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Abstract

The ΞΞ interaction in the 1S0 channel is studied to examine the convergence of the derivative

expansion of the non-local HAL QCD potential at the next-to-next-to-leading order (N2LO). We

find that (i) the leading order potential from the N2LO analysis gives the scattering phase shifts

accurately at low energies, (ii) the full N2LO potential gives only small correction to the phase

shifts even at higher energies below the inelastic threshold, and (iii) the potential determined from

the wall quark source at the leading order analysis agrees with the one at the N2LO analysis except

at short distances, and thus gives correct phase shifts at low energies. We also study the possible

systematic uncertainties in the HAL QCD potential such as the inelastic state contaminations and

the finite volume artifact for the potential and find that they are well under control.
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I. INTRODUCTION

In lattice QCD, two methods have been proposed so far to study the baryon-baryon

interactions. One is the direct method [1–3], where the energy spectrum on finite volume(s)

is extracted from the temporal correlation of two baryons and is converted to the scattering

phase shift and/or the binding energy in the infinite volume through the Lüscher’s finite

volume formula [4, 5]. The other is the HAL QCD method [6–9], where the potential

between baryons is first derived from the spatial correlations of two baryons, and it is used

to calculate the observables through the Schrödinger-type equation in the infinite volume.

While both methods are supposed to give the same results in principle, previous numerical

studies for two-nucleon (NN) systems show clear discrepancy: The direct method indicates

that both dineutron (1S0) and deuteron (3S1) are bound for heavy pion masses (mπ ≥

300 MeV), while the HAL QCD method does not provide such bound states in both channels

for heavy pion masses. This discrepancy was recently resolved in the series of papers [10–

13], where it was demonstrated that the temporal correlation function in the direct method

easily picks up fake plateaux due to high contamination of the elastic scattering states. This

is inherent and inevitable in the naive plateau fitting for multi-baryon systems in lattice

QCD. Such uncontrolled systematic errors in all the previous results with the direct method

have been revealed explicitly by the “normality (sanity) check” based on the Lüscher’s finite

volume formula as well as the analytic properties of the S-matrix [11–13].

The advantage of the time-dependent HAL QCD method [8] over the direct method is that

the former is free from the ground state saturation problem, since the energy-independent

potential controls both ground state and the elastic excited states simultaneously [8]. In

practice, however, there appear systematic uncertainties associated with the truncation of

the derivative expansion for the non-local potential. Therefore, the main purpose of the

present paper is to study the convergence of the derivative expansion, as well as other sources

of systematic uncertainties such as the inelastic state contaminations and the distortion of

the interaction under finite volume. We consider the ΞΞ system in the 1S0 channel and

perform the (2+1)-flavor lattice QCD calculation at mπ = 0.51 GeV and mK = 0.62 GeV.

Because of the large quark masses, the statistical errors in this case become relatively small,

so that one can focus on the detailed analysis of the systematic errors. Also, this channel

and the NN system in the 1S0 channel belong to the same multiplet in the flavor SU(3)
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limit.

This paper is organized as follows. In Sec. II, we review the time-dependent HAL QCD

method. In Sec. III, we present the lattice QCD results for the ΞΞ interaction in the

1S0 channel at the next-to-next-to-leading order (N2LO) in the derivative expansion. The

systematic errors associated with the inelastic state contaminations and the distortion in the

finite volume are also examined. In Sec. IV, we calculate the scattering phase shifts in this

channel, and check the convergence of the derivative expansion in the HAL QCD method.

In Sec. V, we demonstrate the self-consistency between the phase shifts obtained from the

HAL QCD potential and those obtained from the energy spectra obtained from the HAL

QCD potential combined with the Lüscher’s formula. Sec. VI is devoted to the conclusion.

In Appendix A, we discuss the relation between the energy-independent non-local potential

and the energy-dependent local one.

II. FORMALISM

The key quantity in the HAL QCD method [6–9] is the Nambu-Bethe-Salpeter (NBS)

wave function, defined by

ψW (~r) = 〈0|T{B(~x+ ~r, 0)B(~x, 0)}|2B,W 〉, (1)

where |0〉 is the vacuum state of QCD, |2B,W 〉 is the QCD eigenstate for two baryons

with eigenenergy W , and B(~x, t) is a single baryon operator with spin indices omitted for

simplicity. We then define a non-local and energy-independent potential U(~r, ~r′) so as to

satisfy

(Ek −H0)ψW (~r) =
∫
d~r′ U(~r, ~r′)ψW (~r′) (2)

below inelastic threshold, W < Wth = 2mB + mπ, with mB the baryon mass, mπ the pion

mass, and W = 2
√
m2
B + k2. Here we define Ek = k2/(2µ) and H0 = −∇2/(2µ) with a

reduced mass µ = mB/2 .

To extract the NBS wave function in lattice QCD, we start with the two-baryon correla-

tion function,

C2B(~r, t− t0) = 〈0|T{B(~x+ ~r, t)B(~x, t)J 2B(t0)}|0〉, (3)

where J 2B(t0) is a source operator for two-baryon. By inserting the complete set, we obtain

C2B(~r, t− t0) = 〈0|T{B(~x+ ~r, t)B(~x, t)}
∑
n

|2B,Wn〉〈2B,Wn|J 2B(t0)|0〉+ · · ·
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=
∑
n

Anψ
Wn(~r)e−Wn(t−t0) + · · · , (4)

where Wn is the n-th energy eigenvalue, An ≡ 〈2B,Wn|J 2B(0)|0〉 corresponds to the over-

lap with each elastic eigenstate, and the ellipses represent the inelastic contributions. In

principle, one can extract A0ψ
W0(~r) for the lowest energy W0 from the large t behavior of

C2B(~r, t).

In practice, however, since C2B(~r, t) becomes too noisy at large t, we need to employ

the time-dependent HAL QCD method [8]. Let us define the ratio of correlation functions,

which we call the R-correlator, as

R(~r, t) ≡ C2B(~r, t)

{CB(t)}2
=
∑
n

A′nψ
Wn(~r)e−∆Wnt +O(e−∆Wtht) (5)

with ∆Wn = Wn − 2mB, ∆Wth = Wth − 2mB and A′n = An/C2, where CB(t) and C are a

single baryon correlation function and the corresponding overlap factor, respectively. They

are given by

CB(t− t0) =
∑
~x

〈0|T{B(~x, t)J B(t0)}|0〉 = C · e−mB(t−t0) + · · · , (6)

where J B(t0) is a single baryon source operator and ellipses represent the inelastic states

contributions.

Since the non-local potential U(~r, ~r′) is defined to be energy-independent [7], all elastic

scattering states below the threshold share the same U(~r, ~r′). Therefore, Eq. (2) leads to[
−H0 −

∂

∂t
+

1

4mB

∂2

∂t2

]
R(~r, t) =

∫
d~r′U(~r, ~r′)R(~r′, t), (7)

where O(e−∆Wtht) contributions are neglected. Note that the ground state saturation is

no more required in this time-dependent HAL QCD method. Instead, the required condi-

tion is that R(~r, t) is saturated by the contributions from elastic states (“the elastic state

saturation”), which can be achieved by a moderate value of t (∼ O(Λ−1
QCD)).1 This is the

fundamental difference between the HAL QCD method and the direct method.

In actual calculations, it is useful to introduce the derivative expansion of the non-local

potential as U(~r, ~r′) =
∑
n

Vn(~r)∇nδ(~r − ~r′). For the two-baryon system in the spin-singlet

channel, the leading order (LO) analysis implies

U(~r, ~r′) = V LO
0 (r)δ(~r − ~r′), (8)

1 There is a possibility that the inelastic contributions cancel partially between the numerator and the

denominator of R(~r, t), so that the elastic state saturation in R(~r, t) may appear for smaller t than those

in C2B(~r, t) and CB(t).
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which leads to

V LO
0 (r) = −H0R(~r, t)

R(~r, t)
− (∂/∂t)R(~r, t)

R(~r, t)
+

1

4mB

(∂2/∂t2)R(~r, t)

R(~r, t)
. (9)

In order to examine the convergence of the derivative expansion, we study the N2LO analysis

in this paper:

U(~r, ~r′) = {V N2LO
0 (r) + V N2LO

2 (r)∇2}δ(~r − ~r′). (10)

Note that the next-to-leading order (NLO) potential, the spin-orbit interaction, is absent in

the spin-singlet S-wave channel. The relation between the potential from the LO analysis,

V LO
0 (r), and those from the N2LO analysis, V N2LO

0 (r) and V N2LO
2 (r) is given by

V LO
0 (r) = V N2LO

0 (r) + V N2LO
2 (r)

∇2R(~r, t)

R(~r, t)
, (11)

which shows that the N2LO correction in V LO
0 (r) depends on both V N2LO

2 (r) and the spatial

profile of the R-correlator, the latter of which depends not only on the spatial profile of

the NBS wave functions ψWn(r) but also on their magnitude A′n in the R-correlator. The

potentials V N2LO
0,2 (r) are t-independent as long as the elastic state saturation is achieved and

the higher order contributions in the derivative expansion can be neglected. One may also

estimate the magnitude of systematic errors from the truncation of the derivative expansion

and from the inelastic state contaminations by studying the t-dependence of the potentials.

III. HAL QCD POTENTIAL

A. Lattice Setup

Throughout this paper, we use 2+1 flavor QCD ensembles [14], generated by using the

Iwasaki gauge action and O(a)-improved Wilson quark action at a = 0.08995(40) fm on

403 × 48, 483 × 48 and 643 × 64 lattice volumes with heavy up/down quark masses and

the physical strange quark mass, mπ = 0.51 GeV, mK = 0.62 GeV, mN = 1.32 GeV and

mΞ = 1.46 GeV, though only the one with the largest volume is used unless otherwise stated.

We employ the wall source qwall(t) =
∑
~y q(~y, t), which has been mainly used in the previous

studies by the HAL QCD method, and the smeared source qsmear(~x, t) =
∑
~y f(|~x−~y|)q(~y, t)

with the smearing function f(r) ≡ {Ae−Br, 1, 0} for {0 < r < (L−1)/2, r = 0, (L−1)/2 ≤ r}

[14]. For the smeared source, the same ~x is taken as the center of the smeared source for
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volume La [fm] # of conf. # of smeared sources (A,B) # of wall sources

403 × 48 3.6 207 512 (0.8, 0.22) 48

483 × 48 4.3 200 4× 384 (0.8, 0.23) 4× 48

643 × 64 5.8 327 1× 256 (0.8, 0.23) 4× 64

TABLE I. Simulation parameters. The rotational symmetry for isotropic lattices is used to increase

statistics.

all six quarks in two baryons as has been done in Ref. [14]. For both sources, the point-sink

operator for each baryon (“point-sink scheme” in the HAL QCD method [15]) is exclusively

employed in this study. The correlation functions are calculated by the unified contraction

algorithm (UCA) [16]. A number of configurations and other parameters are summarized in

Table I. Statistical errors are evaluated by the jack-knife method. For more details on the

simulation setup, see Ref. [10].

In the present study, we focus on the ΞΞ system in the 1S0 channel: This is one of the most

convenient choices to obtain the insights of NN systems, since it belongs to the same 27

representation as the NN system in the 1S0 channel in the flavor SU(3) limit but has much

better signal to noise ratio than the NN(1S0) case. We use the relativistic interpolating

operators [10] for Ξ, which are given by

Ξ0
α = εabc(s

aTCγ5u
b)scα, Ξ−α = εabc(s

aTCγ5d
b)scα, (12)

where C = γ4γ2 is the charge conjugation matrix, α and (a, b, c) are the indices for the

spinor and color, respectively.

B. The R-correlator

We first consider the behaviors of the R-correlator defined in Eq. (5). Shown in Fig. 1 are

the R-correlators on the lattice with L = 64 at t = 10−16 from the wall source (Left) and the

smeared source (Right). The results show strong quark-source dependence: The R-correlator

from the wall source (Rwall(~r, t)) is delocalized with a weak t-dependence, while that from the

smeared source (Rsmear(~r, t)) is localized and has a strong t-dependence. If the R-correlator

is saturated by the ground state, its spatial profile should be independent of the source and

its temporal profile should be simply dictated by an overall factor, exp(−∆Wn=0t).
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FIG. 1. The R-correlator at t = 10−16 from the wall source (Left) and the smeared source (Right).

To see more closely the t-dependence of the spatial profile of the R-correlator, we plot

R(~r, t) normalized to be unity at r = 3.5 fm for the wall source and at r = 1.0 fm for

the smeared source in Fig. 2. The shape of the R-correlator from the wall source has

a weak t-dependence, which indicates that excited state contaminations in Rwall(~r, t) are

relatively small. On the other hand, the shape of Rsmear(~r, t) show a sizable t-dependence,

which indicates that it has a substantial admixture from the excited states. Although the

parameters in the smeared source are tuned to suppress inelastic states in a single-baryon

correlator, the same parameters are not guaranteed to suppress the elastic states in a two-

baryon correlator. Indeed, a relevant parameter, which controls contaminations from elastic

states in a two-baryon system, is the relative momentum between two baryons: This has

not been taken into account in all previous works in the direct method (except for [3]). See

Ref. [13] for more detailed studies on this point.

C. HAL QCD potential at the leading order

Let us now study the potential in the HAL QCD method at the leading order, V LO
0 (r).

Fig. 3 shows the one for ΞΞ(1S0) and its breakups (H0, ∂/∂t and ∂2/∂t2 terms in Eq. (9)) on

L = 64 at t = 13 from the wall source (Left) and the smeared source (Right). For the wall

source, the H0 term is dominant with sizable contributions from the ∂/∂t term, while the

∂2/∂t2 term is negligible. The ∂/∂t term is not constant as a function of r, which indicates

that there exist small but non-negligible contributions from the excited states in Rwall(~r, t).
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FIG. 2. The normalized R-correlator at t = 10 − 16 from the wall source (Left) and the smeared

source (Right).

For the smeared source, on the other hand, all terms are important. In particular, the ∂/∂t

term (green triangles) shows substantial r-dependence indicating large contributions from

the excited states in the smeared source. However, such dependence is cancelled by the H0

term (blue squares) and is further corrected by the ∂2/∂t2 term (black diamonds). The final

results (red circles) with the smeared source and the wall source show qualitatively similar

behaviors, i.e., the repulsive core at the short distance and the attractive pocket at the

intermediate distance. This illustrates that the time-dependent HAL QCD method works

well for extracting the ΞΞ potential irrespective of the source structures.

Shown in Fig. 4 is a comparison among the LO potentials (V LO
0 (r)) for different t in each

source. For the wall source, the potentials at t = 10−16 are consistent with each other within

statistical errors, while those from the smeared source show the detectable t-dependence.

Shown in Fig. 5 is a comparison of V LO
0 (r) between two sources at t = 10, 12, 14, 16. As t

increases, the LO potential from the smeared source gradually converges to that from the

wall source. The relatively large t-dependence of the potentials from the smeared source as

well as the remaining small discrepancy of potentials between two sources even at t = 16

indicate that the N2LO analysis in the derivative expansion is necessary to understand

the data from the smeared source. This is a natural consequence of the fact that the N2LO

contributions in V LO
0 (r), ∇2R(~r, t)/R(~r, t) (∝ H0 term) in Eq. (11), is much more significant

in the smeared source than the wall source as shown in Fig. 3.
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FIG. 3. The potential at the leading order analysis, V LO
0 (r), (red circles) for the wall source (Left)

and the smeared source (Right) at t = 13. The blue squares, green triangles and black diamonds

denote 1st, 2nd and 3rd terms in Eq. (9), respectively.

FIG. 4. The potential at the leading order analysis, V LO
0 (r), for the wall source (Left) and the

smeared source (Right) at t = 10− 16.

D. HAL QCD potential at the next-to-next-to-leading order

We next apply the N2LO analysis in the derivative expansion to R-correlators for both

sources. The potential at the LO analysis, V LO
0 (r), and those at the N2LO analysis,

V N2LO
0 (r), V N2LO

2 (r), satisfy the linear equations given by

{V N2LO
0 (r) + V N2LO

2 (r)∇2}Rsource(~r, t) = V
LO(source)

0 (r)Rsource(~r, t), (13)
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FIG. 5. A comparison of the potential at the leading order analysis, V LO
0 (r), between the wall

source (red circles) and the smeared source (blue squares) at t = 10, 12, 14, 16.

where source = wall or smear. To extract V N2LO
0,2 (r), we first consider the relation obtained

from Eq. (13),

V
LO(wall)

0 (r)− V LO(smear)
0 (r) = D × V N2LO

2 (r), (14)

with D ≡ ∇2Rwall(~r, t)/Rwall(~r, t) − ∇2Rsmear(~r, t)/Rsmear(~r, t). We extract V N2LO
2 (r) by

fitting Eq. (14) with an ansatz V N2LO
2 (r) = b1e

−b2(r−b3)2 + b4e
−b5(r−b6)2 at each t. Then the

result can be combined with Eq. (11) to obtain V N2LO
0 (r).

Fig. 6 shows the V N2LO
0 (r) together with the V

LO(wall)
0 (r) (Left), and the V N2LO

2 (r) (Right)

on L = 64 at t = 13. We multiply V N2LO
2 (r) by m2

π to make its mass dimension +1 for a

comparison to V0(r)’s. We find that V N2LO
0 (r) agrees well with the V

LO(wall)
0 (r) except at

short distances. We also find that V N2LO
2 (r) is localized within the range of 1 fm, which

is much shorter than the range of V
LO(wall),N2LO

0 (r). We note here that the negative sign
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FIG. 6. (Left) The LO potential at the N2LO analysis, V N2LO
0 (r) (red circles), together with the

potential at the LO analysis for the wall source, V
LO(wall)

0 (r) (blue diamonds) at t = 13. (Right)

The N2LO potential at the N2LO analysis, V N2LO
2 (r), multiplied by m2

π.

of V N2LO
2 (r) does not necessarily implies attraction, since the N2LO potential is given by

V N2LO
2 (r)∇2.

As already mentioned, ∇2R(~r, t)/R(~r, t) from the smeared source is much larger than that

of the wall source (see Fig. 3). Intuitively, this is because Rsmear(r, t) (Rwall(r, t)) contains

larger (smaller) contributions from excited states and thus is more (less) sensitive to higher

order terms in the derivative expansion of the potential. Therefore, the N2LO analysis is

mandatory for the smeared source, while the LO analysis for the wall source leads to the

potential which is almost identical to V N2LO
0 (r).

Shown in Fig. 7 are the t-dependence of V N2LO
0,2 (r) in the range of t = 13 − 16. Since

appreciable t-dependence is not seen within the error bars, the N4LO contribution is expected

to be small.

E. Effect of the Inelastic states

Fig. 8 (Left) compares the effective mass of a single Ξ for two sources. The smeared

source is tuned to have a large overlap with the ground state of a single baryon, so that

the corresponding effective mass shows a plateau at an earlier time than the case of the

wall source. Eventually, the plateaux for the single Ξ from two different sources converge

at t >∼ 16. Shown in Fig. 8 (Right) is the ΞΞ potential at the LO analysis for the wall
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FIG. 7. The LO (Left) and N2LO (Right) potentials at the N2LO analysis in the range of t = 13−16.
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FIG. 8. (Left) The effective mass of a single baryon Ξ for the wall source (red circles) and the

smeared source (blue squares). (Right) The potential at the LO analysis, V LO
0 (r), for the wall

source at t = 9− 17.

source in the range of t = 9 − 17. Unlike the case of the single Ξ, the resultant potential

is stable for t much less than 16, suggesting that the systematic error originating from the

inelastic contributions of the single-baryon cancels largely between the numerator and the

denominator of the R-correlator for the wall source.

F. Effect of the finite volume

In Fig. 9, we show the volume dependence of the potential at the LO analysis for the wall

source at t = 13 with L = 40, 48 and 64. All the potentials are consistent with each other
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FIG. 9. The potential at the LO analysis, V LO
0 (r), for the wall source on L = 40, 48 and 64 at

t = 13.

within statistical errors. This indicates that the artifact due to finite volume is negligible

for the potential, mainly because the potential is short ranged.

IV. SCATTERING PHASE SHIFTS

In the previous section, we examine systematic uncertainties on the HAL QCD potential.

In this section, we examine how these systematic uncertainties affect the physical observables

such as the scattering phase shifts, in particular the effect of the derivative expansion. To

calculate the scattering phase shifts, δ0(k), we first fit the potentials by a sum of Gaussians,

V
LO(wall),N2LO

0 (r) =
∑
n=1,3,5,7 ane

−an+1r2 and V N2LO
m (r) =

∑
n=1,4 bne

−bn+1(r−bn+2)2 . Resulting

parameters are summarized in Table II.

In Fig. 10, we show the comparison of the scattering phase shifts from V
LO(wall)

0 (r),

V N2LO
0 (r) and V N2LO

0 (r) + V N2LO
2 (r)∇2 at t = 13. At low energies (Fig. 10 (Left)), the

N2LO correction is found to be negligible, showing not only that the derivative expansion

converges well but also that the LO analysis for the wall source is sufficiently good at low

energies. The N2LO correction becomes non-negligible only at high energies as shown in

Fig. 10 (Right) 2. We note that (k/mπ)2 = 0.5 corresponds to the energy from the threshold

as ∆E ≡ W − 2mB ' 90 MeV. The good convergence of the derivative expansion has

been also observed for the NN systems in the 1S0 and 3S1 channels [17] and the I = 2 ππ

2 We discuss the magnitude of the N2LO correction in the potential at high energies in Appendix A.
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V
LO(wall)

0 (r) V N2LO
0 (r) V N2LO

2 (r)

a1 0.8759± 0.0270 1.1426± 0.0621 b1 −0.5291± 0.0418

a2 1.2040± 0.0317 0.9332± 0.0871 b2 0.0757± 0.0162

a3 0.4261± 0.0128 0.4245± 0.0397 b3 2.195± 0.333

a4 0.3028± 0.0217 0.2358± 0.0382 b4 −0.1091± 0.0194

a5 0.2010± 0.0124 0.2415± 0.0410 b5 0.2177± 0.0633

a6 0.07373± 0.00364 0.07876± 0.00646 b6 7.025± 0.464

a7 −0.02922± 0.00148 −0.03005± 0.00159

a8 0.008977± 0.000456 0.009107± 0.000467

TABLE II. Summary of fitting parameters for the LO and N2LO potentials in the lattice unit at

t = 13. The fitting range is r ∈ [0, 3.5] fm, and χ2/dof are 1.14, 1.01 and 0.0019 for V
LO(wall)

0 (r),

V N2LO
0 (r) and V N2LO

2 (r), respectively.
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FIG. 10. The scattering phase shifts in the form of k cot δ0(k)/mπ (Left) and δ0(k) (Right) from

V
LO(wall)

0 (r) (black diamonds), V N2LO
0 (r) (blue squares) and V N2LO

0 (r) + V N2LO
2 (r)∇2 (red circles)

at t = 13.

system [15].

The scattering length a0 obtained through limk→0 k cot δ0(k) = 1/a0 from V
LO(wall)

0 (r),

V N2LO
0 (r) and V N2LO

0 (r)+V N2LO
2 (r)∇2 at t = 13−16 is shown in Fig. 11. The result indicates

that the scattering length is almost insensitive to the degrees of the approximation but has

a small variation in t, which is, however, within statistical errors. We thus conclude that
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FIG. 11. The scattering length a0 in the form of (a0mπ)−1 from V
LO(wall)

0 (r) (black diamonds) ,

V N2LO
0 (r) (blue squares) and V N2LO

0 (r) + V N2LO
2 (r)∇2 (red circles) at t = 13− 16.

V
LO(wall)

0 (r) V N2LO
0 (r) V N2LO

0 (r) + V N2LO
2 (r)∇2

(a0mπ)−1 0.341(36)(+70
−0 ) 0.368(39)(+65

−0 ) 0.352(36)(+80
−0 )

TABLE III. The scattering length a0 in the form of (a0mπ)−1 from V
LO(wall)

0 (r), V N2LO
0 (r) and

V N2LO
0 (r) + V N2LO

2 (r)∇2. The central values and statistical errors (in the first parenthesis) are

evaluated at t = 13, while the systematic errors (in the second) are estimated using the potentials

at t = 14, 15, 16.

the systematic errors from the derivative expansion and the inelastic state contaminations

are well under control for this observable. Numerical values for the scattering length are

summarized in Table III, where the central value and statistical errors are evaluated at

t = 13 and the systematic errors are estimated from the t-dependence among t = 13 − 16.

We have checked that alternative fitting functions of the potential such as the combination

of two Gaussians + (Yukawa)2 form as employed in [18, 19] give results consistent with

those from the present fitting function within errors.

V. FINITE VOLUME FORMULA AND EFFECTIVE RANGE EXPANSION

Before closing the paper, we discuss the relation among the energy spectrum, the

Lüscher’s finite volume formula and the effective range expansion (ERE). Once the en-

ergy shift of the two-body system on a finite volume is measured, the scattering phase shift
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is obtained by the Lüscher’s formula as

k cot δ0(k) =
1

πL

∑
~n∈Z3

1

|~n|2 − (kL/2π)2
, (15)

where k2 is related to the energy shift on a finite volume as ∆EL = 2
√
m2
B + k2− 2mB. For

the attractive interaction, k2 can be negative on a finite volume. Note that the poles of the

S-matrix with k cot δ0(k) = −
√
−k2 in the infinite volume correspond to the bound states.

For the unbound two-body system, the asymptotic behavior of ∆EL for large L reads

∆EL ' −
2πa0

µL3

[
1 + c1

a0

L
+ c2

(
a0

L

)2
]

+O(L−6), (16)

with the reduced mass µ, the scattering length a0, c1 = −2.837297, and c2 = 6.375183 [4, 5].

Let us now calculate k2 from eigenvalue spectra of the Hamiltonian3 H = H0+V N2LO
0 (r)+

V N2LO
2 (r)∇2 on the finite volume (L = 40, 48, 64) for the A+

1 representation of the cubic

group, by employing fitted V N2LO
0 (r) and V N2LO

2 (r) at L = 64 in Table II. Fig. 12 (Left)

shows the volume dependence of the lowest eigenvalues: The data are found to be well

described by Eq. (16), which indicates that the system does not have a bound state. By

fitting the data with Eq. (16), we obtain the scattering length as (a0mπ)−1 = 0.402(14)

consistent with the values in Table III, (a0mπ)−1 = 0.352(36)(+80
−0 ).

As extensively discussed in Ref. [11], the ERE, k cot δ0(k) = 1/a0 + (1/2)reffk
2 + · · ·, pro-

vides a systematic and reliable way to relate the volume dependence of ∆EL, the scattering

phase shifts and the bound state pole around k2 = 0. 4 In Fig. 12 (Right), we plot the finite

volume spectra on the (k2, k cot δ0(k)) plane, using the lowest eigenvalues of H on L = 40,

48, and 64, and the eigenvalue of the first excited state on L = 64. Note that the data

(triangle, square and diamonds) and their errors are plotted together with the Lüscher’s

formula (dotted lines). The blue band corresponds to the results obtained by solving the

Schrödinger equation in the infinite volume. We find that the finite volume energy spectra

at k2 < 0 and k2 > 0 are smoothly connected around k2 = 0 along with the blue band,

as is expected from the analytic properties of S-matrix and the ERE. In fact, the ERE at

the NLO determined from these 4 data (pink band) is consistent with the blue band at

|(k/mπ)2| <∼ 0.2 within errors. One also observes that the positive intercept at k2 = 0 (1/a0)

supports the conclusion from Fig. 12 (Left) that the system has no bound state.

3 Since this non-hermitian eigenvalue problem can be written as the definite generalized Hermitian eigen-

value problem, eigenvalues are all real.
4 It was pointed out in [11] that the singular and/or unphysical behaviors of k cot δ0(k) around k2 = 0

arise in the direct method [1–3] due to the “fake plateau problem” [10].
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FIG. 12. (Left) The lowest eigenenergies on finite volumes from the HAL QCD potential. The red

line corresponds to the fit by the asymptotic Lüscher’s finite volume formula in the large L, Eq. (16).

(Right) The scattering phase shifts from finite volume eigenenergies using Lüscher’s finite volume

formula (green triangle, blue square, red diamonds), together with those in the infinite volume

from the Schrödinger equation (blue band). The black dotted lines denote the constraints by the

Lüscher’s finite volume formula, and the black solid line represents the bound state condition in

the infinite volume. The red dashed line with the pink band corresponds to the NLO ERE analysis

to the finite volume data.

VI. SUMMARY

In this paper, we have made critical investigations on the systematic uncertainties in the

HAL QCD method. While the time-dependent HAL QCD method is free from the issue

associated with the ground state saturation, the approximation of the energy-independent

non-local potential by the derivative expansion introduces systematic uncertainties, so that

it is necessary to check the errors introduced by the expansion.

We have performed the (2+1)-flavor lattice QCD calculation for the ΞΞ(1S0) system at

mπ = 0.51 GeV. Using the four-point correlation functions from both wall and smeared

quark sources, we have established the theoretical and numerical method to determine LO

and N2LO potentials in the derivative expansion. Scattering phase shifts calculated from

these potentials reveal that the LO potential is sufficient to reproduce observables at low

energies (k2/m2
π < 0.1), while the N2LO correction becomes non-negligible but remains

small even at high energies (k2/m2
π ' 0.5), confirming the good convergence of the derivative
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expansion below the inelastic threshold.

We have also found that the potential at the LO analysis for the wall source agree with

the LO potential at the N2LO analysis except at short distances and can reproduce the

scattering phase shifts precisely at low energies. This observation confirms the reliability of

the previous HAL QCD results, which are based on the LO analysis using the wall source.

Other systematic uncertainties such as the inelastic state contaminations and the finite

volume effect to the potential are investigated and are found to be well under control.

After establishing the reliability of the HAL QCD potential, we have calculated the

eigenvalues of the Hamiltonian in finite boxes with the potential. The volume dependence

of the lowest eigenvalues is well described by 1/L-expansion for scattering states obtained

from the Lüscher’s finite volume formula. We have also discussed the relation among the

energy spectrum, phase shifts and the effective range expansion.

In a forthcoming paper [13], we will perform the spectral decomposition of the correlation

function based on the eigenmodes of the Hamiltonian in a finite box with the HAL QCD

potential, which enables us to diagnose the origin of the fake plateaux in the direct method.
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Appendix A: Non-locality vs. Energy dependence

Here we examine the relation between the energy-independent non-local potential with

the derivative expansion, U(~r, ~r′) = {V0(r) + V2(r)∇2 + · · ·}δ(~r − ~r′), and the energy-

dependent local potential, V eff(r;E). For simplicity, in this appendix, we restrict ourselves

to the N2LO analysis. In other words, we assume as if the non-local potential were given

exactly by U(~r, ~r′) = {V0(r) + V2(r)∇2}δ(~r − ~r′).

In this case, it is easy to show that the Schrödinger equation with this non-local potential,

given by [
−∇

2

2µ
+ V0(r) + V2(r)∇2

]
ψ(~r) = Eψ(~r), µ = mB/2, (A1)

can be written in terms of the energy-dependent local potential as[
−∇

2

2µ
+ V eff(r;E)

]
ψ(~r) = Eψ(~r), (A2)

where

V eff(r;E) ≡ V0(r)−mBEV2(r)

1−mBV2(r)
, (A3)

which gives an exact relation between the energy-independent non-local potential and the

energy-dependent local potential (within the N2LO analysis). Although both descriptions

for the potential are theoretically equivalent as shown above, we stress that the HAL QCD

method is based on the energy-independent non-local potential, which can be extracted from

arbitrary linear combinations of the NBS wave function ψW (~r) thanks to the time dependent

method, while the energy-dependent local potential requires the eigenstate saturation, which

is difficult to achieve in practice, particularly for excited states. Also V eff(r;E) gives the

correct scattering phase shift at each E (one potential per energy), while V0(r) + V2(r)∇2

gives the correct scattering phase shifts (within the N2LO analysis) at all E ≤ Eth (one

potential for all).

Fig. 13 shows the energy dependence of V eff(r;E) from E = 10 MeV to E = 200 MeV.

In these figures, we use V N2LO
0 (r) and V N2LO

2 (r) obtained at t = 13 for V0(r) and V2(r),

respectively. The energy dependent correction is small at low energies, while it is no longer

negligible at higher energies. As the energy increases, the attractive pocket at an interme-

diate distance becomes shallower and the radius of the repulsive core becomes larger.

This result also demonstrates how the non-locality of the energy-independent potential,
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FIG. 13. The energy dependence of the effective potential, V eff(r;E), (red circles) compared with

the LO potential at the N2LO analysis, V N2LO
0 (r) (blue squares) at E = 10 MeV (Top Left),

E = 50 MeV (Top Right), E = 100 MeV (Bottom Left) and E = 200 MeV (Bottom Right).

U(r, r′), (Note that V0(r), V2(r), · · · are energy-independent by definition 5), is related to

the energy dependence of the local potential, V eff(r;E).

5 In the literature, there appears a confusion [27] on the relation between the energy-independent non-local

potential and the energy-dependent local potential. See Ref. [28], which clarifies the relation between the

two in detail.
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