arXiv:1805.03325v1 [nucl-th] 9 May 2018

Nuclear surface diffuseness revealed in nucleon-nucleus diffraction
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Nuclear surface provides useful information on nuclear radius, nuclear structure as well as prop-
erties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and
elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus
scattering as an efficient tool in order to extract the nuclear surface information from limited ex-
perimental data involving short-lived unstable nuclei. The high-energy reaction is described by a
reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere
model, we find one-to-one correspondence between the nuclear bulk structure information and pro-
ton elastic scattering diffraction peak. This implies that we can extract both the nuclear radius
and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of
the elastic scattering differential cross section. We confirm the reliability of this approach by using
realistic density distributions obtained by a mean-field model.

I. INTRODUCTION

A nucleus is composed of proton and neutron inter-
acting via nuclear force. They make a self-consistent-
mean field that results in forming the nuclear shell struc-
ture. A systematic analysis of nuclear charge radii via the
electron-elastic scattering have revealed that nuclei have
saturated internal density and relatively sharp surface
that defines a nuclear radius @] Advances in the radioac-
tive ion beam facilities have made us possible to study
properties of short-lived unstable nuclei. From such facil-
ities, exotic structure of neutron-rich unstable nuclei was
reported, which has never been observed in stable nuclei,
e.g., halo [2] and developed skin [3] structure.

Such exotic structure is dominated by nuclear dynam-
ics at around the nuclear surface. For example, a nuclear
deformation plays a crucial role in enlarging the nuclear
radius, because it drastically changes the density pro-
file at around the nuclear surface, and has actually been
confirmed by the systematic analyses of the total reaction
cross sections on a carbon target M] Also, it is found
that excitations of the outermost single-particle-neutron
orbits play an essential role to determine the low-lying
electric-dipole strengths of neutron-rich isotopes ﬂﬂ—lﬂ]

Since the density profile at around the nuclear sur-
face is a rich source of the nuclear structure information,
a systematic investigation of the nuclear surface density
distributions must be worth studying. However, the neu-
tron density distribution is difficult to probe by the tra-
ditional electron scattering. Alternatively, the proton-
elastic scattering is suitable for that purpose ] Re-
cent precise measurements up to large scattering angles
were successful in extracting the neutron density distri-
butions of Sn and Pb isotopes with the help of known
proton density distributions ﬂE, ] To apply it for un-
stable nuclei, such measurement in the inverse kinematics
is useful but it is not easy to obtain the cross sections at
large scattering angles because most of incident particles
are scattered in the forward angles at high incident en-
ergies. Since precise experimental cross sections are lim-

ited to small scattering angles, it is convenient to know
what information we can obtain from limited cross sec-
tion data.

In this paper, we perform a “numerical experiment”
systematically using theoretically obtained nucleon-
nucleus scattering cross sections focusing on the reactions
of small scattering angles up to a few diffraction peaks to
see which extent the information on the nuclear surface
can be obtained. For this purpose, we start with an idea
of a simple black sphere (BS) picture, which assumes a
nucleus is a completely absorptive object at a sharp-cut-
square-well radius. The model is mathematically equiv-
alent to the Fraunhofer diffraction model ﬂE, E)]r, which
offers one-to-one correspondence between the nuclear ra-
dius and the diffraction peak position. Though it is not
perfect, the idea can be a zeroth order approximation of
the proton-nucleus scattering remarking the fact that the
BS model explains fairly well a systematic trend of the
proton-nucleus total reaction cross sections, which was
originally pointed out by Kohama et al. M]

In reality, since the total nucleon-nucleon cross section
is not large enough at medium- and high-incident ener-
gies, the proton-nucleus scattering is not completely ab-
sorptive at around the nuclear surface where the nuclear
density is not well saturated. A simple model approach
based on the BS picture and the proton optical depth
shows that the effect of the surface diffuseness plays an es-
sential role to determine the incident energy dependence
of the total reaction cross sections of the proton-nucleus
scattering @, ] Here we discuss the role of the nuclear
transparency due to the surface diffuseness which is not
explicitly taken into account in the BS model by com-
paring it with a microscopic high-energy reaction theory,
the Glauber model @] To understand the significance
of its good reproducibility of the data using such a phe-
nomenology is another purpose of this paper.

This paper is organized as follows: In the next sec-
tion, we briefly explain calculations of the elastic scatter-
ing differential cross section of the high-energy nucleon-
nucleus scattering in the Glauber model. In Sec.[[ITA] we
demonstrate how the elastic scattering differential cross
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section reflects the density profile at the nuclear sur-
face. A systematic analysis is performed by using a two-
parameter Fermi (2pF) distribution as the density profile
which clearly defines the nuclear “diffuseness”. We find
one-to-one correspondence between the nuclear diffuse-
ness and the magnitude of the cross section at the first
peak position. To quantify the sensitivity to the density
profile at around the surface region, we investigate, in
Sec. [T Bl the spatial distributions of the scattering am-
plitude at the first and second peak positions of the elas-
tic scattering differential cross sections. In Sec. [ITC] we
propose a simple way to extract both the nuclear radius
and diffuseness information from the elastic scattering
differential cross sections for future application to short-
lived unstable nuclei. We extract the information on the
surface diffuseness of density distributions obtained via a
microscopic mean field approach. By assuming the 2pF
density distributions, the unknown “diffuseness” and nu-
clear radius are uniquely determined in such a way that
the first peak position and its magnitude of the elastic
scattering differential cross section are reproduced simul-
taneously. It will be convenient to know the first peak
position before measurement from other observables in
which we show, in Sec. [ITD], a relationship between the
first peak position and the total reaction cross section
with the help of the BS model. The possibility of extract-
ing proton and neutron diffuseness separately is discussed
in Sec. [[ITEl Conclusions are presented in Sec[[V]

II. ELASTIC SCATTERING DIFFERENTIAL
CROSS SECTION IN THE GLAUBER MODEL

The Glauber model is a microscopic theory which is
widely used to study high-energy nucleus-nucleus colli-
sions @] With the help of the adiabatic and eikonal
approximations, the final state scattering wave function
is greatly simplified as

|f) = e[ Py), (1)

where e?X is the so-called phase-shift function, which in-
cludes all information of the high-energy nuclear colli-
sion. The elastic scattering differential cross section can
be calculated by

do

@ =IFO)F (2)

with the elastic scattering amplitude

Flo) = B [ —iad (1 - eix@) db, (3)
27

where K is the wave number in the relativistic kinemat-

ics, g the momentum transfer vector, and b is the impact

parameter vector perpendicular to the beam direction

(z), and thus g - b = 2Kbsin§. Evaluation of e(®) is

in general difficult because it involves multiple integra-

tion ﬂﬁ] Though it could be possible to perform the

integration by using a Monte Carlo technique m, @]
or a factorization procedure by using a Slater determi-
nant wave function |, we, however, employ the
optical-limit approximation (OLA) for the sake of sim-
plicity. The phase-shift function of the OLA is given as
the leading order of the cumulant expansion of the full
phase-shift function [19, [30]

NOEED |

N=p,n

where r = (s, 2z) with s being a two-dimensional vector
perpendicular to z. Inputs to the theory are density dis-
tributions px (7) of proton (N = p) and neutron (N = n),
and the proton-nucleon profile function I'yy. As exem-
plified in Refs. m%, 24, @], the OLA works well for
many cases of nucleon-nucleus scattering. The multiple
scattering effect would be neglected and even becomes
smaller for systems involving medium to heavy nuclei as

was shown in Refs. [28, 29)].

The nucleon-nucleon profile function at incident energy
per nucleon E is usually parametrized as Hﬂ]

1 —ioanN(E) o

T

b2
QﬁNN(E)] ’
(5)

(E) exp {—

where oy is the ratio of the real and imaginary parts of
the scattering amplitude at the forward angle, and Syn
is a slope parameter. For the sake of simplicity, we first
use averaged NN profile function given in Ref. HE] for
most of discussions made in this paper. We can safely use
the profile function, say E 2 300 MeV, where the differ-
ence between pn and pp cross sections are not significant.
The validity of adopting the averaged NN profile func-
tion here is discussed in Appendix A. We distinctively use
the pn and pp profile functions ﬂﬁ] when more realistic
cases are considered in Sec. [ITF]l We do not include the
spin-orbit term in the profile function ﬂﬁ] As long as fo-
cusing on the analysis of the elastic scattering differential
cross sections at the forward angles, this effect is small
at the peak positions @], whereas the cross sections at
the diffraction minima are significantly influenced by the
spin-orbit interaction [34]. In fact, as shown in Ref. [33],
the elastic scattering differential cross sections data at the
forward angles are fairly well reproduced using the profile
function (Bl) without the spin-orbit term. The elastic and
inelastic Coulomb contributions are ignored since the ef-
fects are negligible in the proton-nucleus scattering m]

III. RESULTS

In this section, we show the results of the analyses
explained in the previous section.
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FIG. 1: Elastic scattering differential cross sections of (a) N-
12081 and (b) N-2®Pb systems calculated with 2pF density
distributions at 325, 550, and 800 MeV. The cross sections
are multiplied by 10® and 10'° for those at 550 and 800 MeV,
respectively. The lower panels plot the corresponding 2pF
density distributions of (c) *°Sn and (d) ***Pb, respectively,
with various diffuseness parameter a. All density distributions
give the same root-mean-square radius.

A. Elastic scattering differential cross section and
nuclear surface distribution

Here we discuss how much information the elastic scat-
tering cross sections of the first diffraction peak has on
the nuclear surface. In the present work, we are inter-
ested in medium to heavy nuclei whose central densities
are well saturated. It would be reasonable to assume a
two-parameter Fermi (2pF) function as an approximate
nuclear density distribution:

_ £0
o) = o T (6)

where pg, R, and a are the central density, radius, and
diffuseness parameters, respectively. For given R and a,
po is uniquely determined by the normalization condition:
4 [7 p(r)r?dr = A, where A is the mass number of a
nucleus. The root-mean-square (rms) matter radius can

be calculated by

o = /%) = \/ T/ Tarrp). (1)

We note that the limit a — 0 in Eq. (@) results in a
sharp-cut square-well density distribution with a radius

R = \/grm.

We perform the Glauber model calculation with the
2pF density distribution of Eq. (@). The rms radius of
the 2pF density distribution is set to follow the empirical

%1.2A1/ 3 @] as a convenient choice

so that the radius parameter R is determined for each
given a. Note that the resultant R is in general different
from the radius obtained by the sharp-cut square-well

density distribution, \/3 T

rms radius 7, =

3

1. Nuclear radius <> First peak position of the elastic
scattering differential cross section

First, we discuss the relation between the nuclear ra-
dius and the scattering angle at the first peak position
of the elastic scattering differential cross section. Fig-
ure [ plots the elastic scattering differential cross sec-
tions of N-'2°Sn and N-20%Pb systems incident at 325,
550, and 800 MeV with various diffuseness parameter, a.
Corresponding 2pF density distributions are also plot-
ted in the lower panels of Fig. [l Focusing on the first
diffraction peak, all the cross sections are peaked at al-
most the same scattering angle for all incident energies
under consideration. Since the BS model works well in
the nucleon-nucleus scattering, the one-to-one correspon-
dence between the peak position and the nuclear radius
can be naturally understood, remarking that all the 2pF
density distributions give the same rms radius.

For more quantitative discussions, we display, in Fig.[2]
the scattering angles at the first peak position, 6/, as a
function of mass number. Incident energies of 325, 550,
and 800 MeV are chosen. We again confirm that the first
peak positions do not depend on the diffuseness parame-
ter of the 2pF density distribution. The peak position is
determined mostly by the nuclear radius. For a small
A < 70, the 0y values show some dependence on a,
especially with large a = 0.7fm. Since we assume the
2pF distribution, in the case of small A, i.e., small R,
large diffuseness parameter substantially affects the den-
sity profile at small distances, which is, a large increase
of the central density as already seen in the lower panels
of Fig. [0

2. Nuclear diffuseness <> Magnitude of elastic scattering
differential cross section at the first peak position

Second, we discuss the relation between the nuclear
diffuseness and the magnitude of the elastic scattering
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FIG. 2: Scattering angles at the first peak positions of the
elastic scattering differential cross sections incident at 325,
550, and 800 MeV as a function of mass number.

differential cross section at the first peak position. In
Fig. [ it is interesting to note that the elastic scattering
differential cross section values at the first peak position
are mostly determined by a. The authors of Ref. M]
pointed out a relation between the nuclear surface dif-
fuseness and the elastic scattering differential cross sec-
tion, in which the cross section at the first peak position
is enhanced with smaller nuclear diffuseness. The calcu-
lated cross sections actually show a larger value at the
first peak position with smaller a.

Figure [3 plots the magnitude of the elastic scattering
differential cross section at the scattering angle of the
first peak position #j; as a function of mass number.
Incident energies of 325, 550, and 800 MeV are chosen.
The cross section significantly decreases with increasing
a which would easily be distinguished by measurement.
Though the sensitivity to a becomes a little bit less at
800 MeV, higher incident energy gives larger cross sec-
tions. We find that for a given A, i.e., rms radius, the
cross sections with different a do not intersect each other
for all the incident energies, indicating that the R and a
parameters of the 2pF density distribution can uniquely
be determined if the elastic scattering differential cross
section is measured at the first peak position.

B. Scattering amplitude at the first and second
peak positions

We have seen so far that the nuclear “diffuseness” in-
formation can be extracted from the elastic scattering
differential cross section at the first peak position. In
this subsection, we discuss what the incident nucleon ac-
tually probes. To answer this, we calculate the scattering
amplitude of the differential cross section at the first peak
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FIG. 3: Elastic scattering differential cross sections at the first
peak position incident at (a) 325, (b) 550, and (c) 800 MeV
as a function of mass number.

position 0, as a function of the impact parameter b = |b|

iK .
_ —ignm-b _ oix(b)
fi(b) = Soeman (1— e ®), (8)

where qps - b = 2Kbsin 0%, and the relation to the scat-

tering amplitude at the first peak position

F(0a) = / £1(b) db. (9)

Figure M plots the imaginary part of the spatial dis-
tribution of the scattering amplitude of Eq. (8) for
1208n and 2%®Pb and its cumulative sum defined by
27h fob Imf (b')db’ /TmF (0 ), at various incident energies
as a function of impact parameter b. The real part is not
shown because it is small. The diffuseness parameters
are set commonly to an empirical value a =0.54fm @]
The half density radius p(Rp) = po/2 for each nuclide is
indicated by an arrow. All curves exhibit positive and
negative peaks inside the nuclear half radius. The cumu-
lative sum of 2°Sn (2°8Pb) indicates that the amplitude



up to ~ 4.5 fm (~ 5.5fm) does not contribute to the
integrated scattering amplitude as they are canceled out
through the integration over b. As a result, only the
scattering amplitude at around Rp, is contributed to the
cross sections in such a special kinematic condition. The
nucleon-nucleus cross section at the first peak position
can be a useful observable to extract the density profiles
at around the half density radius.

We comment on what information can be obtained in
the higher-order diffraction peak. We see, in Fig. [I that
peak positions of the higher-order diffraction are shifted
to larger scattering angles with increasing a, implying
different sensitivity to the nuclear density profile. Fig-
ure [l plots the same quantity as Eq. () but at the sec-
ond peak position, fa(b). The spatial distribution allows
one more node and varies more rapidly with increasing
b. The cumulative sum also oscillates and shows some
contribution, reaching at the tail region which is a bit
distant from the half density radius. The cross section at
the second peak would have some other information on
the density profile than that at the first peak.

Further investigation would be interesting since it is
useful to extract a higher order of the density profile be-
yond the half density radius which characterizes weakly
bound systems, e.g., halo nuclei but it is beyond the scope
of this paper.
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FIG. 4: (Upper) Imaginary part of the spatial distribution of
the scattering amplitude, and (Lower) its cumulative sum at
the first peak of the elastic scattering differential cross section
of (a) (c) '*°Sn and (b) (d) 2°®Pb, as a function of impact
parameter b, incident at 325, 550 and 800 MeV. An arrow
indicates the half density radius of (c) *°Sn and (d) 2°*Pb,
respectively. See text for details.

15

10

325 MeV

21 Imff,(b)] (sr™2)

325 MeV

Cummurative sum (fm sr'm)

FIG. 5: Same as Fig. @ but at the second peak of the elastic
scattering differential cross section.

C. Extraction of nuclear radius and “diffuseness”

Thus far, we have discussed that the nuclear radius
and diffuseness information is embedded in the first peak
position and its magnitude of the elastic scattering cross
section. In this subsection, we demonstrate how we can
extract the nuclear “diffuseness” as nuclear structure in-
formation when the nucleon-nucleus elastic scattering dif-
ferential cross sections are given. For this purpose, we
employ general proton and neutron density distributions
obtained by a microscopic mean-field model as inputs to
the Glauber model.

We take the density distributions of Ca, Ni, Zr, Sn, Yb,
and Pb isotopes obtained by the Skyrme-Hartree-Fock
(HF) 4+ BCS method [38] used in Refs. [33,[39] (One can
also take them from the theoretical database Nﬁ]) The
calculation was performed self-consistently in a three-
dimensional Cartesian mesh, in which any nuclear de-
formation can be taken into account. The density dis-
tribution in the laboratory frame is obtained by taking
an average on the angles as in Ref. B] We remark
that the theoretical justification of this treatment was
made in Ref. ﬂj] The Skyrme-type effective interaction
(SkM* [41]) with a monopole-type pairing interaction is
employed as detailed in Refs. , @T The SkM* param-
eter set is superior to describe the nuclear deformation.
For example, kink behavior due to the nuclear deforma-
tion in the total reaction cross sections of neutron-rich
Ne and Mg isotopes are reproduced very well with the
help of the Glauber model [8, 43].

To deduce the “diffuseness” of the realistic density dis-
tribution through reaction data, we calculate the elastic
scattering differential cross sections with the 2pF density
distribution of Eq. ([@). Regarding that those calculated
cross sections with the HF+BCS density distributions are



“experimental data”, we determine the R and a in the
2pF density distribution in such a way that the calcu-
lated elastic scattering differential cross section matches
the first peak position as well as its magnitude of the elas-
tic scattering differential cross section obtained by the
“experiment”. To assure the accuracy of the extracted R
and a, we confirm that our cross section calculations are
converged within four digits.

1. Uncertainties of the extraction

Following the procedure mentioned above, we deter-
mine the parameters in the 2pF density distributions for
each isotope and each incident energy. In this subsection,
we evaluate the robustness of this analysis.

Figure[@ plots the relative deviations of the rms radius
obtained by the HF+BCS density, r,, (HF), and that ex-
tracted from this analysis, r,,(2pF) for Ca, Ni, Zr, Sn,
Yb and Pb isotopes. These results indicate the difference
between realistic HF+BCS and simple 2pF density dis-
tributions which will be commented later in this section
and Sec. Here we choose three incident energies
(a) 325, (b) 550, and (c¢) 800MeV. The deviations are
typically less than 1% for all the incident energies. The
extracted rms radius agrees very well with the “correct”
rms radius and is successfully obtained from this anal-
ysis. The 2pF density distribution can be a reasonable
approximation to simulate the realistic density distribu-
tions of medium- to heavy-mass nuclei.

For the extraction of the diffuseness parameter a, we
display, in Fig. [, the deviations of the diffuseness pa-
rameter a at 325 and 800 MeV from that at 550 MeV.
The incident-energy dependence is small at most by
~ 0.005fm. Though some systematic errors exist which
come from the difference between the realistic and 2pF
density distributions, we can however determine, within
this model approach, such an a value in the accuracy of
two digits. The a value, which is extracted in this way,
can be used as a measure of the surface diffuseness for
the realistic density distribution.

Figure [§ compares the HF+BCS density with the 2pF
distributions deduced from the first peak position and its
magnitude of the elastic scattering differential cross sec-
tion. The 2pF density distributions well simulate HF one
at around the nuclear surface at the three incident ener-
gies, B = 325, Fs = 550, and F3 = 800 MeV. However,
we see some deviations beyond ~ 9fm for the neutron-
rich Zr and Sn nuclei which cannot be expressed by a
simple 2pF distribution. This trend can also be seen in
the behavior of the relative deviations of the rms radius
plotted in Fig.[6l We also determine the 2pF density dis-
tribution by minimizing the root-mean-square deviation
between the 2pF and HF+BCS density distributions. As
plotted in Fig. Bl the resultant 2pF density distributions
are almost identical with those extracted from the first
peak of the elastic scattering differential cross sections.
The extracted R and a values can be robust structure in-

formation independently from the choice of the incident
energy.

2. Systematic trend of the nuclear “diffuseness”

It is interesting to see the behavior of the nuclear “dif-
fuseness” deduced from the HF+BCS density distribu-
tions. Figure[@displays the deduced a values at 550 MeV.
The a values are scattered around a ~ 0.5fm, which
is quite reasonable by remarking the empirical value
~0.54 fm for stable nuclei [36]. As discussed in Ref. [39],
the nuclear diffuseness is closely related to the width of
the nuclear surface that determines the surface tension
of the nuclear droplet. This clearly indicates some ex-
otic nuclear structure, such as nuclear deformation, and
weakly bound orbits. We note that the diffuseness pa-
rameters extracted in this paper are that for the matter
density distributions. The neutron number dependence is
somewhat weaker than that of the neutron surface widths
obtained in Ref. @] because the proton surface widths
are small and almost stay at a constant in the neutron-
rich isotopes. Though it exhibits the weaker dependence
on the neutron number than that of the neutron diffuse-
ness, we can still see the structural information on the
exotic neutron-rich isotopes. As expected, the a values
show local minima at the magic numbers. The a values
exhibit sudden rises at N = 50 for Ca and Ni isotopes,
and at N = 82 for Sn isotopes, in which weakly bound
neutron orbits play a role ﬂﬁ, ] Large a values in the
open shell regions of Zr and Yb isotopes are due to the
nuclear deformation, similarly to the cases of the Ne and
Mg isotopes Eﬁ] A systematic measurement of the elas-
tic scattering differential cross sections covered up to the
first diffraction peak will have of particular importance
in order to reveal the evolution of the exotic structure of
unstable nuclei.

It should be noted that this method may not be appli-
cable to very weakly bound systems, such as halo nuclei,
because the density profile deviates considerably from the
2pF assumption. To get higher resolution of the density
profile, one may consider an analysis including higher-
order diffraction peaks with more general density distri-
bution other than the 2pF distribution.

D. Black sphere estimate of the first peak position

We have discussed that one can obtain the rms ra-
dius and nuclear diffuseness simultaneously from the first
peak position and its magnitude of the elastic scattering
differential cross section. It would be helpful to know
the peak position before measurement of the elastic scat-
tering differential cross sections. For this purpose, we
investigate quantitative relation between the first peak
position and the total reaction cross section using a con-
cept of the strong absorption, i.e., the framework of the
BS model [20].
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FIG. 7: Deviations of the nuclear “diffuseness” deduced at
(a) 325 and (b) 800 MeV from that at 550 MeV. See text for
details.

If a nucleus is a completely absorptive object within
a sharp-cut nuclear radius apg, the total reaction cross
section reads exactly as

OBs = Tahg. (10)

Note that the same thing holds for the total elastic cross
section as well. The BS radius apg is obtained by the an-
gle 0 corresponding to the first diffraction peak as @]

5.1356 - - -

" 2psin(0a/2)’ (11)

ass

where p (= K) is the momentum between the two collid-
ing particles.

As in Eq. (I0), the total reaction cross section is di-
rectly related to the scattering angle of the first peak
position, but, in reality, the total reaction cross section
deviates from the one obtained from Eq. ([{0) due to the
nuclear transparency which comes from the surface dif-
fuseness. In the Glauber model, the total reaction cross

section is calculated by

OR = Ta% = / (1 - |eiX(b)|2) db, (12)

where we see similarity to Eq. (I0) by introducing a reac-
tion radius agr m, @] In contrast, the agg is determined
from the first peak position of the calculated elastic scat-
tering differential cross section [20], using Eq. (), and
obtain opg by the formula (I0).

Figure[lOlcompares the total reaction cross sections in-
cident at 325, 550, and 800 MeV obtained by the Glauber
calculation and the BS estimate using Eq. (I0). The
2pF density distributions are employed. Since the BS
model assumes the sharp-cut-square-well nuclear surface
and complete absorption in r < apg, the deviation must
include the information on the nuclear diffuseness or nu-
clear transparency at around the surface. If the nucleon-
nucleus scattering is the ideal black sphere, all results will
be on a y = x line drawn in this figure. However, some
deviation is found indicating the difference between the
BS model and actual proton-nucleus scattering. Since
more nucleons at around the nuclear surface contribute
to the scattering process, the deviation becomes larger
and larger with increasing nuclear size and diffuseness,
which is typically by ~ 5%, at most by ~10% at Pb iso-
topes in the ranges of the standard diffuseness parameters
a = 0.5-0.6 fm.

We note that the energy dependence of the deviation
cannot be explained simply by the magnitude of the total
nucleon-nucleon cross section but it comes from the dif-
ference of the nucleon-nucleon scattering processes or the
profile functions in the present model, which is reflected
in the nuclear transparency at around the surface. In
fact, we confirm that, the BS estimate gives the same
cross section at any incident energy when the same pro-
file function is used.

We have shown that the BS model explains more than
90% of the nucleon-nucleus scattering. Moreover, it is
practically important to know how accurate we can ob-
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FIG. 9: Nuclear “diffuseness” deduced from the HF+BCS
density distributions incident at 550 MeV.

tain the first peak position if one converts the total re-
action cross section to the scattering angle of the first
peak position using the relation of Eq. (). Figure [
displays the difference between 0, and fr. The former
can be obtained directly from the first peak position of
the elastic scattering differential cross sections, and the
latter can be calculated by converting the relation

OR 5.1356 - - -

ER 2psin(0r/2)’ (13)

aRp =

through Eq. (I2). Again, we note that if the nucleon-
nucleus scattering is completely absorptive, the difference

must be zero. Despite the fact that the ogg slightly devi-
ates from o as shown in Fig. [I0] the differences of those
scattering angles appear to be small, only within a few
degrees. Therefore, Eq. ([3) works well for the estima-
tion of the first peak of the nucleon-nucleus diffraction,
and thus the total reaction cross section can be comple-
mentary information to set up scattering angles to be
covered by measurement.

E. Diffuseness of proton and neutron surfaces

To extract detailed structure information of unstable
nuclei, separation of proton and neutron diffuseness is im-
portant because the neutron diffuseness is expected to be
more sensitive to the ground state structure of neutron-
rich isotopes as it is dominated by the neutron motion
at the nuclear surface. As was done in Refs. HE, ],
neutron distributions of stable nuclei can be extracted
from the proton-nucleus elastic scattering measurements
using a known proton density distribution but it is in
general unknown for unstable nuclei. Here, we discuss
the possibility of making use of the incident energy de-
pendence of the pn and pp total cross sections as uti-
lized in Refs. [35, 44]. We extend that idea in order to
extract both the proton and neutron surface diffuseness
and radii.

We respectively assume the 2pF density distributions
[©)) for proton and neutron and determine these four pa-
rameters in such a way as to reproduce the first peak
positions and their differential elastic scattering cross sec-
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FIG. 11: Difference of the scattering angles of the first peak position obtained by the Glauber calculation and the BS estimate

incident at (a) 325, (b) 550, and (c) 800 MeV.

tions at low and high incident energies. A realistic profile
function ﬂﬁ], which differs for pp and pn, is used for the
Glauber calculation. Table [l lists the extracted diffuse-
ness parameters and rms radii for proton and neutron.
Stable 129Sn, 208Pb and neutron-rich '#2Sn isotopes are
chosen as the examples. We choose several sets of two
incident energies among 200, 300, 550, and 800 MeV. For
1208n and 298Pb, extracted diffuseness parameters are
scattered although the rms radii are converged within
~ 0.5%. In such cases where the proton and neutron
surfaces are located at almost the same position, the sep-
aration of the proton and neutron surface profiles might
be difficult, whereas, in case of '28n, all extracted val-
ues are consistent with each other. This method can be
used to extract the information on the proton and neu-
tron surfaces from the proton-nucleus elastic scattering
in the inverse kinematics, although the application of the
method is limited only to such neutron(proton)-rich sys-
tems that the surfaces of the proton and neutron density
distributions are well separated 2 0.2 fm.

It should be noted the separation of the proton and
neutron density distributions will be better by employing
the cross sections at lower incident energies < 200 MeV,

where the pn total cross section becomes much larger
than that of the pp one. As demonstrated in Ref. [35],
the adopted Glauber model is reliable for a wide range of
the incident energies, even at few tens of MeV. However,
with lowering the incident energy, in-medium effects such
as Pauli blocking and Fermi-motion would be important
and may modify the parameters of the free NN profile
function @, . Implementing these effects will be in-
teresting for further improvement of the adopted Glauber
model.

IV. CONCLUSION

In order to see how much we can extract information on
density profiles of unstable nuclei at around the nuclear
surface, we have performed a “numerical experiment”
using theoretically obtained elastic scattering differen-
tial cross sections of high-energy nucleon-nucleus scat-
tering incident at a few to several hundreds of MeV. The
high-energy nucleon-nucleus collision is described by the
Glauber model starting from the nucleon-nucleon total
cross sections.



We have demonstrated that the elastic scattering dif-
ferential cross section at the first diffraction peak reflects
the nuclear density profile at around the half density ra-
dius. This can be understood naturally by extending the
idea of the black sphere (BS) model offering the one-to-
one correspondence between the nuclear radius and the
diffraction peak. The deviation of the BS picture from
the actual nucleon-nucleus scattering exhibits the role
of the nuclear transparency due to the diffused nuclear
surface. We have understood that the BS model is accu-
rate but accompanied with typically ~5% uncertainties
in medium-mass nuclei, at most ~10% uncertainties in
Pb isotopes.

Towards the application to studies of unstable nuclei,
since the elastic scattering differential cross section data
at large scattering angles are hardly obtained, we restrict
ourselves to have only two observables, the first peak po-
sition and its magnitude of the elastic scattering differ-
ential cross section. Assuming that the two-parameter
Fermi (2pF) density distribution as a fitting density, we
can uniquely determine the two parameters which result
in the root-mean-square (rms) radius and nuclear dif-
fuseness. A systematic “numerical experiment” is per-
formed using realistic density distributions obtained by
a microscopic mean-field model. The accuracy of the ex-
traction does not depend much on the incident energy.
Though the simple 2pF form is assumed as an approxi-

TABLE I: Diffuseness parameters and rms radii for mat-
ter (rm), neutron (r,) and proton (r,) extracted from the
HF+BCS density distributions of 2>'*2Sn and **®Pb. at sev-
eral two choices of incident energies among 200, 300, 550, and
800MeV (Er < FEg). Units are given in MeV and fm for
energy and length, respectively.

Nuclide (Er,En) Tm Tn Qn Tp ap
12080 (200,300) 4.691 4.725 0.455 4.645 0.619
(200,550) 4.686 4.720 0.506 4.639 0.507
(200,800) 4.685 4.724 0.470 4.629 0.525
(300,550) 4.683 4.708 0.543 4.648 0.455
(300,800) 4.683 4.713 0.543 4.640 0.448
HF4+BCS 4.662 4.723 4.576
208ph - (200,300) 5.580 5.604 0.492 5.542 0.604
(200,550) 5.575 5.608 0.532 5.424 0.507
(200,800) 5.574 5.613 0.542 5.514 0.479
(300,550) 5.571 5.592 0.558 5.538 0.463
(300,800) 5.570 5.603 0.557 5.519 0.458
HF+BCS 5.551 5.617 5.448
13280 (200,300) 4.821 4.851 0.539 4.776 0.448
(200,550) 4.823 4.856 0.539 4.765 0.445
(200,800) 4.822 4.875 0.535 4.723 0.443
(300,550) 4.818 4.844 0.539 4.779 0.446
(300,800) 4.820 4.852 0.537 4.763 0.445

HF+BCS 4.802 4.890 4.656
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mate density distribution, the rms radius can be deter-
mined within ~1%, and the extracted nuclear “diffuse-
ness” is robust structure information that reflects inter-
esting surface profiles on the exotic nuclei such nuclear
deformation and shell evolution.

Since we only need the cross section at the first peak
position, this method has an great advantage to apply
to measurements in the inverse kinematics, in which the
scattered particles are concentrated at the forward an-
gles. The nuclear structure is actually reflected in the
nuclear density profile at the surface, that is, the nuclear
“diffuseness”. A systematic measurement along this di-
rection is interesting to understand structure changes of
unstable nuclei played by excess neutrons.

A prescription of separating the proton and neutron
radii and diffuseness is also given by making use of the
incident energy dependence for the case of a proton
target. If one measures the elastic scattering differen-
tial cross sections at the first diffraction peak at low
(E < 300MeV) and high (F = 500MeV) incident en-
ergies, one can extract the surface diffuseness and the
rms radii of proton and neutron separately. Though the
method has limitation that can only be applied to a nu-
cleus with large neutron-skin thickness, it will be useful to
extract the structure information of neutron- and proton-
rich unstable nuclei. We note, however, some simplifica-
tions of the model are made in this analysis. In order to
obtain more precise information on the density profile,
we need a further study to quantify the systematic error
of this analysis with a more elaborated model which in-
cludes many-fermion correlations as well as using a more
flexible input density distribution.

We should point out here that the discussion extended
in this paper must be applicable to the analyses of
electron-nucleus elastic scattering differential cross sec-
tions, particularly for unstable nuclei, because the theo-
retical structure is quite similar to the proton scattering
case M], although the interaction is quite different. By
focusing on the first peak angle and its magnitude of the
elastic scattering differential cross section, one may have
a chance to determine the radius of the proton density
distribution and its diffuseness for an unstable nucleus
simultaneously. We believe that this is very important,
but leave it for our future studies [47)].
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Appendix A: Tests of averaged NN profile functions

In this appendix, we test the validity of the average
procedure of pn and pp total cross section in the profile
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functions @] for nucleon-nucleus systems employed in
the analysis of this paper. We calculate the first peak
positions, s and its magnitude of the elastic scattering
differential cross section. The proton and neutron density
distributions obtained by the HF+BCS method using the
SKM* effective interaction [35, 39] are employed. Fig-
ure [[2] compares the results calculated with the pN [33]
and averaged NN @] profile functions at various inci-
dent energies. We find that the peak positions do not
depend on the choice of the profile functions, while some
differences are found in the cross sections at 6, at in-
cident energies lower than ~300MeV, where the differ-
ence of the pn and pp total cross section becomes signifi-
cant. We can safely use the averaged NN profile function
for the scattering at 2300 MeV, the pN profile functions
should be used for quantitative discussions of the proton-
nucleus scattering at the lower energies.
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