an upper peak in the majority spectral function



Many Fermi polarons at nonzero temperature 11

0

0.1

0.2

0.3

!"#

0.5

-1 0 1 2 3

0

0.1

0.2

0.3

$%&

0.5

-2 -1 0 1 2

(ω μ↑)/εF

A
↑
(p

)ε
F

('+μ↓)/εF

A
↓
(p

)
*
,-

)ε
F

y . /12345

y 6 789:

y ; <>?@

Figure 7. Spectral function A↑(p = 0, ω) of majority atoms at (kFas)
−1 = 0.2. with

different impurity concentrations. Inset shows that of minority atoms. The solid,

dot-dashed, and dashed lines represent the result of y = 4 × 10−4, 0.18, and 0.26,

respectively. The temperature is fixed at T = 0.03TF. In each figure, we use the same

line style in each impurity concentration.

is comparable to that in minority spectral function, its experimental validation with rf

spectroscopy is promising.

On the other hand, in contrast to majority atoms, the shift of the spectral function

A↓(p = 0, ω) of minority atoms by the finite density is small as shown in the inset

of Fig. 7. In Fig. 8 (a), we show impurity concentration dependence of the attractive

polaron energy ωa
qp obtained from Eq. (4) at several interaction strength. We find

that ωa
qp is almost independent of y from the weak coupling region to unitary region.

However, in the strong coupling region [(kFas)
−1 = 0.4 in Fig. 8(a)], the polaron energy

turns to slightly increase with increasing y. We argue that this indicates the presence

of the polaron-polaron interaction, which is indeed known to be positive by means

of the Fermi liquid theory [43, 44, 47]. One can interpret that the polaron-polaron

interaction effect is visible due to the increase of pairing interaction that overcomes the

finite temperature effect. Indeed, the increase of ωa
qp at (kFas)

−1 = 0.4 starts around

y ≃ 0.2, where T/TF,↓ . 0.1 estimated by Eq. (16) and the attractive polarons are in

the deep quantum degenerate regime. In this sense, the precise determination of µ↓ is

very important even from such viewpoint for the polaron-polaron interaction.

In Fig. 8 (b), we show the calculated repulsive polaron energy ωr
qp as a function of

y in the strong coupling region [(kFas)
−1 = 0.4, 0.8 and 1.2]. In addition, the inset of

Fig. 8 (b) is the comparison between y-dependence of attractive and repulsive polaron

energies at (kFas)
−1 = 0.8, where we set an offset (= 2.5εF) on the attractive polaron

energy. These results indicate that the repulsive polaron energy does not represent

any noteworthy behavior related to the polaron-polaron interaction, which is consistent

with the recent experiment [16]. While solely from our numerical data it is difficult to
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Figure 8. Impurity concentration dependence of (a) attractive and (b) repulsive

polaron energies at T = 0.03TF. In the panel (b), the dashed line shows the repulsive

polaron energy ωr
qp(p̄) with the initial state momentum p̄ at (kFas)

−1 = 0.4. The inset

of (b) shows a comparison between the attractive (solid line) and repulsive (dotted line)

polaron energies at (kFas)
−1 = 0.8, where we set an offset (= 2.5εF) on the attractive

polaron energy.

pinpoint the reason of the difference from the prediction of the Fermi liquid theory, the

followings could be conceivable: (i) smallness of the polaron-polaron interaction due to

the Pauli blocking, (ii) short lifetime of the repulsive polaron (typically of the order of

the Fermi time), (iii) finite temperature effect as is the case with attractive polaron.

We note that we stop the calculations of ωr
qp at the superfluid instability point,

which can be identified by the so-called Thouless criterion [63],

[t(q = 0, iνn = 0)]−1 = 0. (18)

At the fixed temperature, the Thouless criterion is more likely to be satisfied in the

regime (kFas)
−1 & 0, where the transition temperature of the superfluid is higher and

increases with increasing y. To correctly describe the superfluid phase transition in a

strongly interacting spin-imbalanced Fermi gas, we have to consider the existence of the

first order phase transition and the phase separation [64, 65]. In this paper, we avoid

such a regime by focusing on lower impurity concentration. We also note that although
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The dotted line indicate the internal energy density of an ideal Fermi gas at T = 0.

the realization of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [66, 67] has been

predicted in a uniform polarized Fermi gas [64], such an exotic superfluid state is known

to be unstable against superfluid fluctuations [68, 69] (note however Ref. [70]).

Furthermore, to address the more detailed experimental situation, we consider the

effect of initial-state momentum of impurities in the rf spectrum measurement [16]. We

first estimate the averaged momentum of impurities p̄ by assuming that the initial state

is a non-interacting uniform Fermi gas. The thermal average of the impurity energy ε̄

is defined as

ε̄ =
1

n↓

∑

p

p2

2m
f

(

p2

2m
− µi

)

, (19)

where µi is the chemical potential of the initial state impurities, obtained by the solving

n↓ =
∑

p

f

(

p2

2m
− µi

)

. (20)

From the above equations, we can obtain p̄ =
√
2mε̄. Figure 9 shows the impurity

concentration dependence of ε̄. In the relevant region of the experimental impurity

density (0.1 . y . 0.3) and temperature (T ≃ 0.1TF), it is quite small compared to the

trapped case reported in the Supplemental Material of Ref. [16]. In the presence of p̄,

the repulsive polaron energy is obtained from

ωr
qp(p̄)− iΓ = Σ↓(p̄, ω

r
qp(p̄)− µ↓ − iΓ + iδ). (21)

The dashed line in Fig. (8) shows calculated ωr
qp(p̄) at (kFas)

−1 = 0.4. As expected,

the fiinite p̄ leads to the negative shift of ωr
qp(p̄) compared to ωr

qp(p̄ = 0). In the

experimental paper, it is estimated that this negative shift is given by −
(

1− m
m∗

)

ε̄

with ε̄ = O(10−1εF) [16]. However, in our case, ε̄ is smaller than 10−1εF in the relevant

region, and the estimated shift is also smaller than O(10−2εF). This result indicates
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the importance of effects of a harmonic trap potential to see the mass renormalization

effects from the y-dependence of polaron energies. Since the harmonic trap enhance the

finite temperature effects due to the inhomogeneous density profile [57], it may also be

related to the suppression of effects of polaron-polaron interaction in the experiment.

4. Conclusion

We have theoretically investigated Fermi polarons at finite impurity concentration and

finite temperature within the framework of the many-body T -matrix theory, which can

also describe polaron properties in the zero impurity density and zero temperature limits.

Our results show quantitative or semi-quantitative agreement with current experiments

as well as previous works based on single polaron theories at zero temperature.

We have pointed out that majority atoms are affected by the strong pairing

interaction with impurities. In particular, we have showed the renormalization effects

on the chemical potential as well as quasi-particle spectral function of majority atoms.

In the case of minority atoms, the finite temperature effects play a crucial role in

their thermodynamic properties such as chemical potential. It is also related to the

quantum degeneracy of attractive polarons, which leads to the competition between

finite temperature effects and the polaron-polaron interaction. The renormalization

of the majority chemical potential and the thermal depletion of minority chemical

potential can be observed by recent precise thermodynamic measurements. In addition,

we have predicted the appearance of the metastable peak in the high-energy region of

majority spectral function. A detailed study on such a metastable many-body state is

an interesting future work. Also, metastable peak structure in the spectral function of

majority atoms can be detected by rf spectrum measurements.

We have also extracted the polaron energy as a function of impurity concentration

to discuss the polaron-polaron interaction. We have found that in the strong coupling

region at a low temperature, although the polaron-polaron interaction is visible in the

lower branch, this effect is much weaker in the upper branch. In addition, we also have

clarified that the mass-renormalization effect on the polaron energy in the uniform case

is smaller compared to the case of trapped gas clouds, by considering the initial-state

momentum of impurities.

In this paper, we have emphasized that these many-body effects in the polaron

problem at finite temperature and finite impurity density are beyond previous single

impurity theories. While our result successfully reproduces experimental results in

several regimes and predict the polaron properties which no one has reported, we found

that there are still differences between theories and experiments with respect to the

effective mass as well as the decay rate somehow beyond finite temperature and impurity

density effects, which remain as our important future problem. In particular, an effect

of a harmonic trap is important to compare our results with the observed rf-spectra [16]

in detail, and our present work can include such effects by employing the local density

approximation [57]. It is also interesting to extend our analyses to mass-imbalanced [10]
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Figure A1. Calculated impurity self-energy Σ↓(p = 0, iωn) at T = 0.05TF, y = 0.12,

and (kFas)
−1 = 0 and the comparison with the interpolated result obtained by the Padé

approximation ,where original is the self-energy from Eq. (9) without the interpolation.

and two-dimensional systems [12] already realized in ultracold Fermi gases.
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Appendix A. Analytic continuation

In general, the analytic continuation is sensitive to noises, and theoretical approaches

with statistical errors such as Monte-Carlo methods suffers from this procedure from the

imaginary time τ to the real frequency ω [42, 71]. On the other hand, the ETMA used in

this work is free from statistical errors, and therefore we can implement the conventional

numerical continuation methods. In this work, we adopt the Padé approximation to

examine the spectral structure in the Fermi polaron system.

In our case, the self-energy has been already calculated in the complex energy plane

in terms of the Matsubara frequency located at imaginary energy axis. It is known that

the Padé approximation is applicable to reproduce the pole structure in this plane [73].

In fact, the photoemission spectra obtained from the many-body T -matrix theory with

the Padé approximation well reproduce the experimental result in a strongly interacting

unpolarized Fermi gas [74]. In addition, the Padé approximation has been successfully

applied to the Fermi polaron system with the functional renormalization group [36],

which is also free from statistical errors. To double-check how the Padé approximation
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works well, we focus on the calculated self-energy in Eq. (9). In Fig. A1, we show the

comparison between the ETMA self-energy Σ↓(p = 0, iωn) (from n = 0 to n = 40 and

from n = 90 to n = 100) and the interpolated results of them by means of the Padé

approximation, where the data between n = 40 and n = 90 are interpolated. One can

see that the Padé approximation smoothly interpolate the original ETMA self-energy.
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