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Abstract

One of the pronounced characteristics of gravity, distinct from other interactions, is
that there are no local observables which are independent of the choice of the spacetime
coordinates. This property acquires crucial importance in the quantum domain in that the
structure of the Hilbert space pertinent to different observers can be drastically different.
Such intriguing phenomena as the Hawking radiation and the Unruh effect are all rooted
in this feature. As in these examples, the quantum effect due to such observer-dependence
is most conspicuous in the presence of an event horizon and there are still many questions
to be clarified in such a situation. In this paper, we attempt to perform a comprehensive
study of the observer dependence of the quantum Hilbert space of a massless scalar field in
the vicinity of the horizon of the Schwarzschild black holes in four dimensions, both in the
eternal (two-sided) case and in the physical (one-sided) case created by collapsing matter.
Specifically, we compare and relate the Hilbert spaces of the three types of observers,
namely (i) the freely falling observer, (ii) the observer who stays at a fixed proper distance
outside of the horizon and (iii) the natural observer inside of the horizon analytically
continued from outside. The relations we obtain have a number of important implications,
such as on the quantum equivalence principle and the related firewall phenomenon, on the
number of degrees of freedom seen by each type of observer, and on the “thermal-type”
spectrum of particles realized in a pure state.
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1 Introduction

A quantum black hole is a fascinating but as yet an abstruse object. Recent endeavors
to identify it in a suitable class of CFTs in the AdS/CFT context [1-3] [4-7] or by an
ingeneous model such as the one proposed by Sachdev-Ye-Kitaev [8-10] have seen only
a glimpse of it, to say the most. Unfortunately, the string theory, at the present stage
of development, does not seem to give us a useful clue either. This difficulty is naturally
expected since an object whose profile fluctuates by quantum self-interaction would be
hard to capture. We must continue our struggle to find an effective means to characterize

it more precisely.

Although the quantization of a black hole itself is still a formidable task, some analyses
of quantum effects around a (semi-)classical black hole have been perfomed since long time
ago and they have already uncovered various intriguing phenomena. Among them are the
celebrated Hawking radiation [11] [12-14] and closely related Unruh effect [15] [16, 33].
These effects revealed the non-trivial features of the quantization in curved spacetimes, in
particular in those with event horizons. At the same time, they brought out new puzzles of
deep nature, such as the problem of the information loss, the final fate of the evaporating

black hole, and so on.

More recently, further unexpected quantum effect in the black hole environment was
argued to occur, namely that a freely falling observer encounters excitations of high energy
quanta, termed “firewall”, as he/she crosses the event horizon of a black hole [17,18] [19].
This is clearly at odds with the equivalence principle, which is one of the foundations
of classical general relativity. An enormous number of papers have appeared since then,
both for and against the assertion! . Various arguments presented have all been rather
indirect, however, making use of the properties of the entanglement entropy, application

of the no cloning theorem, use of information theoretic arguments, etc..

At the bottom of these phenomena lies the strong dependence of the quantization on
the frame of observers, which is one of the most characteristic features of quantum gravity.
This is particularly crucial when the spacetime of interest contains event horizons as seen

by some observers.

The main aim of the present work is to investigate this observer dependence in some
physically important situations as explicitly as possible to gain some firm and direct
understanding of the phenomena rooted in this feature. For this purpose, we shall study
the quantization of a massless scalar field in the vicinity of the horizon of the Schwarzschild

black hole in four dimensions as perfomed by three typical observers. They are (i) the

Tt is practically impossible to list all such papers on this subject. We refer the reader to those citing
the the basic papers [17,18].



freely falling observer crossing the horizon, (ii) the stationary observer hovering at a fixed
proper distance outside the horizon (i.e. the one under constant acceleration), and (iii)

the natural analytically continued observer inside the horizon.

Such an investigation, we believe, will be important for at least two reasons. One is
that we will deal directly with the states of the scalar fields as seen by different observers
and will not rely on any indirect arguments alluded to above. This makes the interpre-
tation of the outcome of our study quite transparent (up to certain approximations that
we must make for computation). Another role of our investigation is that the concrete
result we obtain should serve as the properties of quantum fields in the background of
a black hole, which should be compared, in the semi-classical regime, to the results to
be obtained by other means of investigation, notably and hopefully by the AdS/CFT
duality?. For some progress and intriguing proposals in the related directions, see [20-27].
This is important since, as far as we are aware, there has not been a serious attempt to
understand how the observer dependence is described in the context of AdS/CFT duality.

We will perform our study both for the case of two-sided eternal Schwarzschild black
hole and for that of one-sided physical black hole modeled by a simple Vaidya metric
produced by collapsing matter or radiation at the speed of light® [28-30]. What makes
such an investigation feasible explicitly is the well-known fact that near the horizon of
the Schwarzschild black hole (roughly within the Schwarzschild radius from the horizon;
see Sec. 3.1 for more precise estimate) there exists a coordinate frame in which the metric
takes the form of the flat four dimensional Miknowski spacetime M'3. Thus, one can make
use of the knowledge of the quantization in the flat space for observers corresponding to
the various Rindler frames. As this will serve as the platform upon which we develop
our picture and computational methods for the black hole cases, we will give, in Sec. 2, a
review of this knowledge together with some further new information about the relations

between the quantizations by the three aforementioned observers.

In making use of this flat space approximation to the near horizon region of a black
hole, an important care must be taken, however. Although the scalar field and its canon-
ical conjugate momentum are locally well-approximated by those in the flat space for the
region of our interest and hence the canonical quantization can be performed without any
problem, as we try to extract the physical modes which create and annihilate the quantum
states, such a local knowledge is not enough in general. This is because the notion of a
quantum state requires the global information of the wave function. Technically, this is

reflected in the fact that the orthogonality relation needed for the extraction of the mode

2As far as the vicinity of the horizon is concerned, the Schwarzschild black hole and the AdS black
hole have the same structure.

3 Actually, we shall make an infinitesimal regularization to make the trajectory of the matter slightly
timelike in order to avoid certain singularity.



is expressed by an integral over the entire spacelike surface at equal time, and depending
on the region of interest such a surface may not be totally contained within the region

where the flat space approximation is valid.

One such problem, which however can be easily dealt with, stems from the simple fact
that the approximation by the four-dimensional flat space includes that of the spherical
surface of the horizon by a tangential plane around a point. Clearly since the physical
modes of the scalar field should better be classified by the angular momentum, not by
the linear momentum, we shall use Rb! x S?, instead of M!?, as the more accurately
approximated spacetime, where R stands for a portion of two-dimensional flat space-
time realized near the horizon and S? is the sphere at the Schwarzschild radius. Various
formulas reviewed and/or developed in Sec. 2 for M3 can be readily transplanted to this
case by replacing the plane waves by the spherical harmonics. As for the treatment of the
near horizon portion of R, we shall devise some arguments to obtain essential features

of the modes near the horizon in the radial direction.

Although we cannot summarize here all the results on how the different observers see

their quanta and how they are related, let us list two, which are of obvious interest:

e As far as our study indicates the equivalence principle still holds quantum mechan-
ically near the horizon of the black hole and the freely falling observer finds no

surprize as he/she goes through the horizon.

e For the physical (one-sided) black hole, the vacuum?* |0)_ for the freely falling ob-
server is a pure state which is not the same as the usual Minkowski vacuum |0),,.
Nevertheless the expectation value of the number operator for the observer in the
frame of the right Rindler wedge in |0)_ has a Unruh-like distribution, which con-
tains a “thermal” factor together with another portion depending on the assumed
interaction between the scalar field and the collapsing matter, which is effectively
expressed as a boundary condition. This is in contrast to the case of the two-sided
eternal black hole, where tracing out of the modes of the left Rindler wedge must be
performed and the resultant mixed state density matrix produces the usual purely
thermal form of the Unruh distribution. The effect for the physical black hole occur-
ing in the pure state described above is essentially of the same origin as the Hawking
radiation seen by the asymptotic observer, who is a Rindler observer®.

The plan of the rest of the paper is as follows: In Sec. 2, we begin by describing the

quantization of a massless scalar field in four dimensional flat Minkowski space from the

4The vacuum referred to here will be explained in Sec. 4.2.3.
°For related work, though in a different setting, see [32].
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point of view of various observers and provide explicit relations beween them. Although
this section is mostly a review, we derive some useful relations as well, which have not
been explicitly discussed in the literature. This includes the construction of the explicit
unitary transformation between the Minkowski mode operators and those of the future
Rindler wedge and how the Poincaré algebra is realized in various wedges. Next in Sec. 3,
this knowledge about the quantization in flat spacetime will be utilzed to discuss how
the scalar field is quantized by various observers in the vicinity of the event horizon of
a two-sided Schwarzschild black hole, which by a suitable choice of coordinates can be
approximated by a part of R times S?. In Sec. 4, we study the similar problem in the
case of a Vaidya model of a physical one-sided black hole which is produced by a collapse
of null matter. The effect of this collapse is treated as an effective boundary condition on
the scalar field along a regularized almost lightlike trajectory of the matter. Even though
we focus on the flat region near the horizon, the quantum states, which depend on the
global situation, show different properties as compared with the two-sided case studied
in Sec. 3. In Sec. 5, we disucss the implications of the results obtained in the previous
sections on some important questions, such as the quantum equivalence principle, the
firewall phenomenon, and the Unruh effect near the horizon. Finally, in Sec. 6, after
summarizing the results, we re-emphasize that the effect of the observer dependence of
quantization is one of the most crucial characteristics of any theory of grantum gravity
and it should be seriously investigated, in particular, in the framework of AdS/CFT
approach. Several appendices are provided to give further useful details of the formulas

and calculations discussed in the main text.

2 Quantization of a scalar field in the Rindler wedges and the
degenerate Kasner universes

We begin by describing the quantization of a massless® scalar field in the four dimensional
Minkowski space, from the standpoint of a uniformly accelerated Rindler observers for
the right and the left wedges Wr and Wy,, and their appropriate analytic continuations
for the future and the past wedges Wr and Wp, which can be identified as degenerate
Kasner universes. In Figure 2.1, we draw the trajectories of the corresponding observers

and the equal time slices in each wedge.

The subject of the quantization by Rindler observers has a long history [33-36] and
hence the content of this section is largely a review’. However, a part of our exposition

supplements the description in the existing literature by providing some clarifying details

6Massive case can be treated in an entirely similar manner.
"For a review article closely related to this section, see [37].



A time slice: tg =t = tg
in the Rindler coordinate

"! R W

------- A trajectory of a particle

W

tr .
moving along a constant zgr

tp

Wp

A trajectory of a particle
moving along a constant tg,tp

Figure 2.1: Trajectories and equal-time slices of the Rindler observers in various wedges.
The boundaries of the wedges Wgr, Wg, Wi, and Wp are shown by dotted lines. The
arrowed blue lines represent the trajectories of a particle, while the red line is a typical
time slice at tg = t;, for W and Wi,.

and new relations. The results of this section will serve as the foundation upon which to
discuss the observer-dependent quantization around the horizon of Schwarzschild black

holes, both eternal (two-sided) and physical (one-sided), as will be performed in Sec. 3.

2.1 Relation between the Minkowski and the Rindler coordinates

Before getting to the quantization of a scalar field, we need to describe the relationship

between the Minkowski coordinate and the Rindler coordinates in various wedges.

The d-dimensional Minkowski metric is described in the usual Cartesian coordinate as

U

d5? = —(dtny)? + (') + S (da)? (2.1)

i

||
N

Since we will be mostly concerned with the first two coordinates and the roles of the rest
of the d — 2 coordinates are essentially the same, hereafter we will deal with the four

dimensional case, i.e. d = 4.

As for the Rindler coordinates, we begin with the one in the right wedge Wg shown
in Figure 2.1. As is well-known, it is related to the coordinates of the observer who is
acclerated in the positive x! direction with a uniform acceleration. The trajectory of the

observer in the (t)s, z') Minkowski plane with a value of acceleration k(> 0) is given by

(@1)* = (tar)* = (1/K)* = 25 (2.2)



Here the symbol zg is introduced as a variable, meaning that different values of zg de-
scribes different trajectories. Thus the Rindler coordinate system is spanned by the proper
time 7 of the observer and the spatial coordinate zi. The relation to the Minkowski co-

ordinate is given by

tv = 2R sinhtR, z! = ZR COShtR7 (ZR > 0) , (23)

where we introduced for convenience the rescaled time tg defined by
tR = KTR . (24)
The metric in terms of these variables is
3
ds® = —zpdts, + dzy + z:(al:vi)2 : (2.5)
i=2
Note that zg = 0 corresponds to the (Rindler) horizon, which consists of two dimensional

planes along the lightlike lines bounding the region Wy . It will often be convenient to

use the following lightcone variables:

v =2t £ty = zpe™E. (2.6)
This shows that tg is nothing but the rapidity-like variable and gets simply translated by
the Lorentz boost in the x! direction.

The coordinates (tr, z;) in the left wedge Wy, can be obtained in an entirely similar

manner and are related to the Minkowski coordinates by
ty = —zpsinhtr z' = —zp coshty,, (21, > 0). (2.7)

The metric takes exactly the same form as (2.5), with the subscript R replaced by L.
Note that as tg increases from —oo to oo, the Minkowski time t,; also increases, while

when ¢, increases from —oo to 0o, t); decreases, as indicated by the arrows in Figure 2.1.

Next consider the future and the past wedges, Wr and Wp. They describe the interior

of the Rindler horizon. The relation to the Minkowski coordinate for Wy is
ty = zpcoshitp, ! = zpsinhtp, (zr > 0), (2.8)

and the metric takes the form

3
ds® = —dz}, + 2pdty, + Y (da')? . (2.9)
i=2
This means that in Wy, zp is the timelike and tr is the spacelike coordinates. As in the

case of Wg, the following lightcone combinations are often useful:

ot =ttty = tzpe™E. (2.10)

10



Just like tg, under a Lorentz transformation the variable ¢z undergoes a simple shift.

This interchange of the timelike and the spacelike natures also occurs in the past wedge

Wp . In the entirely similar manner, we have
ty = —zpcoshtp, ! = —zpsinhtp, (zp > 0), (2.11)

with the form of the metric identical to (2.9) with the subscript F — P.

In Sec. 3, where we discuss how the similar Rindler wedges for a flat space appear in
the vicinity of the horizon of a Schwarzschild black hole, we will see that the zg variable
expresses the proper distance from the horizon in the outside region and is related to the
radial variable r and the Schwarzschild radius 2M (where M is the mass of the black hole),
by zr >~ \/m . Hence, as we go through the horizon from Wg into Wg, we must
make an analytic continuation by choosing a branch for the square-root cut. Similarly,
an analytic continutation connects Wy and Wy, and so on. Such a continuation process
must be such that as we go once around all the wedges, we should come back to the same
branch for Wg. A simple analysis for this consistency yields the following continutation

rules, with a sign 7 = £1 which can be chosen by convention, for the adjacent wedges:

trp = tR — Zgn, Zp = ei(ﬁ/z)an, (212)
tL = tF — Zgn, 2 = e—i(w/Z)nZF = 2R, (213)
tp = tL + Zgn = tF, Zp = 671.(”/2)”2[/, (214)
th=tp+ ign, op = /2, (2.15)

ZRy,RF, XL, 2P Z 0 (216)

One can easily check that these relations are compatible with the relations between the

Minkowski variables and the Rindler wedge variables given above.

2.2 Quantization in the Minkowski spacetime

We now discuss the quantization of a massless scalar field ¢ in various coordinates.

In this subsection, just for setting the notation, we summarize the simple case for the

Minkowski coordinate. The action, the canonical momentum and the equation of motion

11



are given by

3
S = _% / dtypdztda <—(atM¢M)2 + (0 ™) + ;(axich)Q) : (2.17)
S R =1

( +821+Za%) =0, (2.19)

where we denote the fields and the time in the Minkowski frame with the super(sub)script

M. Now ¢M can be expanded into Fourier modes as

(tar, oy T ekt al —iBy,1th o M +h.c., 2.20
Mtaralyn) = | mm/ z (220)
Eip = VR + (0. (2.21)

Here and throughout, we often denote (z?, 2*) simply by z and similarly for the momenta
for the corresponding dimensions by k, and write the inner product Z?:Q kix; as kx.

Canonical quantization is performed by demanding®

[T (tar, 2t @), 0 (tar,y' s y)] = —id(at — y')d(x —y). (2.22)

Using the orthogonality of the exponential function, we can easily extract out the mode

operators and check that they satisfy the usual commutation relations:

[apts, akj‘f[;,l] =6(p' —p ok — k), rest = 0. (2.23)
2.3 Quantization outside the Rindler horizon

Let us now begin the discussion of quantization in the Rindler coordinates in various

wedges.

We first consider the Rindler wedges outside the horizon, namely Wgr and Wy,. Since
the metrics in these wedges take the same form in the respective variables, we will focus

on Wg. The action takes the form

1
S = 9 /dthsz2$v _99“V8u¢RaV¢R

1=2

3
- —% / dt pdzpda (-i(athzﬁR)z + 2r(0:,0")° + 21 Z(&MR)Q) : (2.24)

85(x —y) of course means the two-dimensional delta-function §2(x —y). This abbreviation will be used
throughout.

12



The canonical momentum is given by

oL 1
R _ _ R
Tt = 0, zRatR¢ : (2.25)

which has an extra factor of 1/zz compared with the Minkowski case. Variation of the

action yields the equation of motion

(aﬁR aZR + 2822 - iz ) Pt = (2.26)
R

As it is a second order differential equation, there are two independent solutions, which
can be taken to be the exponential function times the modified Bessel functions, namely
elbz=wt) I (|k|2) and e’**=«*) I{; (|k|z). The appropriate solution is the one which damps

at z — oo and we write it as

fki(tRazR7x) - w M(U{le) ke th)7 (2'27)

where N, is a normalization constant given below. Thus, the scalar field in the right

Rindler wedge can be expanded as

SRt 2 ) = / o / PENE [ (k| zr)e a4 he] |
0
NE_ Y sinh 7w

Let us make some remarks on this formula:

(i) For the hermitian conjugate part, only the conjugation for the exponential part is
needed since K, (|k|z) is real.

(ii) The normalization constant chosen here will lead to the canonical form of the com-
mutation relations, as explained in Appendix B.1.1.

(iii) The variable w is the energy conjugate to the time-like variable tg, and hence its

range is w > 0.

Canonical quantization is performed by imposing the following equal-time commuta-

tion relation:
(7R (tg, 2g, ), 9% (tg, 25, '), = —i6(2r — 2)0(x — 2') . (2.29)

Using the orthogonality relation for the modified Bessel functions explained in the Ap-
pendix A.1, it is straightforward to obtain the commutation relations for the mode oper-

ators
[l all )] = 6(w — W)o(k — k), rest = 0. (2.30)

13



For some details of the calculations, see Appendix B.1.1.

The quantization in Wy, is essentially similar to the one in Wy above, except for one
point that one must be careful about. Recall that as the Minkowski time ¢, (and also
tr) goes from —oo to oo, the time ¢, in Wy, runs oppositely from oo to —oo. This is due
to the definition of ¢, by a smooth analytic continuation and does not of course mean
that a physical particle moves from the future to the past. After all Wy, is a part of the
Minkowski space and all the particles and waves must evolve along the positive direction
in Minkowski time. This applies to the Wi, observer as well, who is under constant
acceleration in the negative z' direction. The time which increases along the trajectory
of the Wy, observer is not t;, but t;, = —t;. Therefore, the quantization in this frame
should be done with ¢, regarded as time. Then, all the formulas for the quantization in
the Wg frame hold for the Wy, frame, with ¢z replaced by ;. This means that if one
wishes to use the “time” t; to write the mode expansion of the field ¢* and define its

L

conjugate momentum 7", we have

o*(tr, 2, 1) = / dw / kNS [Kio(|k|zp)e™ ™ ay, + heel] |
0
vsinh Tw

NE =
v 272 ’

(2.31)
and

1
mh(ty, 20, 0) = ——0;, ¢ . (2.32)
2L

One can then check that the equal time commutation relation [ﬂ'L(tL, zp,x), ¢t (tp, 2, m’)} =

—i0(zp, — 27)0(x — 2’) holds correctly.
2.4 Quantization inside the Rindler horizon

Next consider the quantization in the Rindler wedges inside the horizon, i.e. in Wg and
Wp. Again they can be treated in parallel and we focus on Wg. Compared to the previous
analysis for the outside region, an important difference arises due to the interchange of

the timelike and the spacelike coordinates.

The action in W region is given by

1
S = —3 /dtpdzpd2$\/—gg“”8M¢F8V¢F

3
= —% /thdZFd2.T <—ZF(62F¢F>2 + (atp(bF)Q + zr Z(arl(bF)Q) : (233)

1
z
r =2

14



From the sign of various terms, it is clear that tr is the space coordinate and zp is the

time coordinate. Therefore, the canonical momentum must be defined by

oL
F_ _ F
T = 0.7 2p05, 0" . (2.34)

The equation of motion takes the form

(82 282 - %aﬁp) of =0. (2.35)

Again there are two independent solutions, which can be taken as

frow(tr, zp,x) = NFH (\k\z) iko—wtr)
fl:w(tF,ZF,.l’) = Nfe_ﬁwHi(i)(|k‘|ZF)€_Z(kI_WtF), (236)

where H ) and H are the Hankel functions of imaginary order and N is the normal-

ization constant, to be specified shortly.

To expand the scalar field in terms of these functions, a care should be taken as to
which function should be associated with the annihilation (resp. creation) modes. This
is because, in contrast to the previous case, w is conjugate to the spacelike variable ¢p
and hence it is not the energy but the usual momentum. Therefore the range of w is
—o0 < w < oo and we cannot determine the positive (resp. negative) frequency mode

from the exponential part of the functions above.

Thus, to determine which Hankel function should be taken as describing the positive
frequency part, one must look at the asymptotic behavior of Hl(iQ)(|k|zF) at late time,

i.e. at very large positive zp. Such behaviors are given by

(lk?|ZF) ~ ez|k|zF i /4 7rw/2

(2.37)

(|k|ZF) ~ e —ilk|zp+in/4 —7rw/2

(2.38)

7T|k|zF

We see that Hi(z)(|k|zF) behaves like e~?/¥1?F which corresponds to the positive frequency
with respect to “energy” |k| (with an overall inessential damping behavior). This tells us

that the the correct expansion is

OF (b 25, 7) — / A / PENE [0 B Kz )af, +he] |

(NEY? = (2.39)

8(2m)?’
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where the factor NI is determined such that the commutator of the modes take the
canonical form as in (2.41) below. In the literature the modes af  are often called the

Unruh modes, whereas the modes aff, are referred to as the Rindler modes.

Now the canonical quantization is performed by imposing the “equal-time” (i.e. equal

zp) commutation relation relation
(75 (2p, tp, 1), ¢ (2p, th, 2'),] = —i0(tr — t})6(z — 2') . (2.40)

Using the orthogonality of the Hankel functions, we get the canonical form of the com-

mutation relations for creation/ annihilation operators, namely,
[l all ] = 0(w —w)o(k — k), rest = 0. (2.41)

See Appendix B.1.2 for some details of this computation.

2.5 Hamiltonian in the future wedge

We have seen that in Wr and Wp the timelike and the spacelike variables are swapped
compared to the usual situations in Wi and Wy, and this has made the identification of the
positive and negative frequency modes somewhat non-trivial. In fact, this swapping makes
the Hamiltonian in Wg and Wp time-dependent. In this subsection, we briefly discuss the

form of the Hamiltonian and its action as the proper time-development operator.
From the action (2.33) for the Wy region, the Hamiltonian is readily obtained as
3

Hp = 1/al?fF (i(WF)Q + i(athbF)Q + ZF(Z axiﬁbF)Q) : = 2p0.,0" . (2.42)

2 ZF i—2

Since zp is the time variable, the Hamiltonian Hp is clearly time-dependent. Therefore
the time-development of a state [1)(zF)) is accomplished by the unitary operator U(zF)

in the manner

[¥(zF)) = Ulzp)|4(0)) (2.43)
U(zp) =T exp (—i/o HF(z')dz') : (2.44)

where T exp(**) denotes the time-ordered exponential. Thus for general zp the time-

development is quite non-trivial.

We now wish to express Hp in terms of modes given in (2.39) and see how it simplifies
for large zrp. The necessary computation is straightforward: Substitute the expansion

(2.39) and perform the space integral over tp. Since the intermediate expressions are
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lengthy, we omit them and display the final form. It is given by

O e 2 w? 2 (2)
HF = g/ dwd k|:<z_ + ZFk ) Hiw (‘k‘ZF) —zw(‘k|z )
oo F

+ 2p0. HiZ (1K 21)D.y H_W<|k|zF>] af,aly , +he.

') 2
+ f/ dwd%K”— + sz2> HP (|klzr) HY (k| 2p)
4 — 0o ZF
T 20, HO([k)z0)0. H§i><|k|zF>]afja£w, (2.45)

where we have discarded, as usual, an infinite constant coming from the normal ordering

of the last term.

Now let us consider the limit of large time, zp — oo. In this limit, since t); =
\/m, the line of equal time will approach that of equal Minkowski time t,; and
hence we expect that Hp will take the form for the free scalar field. Using the formulas
(2.37) and (2.38) for large z, we can drastically simplify the expressions for Hp. The

leading term which does not vanish as zp — oo takes the form
Hp|, = / dw dk |k|ay af . (2.46)

This is zp-independent and indeed coincides with the form for the free scalar field in

Minkowski space.

2.6 Relation between the quantizations in Wy, Wi, W and the Minkowski
frames

We are ready to discuss the relation between the quantizations in Wg, Wy and the

Minkowski frames.

2.6.1 Minkowski and W§ frames

First, since Wg is contained in the Minkowski space, it should be possible to express
the modes in the Wg frame in terms of the modes in the Minkowski frame. Using the
Klein-Gordon inner product for Wgr defined in Appendix B.1, we obtain the expression

for the annihilation operator aff, in the Wg frame as

akw - fk:w7¢
dZR *
p 1 Ekpl _pl %w [ ww/2 M —rw/2 MT ]
= 2.47
—0 \/47TEkp1 V/sinh 7w (Ekpl + p! © e O] (247)
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where w > 0. Some details of the calculations are given in Appendix B.2.

Actually, this expression for aff, can be simplified rather drastically by introducing
the rapidity variable u defined by
1 B 1
u==In Zhpl TP : (2.48)
2 Ekpl — pl

Then we can immediately solve this relation for Ej,i and p' in terms of u and obtain
Eyp = |k|coshu, p' = |k|sinhu. (2.49)
Furthermore, the integration measures are related as
= |k| coshudu = Eyudu, (2.50)

with the identical range of integration [—oo, co| for both p! and w. Further, if we define

the annihilation operator in the rapidity variable as

atl = \/Waﬁil = @a%l , (2.51)
the commutation relation with its conjugate is
[} aMT] = |k|v/cosh u coshw/d(p* — p')o(k — k') = 6(u — u')6(k — k), (2.52)
where we used §(p' — p'*) = §(|k|sinhu — |k|sinhw') = §(u — ') /(|k| coshw).
Using these definitions, the relation (2.47) can be written as

T / d_—uei‘““ e™2aM e ”“’/2aM,Ju . (2.53)

o VAT sinh 7w
Note that, as is well-known, the annihilation operator af, is composed both of the annihi-
lation and the creation operators of the Minkowski frame. Another important fact is that
there is no negative frequency modes, al* (for w < 0), in the W frame and consequently it
is not possible to invert the relation above to express the Minkowski annihilation /creation
operators in terms of the ones in the Wy frame only. This means that the degrees of free-

dome that Wy observer sees is half as many as those seen by the Minkowski observer.

2.6.2 Minkowski and Wy frames related by a Fourier transform

The situation is different for the quantization in the Wy frame. By using the Klein-Gordon
inner product for Wg, we can obtain the relation between the annihilation operator a’),
in the Wg frame and the mode operators in the Minkowski frame. This time, what we

obtain is the relation

a’kw = (fkwa¢ )KG = / zdtpdz® (fk 8ZF¢ )
1 By — o\~ %
dp ( byt — P ) al, (2.54)
— 00 \/27TEkp1 Ekpl +p1 P
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which requires only the annihilation operator in the Minkowski frame. Furthermore, since
w is conjugate to the spacelike coodinate tg in this case, we do have negative frequency
modes for al jw < 0 and hence the number of degress of freedom of the modes that the

Wrg observer sees are the same as those for the Minkowsk: observer.

As in the case of af, the relation (2.54) above can be simplified by the use of the

rapidity variable u. It can be written as

d .
ab = z/ \/;L_We“““a%. (2.55)

Apart from a factor of 4, this is nothing but the Fourier transformation. Therefore the

inverse relation is trivial to obtain and we get

do .
art = —j \/%e_wua,fw, (2.56)

B —p'\ 7
& kpt — P ) al . (2.57)

M , / dw
At = —1
k,‘pl \/ 27TEk’p1 Ekpl + pl
The fact that a%l and al’  are in one to one correspodence with no mixing of the creation

and the annihilation operators tells us that the vacuum state of the two observers are the

same, namely”

|0>M = |0>F' (2-58)

The important difference, however, is that the entities recognized as “particles” by the

two observers are quite distinct and their wave functions have “dual” profiles.

2.6.3 Fourier transform as a unitary transformation

We now make a useful observation that the Fourier transform exhibited above can be real-
ized by a unitary transformation, in the sense to be described below. For some references,
see [35,38].

Define the fourier transform g(p) of a function g(x) as

dx .
V2T

The functional forms of g(x) and g(p) are in general different.

Prg(x) = g(p) . (2.59)

Let us look for a special class of functions for which the functional forms of their Fourier
transform are the same up to a proportionality constant. The simplest such function is

obviously the following Gaussian for which the proportionality constant is unity:

folz) = 7r’1/4e’””2/2, fg(p) = g V4eP?/2 = fo(p?). (2.60)

9The vacuum |0) ,, is called the “Unruh vacuum”.
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We know that such a function is the coordinate representation of the ground state of the

one-dimensional harmonic oscillators {a, a'}
folx) = ([0}, (2.61)
where |0) denotes the oscillator ground state defined by
al0) =0, [a,a’] =1, (0]0) =1. (2.62)

and |z) is, as usual, the eigenstate of the operator Z with the eigenvalue z, i.e. z|z) = z|z).
In what follows, we take the coordinate representations of a and a' as

%(:L’—l—ip):%(%—i—x):%(dip—l—p) , (2.63)
al = %(w —ip) = \% <—% —|—x> = (\_/;) <—dip +p> : (2.64)

Now, as is well-known, the z-representation of the excited states of the oscillator system

a =

_ @y
=20, tmla) = 2.65)
is given by
ola) = fole) = == [ 5= (—a+2)] ol = == [ 5= (o +x)]”fo<xz. |
2.66

Inserting the unity [(dp/v2m)|p)(p| and using (z|p) = €*, this can be written as the

Fourier transform

fu(@) = (xln) = /\/— z|p)(p|n) /\/— z|p)(— )&[%(—gpw)}n@lm

jp_ (i) fu(p) (2.67)

Thus the functional form of the Fourier transform fn (p) is the same as the original up to

a constant, namely f,,(p) = (—i)"fn(p).

Let us consider the number operator N = a'a, for which N'|n) = n|n). By using the
p-representation of a and a, as exhibited in (2.63) and (2.64), this is written as

Nofolp) = 5 (=405 5 = 1) £olo) =), (268

Therefore, we can express the Fourier transform (—:)" f,,(p) as
e fu(p) = (=) fulp) - (2.69)
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Note that here the terminology “Fourier transform” refers to the transform of the form

of the function, with the argument taken to be the same.

Exactly the same formulas hold for p replaced by x. Thus as far as the set of functions
{fn(p)} are concerned, the Fourier transform is realized by the operation on the LHS of
(2.69).

Up to a constant, f,(x) is nothing but the Hermite polynomial H,(z) times the Gaus-

—z2/2

sian e . More precisely,

fulz) = WHn(x)e_xg/Q, (2.70)

where H, () is defind by'®

d n
H,(z) =" /? (—% + x) e (2.71)

Now in order to apply this formalism to the oscillators, such as a)! and af , we
consider a set of oscillators depending on a continuous variable and satisfying the following

commutation relations

[a(x), aT(y)} =d(x —y). (2.72)

Since so far we have realized the Fourier transform as a differential operation on the set
of functions f,(x) only, in order to define the Fourier transform of such an oscillator
function, we should first express a(z) and a'(x) in terms of f,(z). This can be done due

to the following completeness relation
S —y) =3 Fule)ful). (273
n=0
Thus, expanding
o) =S bfule), ) = S BL). (274
m=0 n=0

the commutation relation can be reproduced as

[a(2),a'(y)] = [bms bilfm(2) fuly) = 6(z = ), (2.75)

m,n

provided we take [by,,bl] = 0,,,,. Therefore, since the Fourier transform is a linear oper-

ation, we can apply the formula (2.69) to the operators a(z) and a'(z) as well. This can

0T here are different conventions for the normalization of the Hermite polynomials. Our definition is
the most standard one.
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be implemented formally by the unitary transformation of the form
a(r) = Ula(2)U, (2.76)
s
U = exp (—E/dyaT(y)Nya(y)) . (2.77)

In fact one can easily verify

Ula(z)U = a(x) + [%T / dya’ (y)Nya(y), a(x)] +-= e_%Nza(:z:) : (2.78)

So indeed the Fourier transform for the form of the operator is reproduced.

Applied to the oscillators a}! and al , we have the relations

ia% = UpawaH

w=u"’

al = U]ngﬁUFh:w, (2.79)
where we defined
Uz = exp (% / dw’aﬂ,/\fw,afw,) , I=FM. (2.80)

In using the operators Uz, one must make sure to act the differential operator N, on any
w-dependent quantity, be it a function or an operator, to the right of it. Transformations
using Uz are useful in converting various quantities in the Minkowski and the Wg frames,

as will be demonstrated for the Poincaré generators in Appendix C.

2.6.4 Relations between Wi, Wi, Wi and Minkowski frames

Finally, let us relate the modes in Wg and Wy, frames with those in the Wy frame. Com-
bining (2.47) and (2.54) (and their hermitian conjugates) and eliminating the Minkowski

modes, we can obtain a simple algebraic relationship between af and af :

R _ l [Wp F —nw/2, Ft N
Qp, = ——F———— |€ ay, — € a_; .| > w>0. 2.81
F V2 sinh Tw F * ( )

Again since aff ) exists only for w > 0, this relation cannot be inverted.

However, recall that the “full” Rindler spacetime has the left wedge Wy, in addition

to the right wedge Wg. By similar arguments we can obtain the relationship between al

and af  as
L _ i |:7rw/2 F —7w/2 FT] >
ap, = ——F————1(""""a, _, —€ Ay | w>0. 2.82
" V2 sinh mw o § (2:82)

22



Note that the right hand side contains aj, _,, instead of aj,,, in contrast to the expression of
al given in (2.81). Therefore, combining (2.81) and (2.82), one can express the modes in

the future wedge Wp in terms of the modes in Wi and Wy, in the following combinations:

F _ i |: Tw/2 R —nw/2 LT]
ap, = ——F————= |€" " a,, — e a , 2.83
b v 2 sinh Tw b b ( )

F . i |: —rw/2, RY mw/2 L i|
a_y, _,=—F———|e a, — € ag, | . 2.84
P v 2sinh Tw F ¥ ( )

Intuitively, this is the reflection of the fact that the region Wg can be reached both from
Wr by left-moving waves and from Wy, by right-moving waves. Note that the right hand
sides contain both the creation and the annihilation operators and hence these relations
constitute the Bogoliubov transformations between the Rindler modes and the Unruh

modes.

As an application of the formulas (2.83) and (2.84), let us express the Wy vaccum
|0) -, which is the same as the Minkowski vacuum [0),,, in terms of the states in the
Wg and Wy, frames. The condition that |0), must be annihilated by aj,, and aj _,, can

be expressed in the form

a£w|0>F = e_wafﬂ())p a’ka|0>F = e_mafﬂ())p (2.85)
The solution is
0), = [0}, = A exp ( / &2k / dwewa,ﬂafj> 0), @ [0),,. (2.86)
0

where A is a normalization factor'" and |0),  are the vacua for the Wy, and Wy frames
defined by af,|0), = 0,af,|0), = 0, for all k and positive w. They are known as the

Rindler vacua.

Let us make a few remarks on the relation between the field expressed in the Minkowski

frame and in the combined Wi and Wy, frame.

e In the context of the discussions of the entanglement and the entropy thereof, instead

of the expression (2.86) for the Minkowski vacuum, a simpler formula of the form

00 =D e “™n), ® |n)p (2.87)

is often quoted in the literature. This of course is an expression for the two di-
mensional toy model with only one frequency kept. The full expression (2.86) for
four dimensions can be written in a form similar to the above after discretizing the

energy w and the momenta k and expanding the exponential.

1 The normalization constant A is divergent as it stands. To make it finite, one must discretize k& and
w and regularize the infinite sum.
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e By using the relations (2.57), (2.83) and (2.84), one can express ¢™ (tyr, ', z) in
terms of the modes of Wy, and Wgr. An important check is if ¢™ (ty, 2%, x) so
constructed depends only on the modes of Wy, (Wg) when z! < 0 (z! > 0). In
Appendix B.3, we shall sketch a proof 2, which turned out to require a careful

treatment of the proper analytic continutation.

2.7 Representation of Poincaré algebra for various observers
2.7.1 Poincaré algebra for the 1+ 1 dimensional subspace

Evidently, the Poincaré symmetry of the flat Minkowski space is a fundamental symmetry
governing, above all, the structure of correlation functions. Although the quantum gener-
ators of the Poincaré algebra are well-known in the ordinary Minkowski frame, their forms
are non-trivial in terms of the modes of the observers in the Wg, Wg and W, wedges and
have not been discussed in the literature. In this subsection, we shall construct them by
using the relations among the modes of the various observers established in the previous

subsections.

As will be described in the next section, the vicinity of the horizon of the four dimen-
sional Schwarzschild black hole of our interest has the structure of the 1 4+ 1 dimensional
flat space RY!. For that reason, in what follows we shall focus exclusively on the gen-
erators and the algebra pertaining to such subspace of the four-dimensional Minkowski
space. In terms of the coordinates of the aforementioned observers, the metric of the

subspace R is expressed as
ds® = —(dty)? + (da')? = 25dtt — dop = —25dt5 + dzp = —27dt7 + dz7 . (2.88)

As usual, the Poincaré generators can be constructed in terms of the energy-momentum
tensor, which for a scalar field takes the form
oL
T =
3(0u0)

Here p, v, p refer to general coordinates. Then, the generators of the Poincaré algebra of

Oy — O1L = —0"D, ¢ + %558%8,)(;5. (2.89)

R are the energy H and the momentum P; in the first direction

H=P = /d%/dxng, P = /d%;/dxle, (2.90)

and the boost generator along the first direction My,

MOl—/d2 /dm (297 — ') . (2.91)

12Tn the basic literature such as [33] and [15], this property appears to be put in by hand rather than
derived.
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The subscripts 0 and 1 here refer of course to the directions in the Minkowski frame
and when quantized the normal-ordering prescription for the modes is taken for granted.

Then, in terms of the Minkowski modes, these generators are given by

H = / k> / dp" Eppaplag, (2.92)
P = / dk? / dplplaﬁﬁa%l, (2.93)
o)

s 2 1 Mt M
M01 = Z/dl{? /dp Ekpl akpl a_plakpl s (294)

and can be checked to form the 1 + 1 dimensional Poincaré algebra

[H,My] =iP,, [P, Mu]=iH, [H,P]=0. (2.95)

2.7.2 Poincaré generators for Wy observer

Recall that the relation between the Minkowski modes a% , and the (Unruh) modes af
for the Wg observer have been worked out in (2.57) (which is reproduced for convenience

below)

dw Er1 —pl %J —1 .
M . kp p F / —twu , F
1 = —1 a,, = ———— [ dwe ag., , 2.96
=i [ e (2] - Lo (20)
1
where u = %ln g’“pi; is the “rapidity” variable. Substituting this into (2.94), My, can
kp
be rewritten in terms of the Wy modes as
M = /ko/dw wayak . (2.97)

Note that this is diagonal in w and hence interpretable as the “momentum” operator.
In Appendix C.2, we show explicitly that by the unitary transformation constructed in

(2.79), My, and MJ are transformed into each other.

Next, let us rewrite the Hamiltoian operator in terms of the Unruh modes. Using the

rapidity representation, with Ej, = |k|coshu, we get
H = /de/dpl Ek/p1a£§a%1
2 / du (W —w)u FT F
= [ &°k|k| | dwdw Py cosh ue ag)ag, - (2.98)

Since the integral over u is divergent and behaves as ~ el at large |u|, we should define

this integral with a suitable regularization. We adopt the definition

d . , d 2 . ’
/_u coshue®@ M = lim [ S-e=" coshuel @ (2.99)
2m e—+0 ) 27
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Then, expanding cosh u in powers, we can rewrite this integral as

du

sl—i»IEo %Q_EUQ cosh ye!'
= i, [ S R
[ S (%)
= Jim [ 5o cos (a%) e, (2.100)

The remaining gaussian integral produces a ¢ function 6 (w’'—w) and hence the Hamiltonian

can be written as
HY = /dzk]k]/dwdw’cos (g) 0w —w)allak
w

d
= /d%]k]/dw ajl cos (@> at . (2.101)

In an entirely similar manner, P; operator is expressed as

d
Pl = —z/d%yky/dw allsin (%) ar, . (2.102)

These operators are understood to be used within a matrix element such that the object

is infinitely differentiable with respec to w.

In Appendix C.1, we demonstrate that these operators M{;, H and P[" do satisfy the
1+ 1 dimensional Poincaré algebra (2.95).

2.7.3 Poincaré generators for Wi and Wy, observers

Having derived the expression of the generators in terms of W oscillators, we can now
write them in terms of the Wg and Wy, mode operators using the relations (2.83) and
(2.84), that is,

P _; |: Tw/2 R —mw/2 LT] 2.1
o 2R _ gmmaf2gIt] 103
o S T b e ke w 0
p B i [ —rw/2 Rt _rw/2 L } 2.104
Up = =7 |€ O =€ Q| - '
ke = S sinh o . * 20

The result cleanly separates into the Wr part and the Wy, part for each generator and

we get

My =ME+ME, H=Hf+H" P =PF+PF, (2.105)
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where

Mg = / 4’k / dw waiaf,, Mgy = =Mgi|,p o (2:106)
/d2 / dw |k|af! cos( )GkRW H" HR|a ol (2.107)
kw kw
PE = —z’/d2k/ dw |k|af! sin (—) ay,, Pl=-Pf , . (2.108)
0 d(,() akw*)akw

: : . R,L R,L
Because of the relative minus signs for My~ and P,"”, commutators of these generators

give precisely the same Poincaré algebra in the Wr wedge and in the Wy, wedge. Explicitly

[H®, Mgi) =P, [P, Mgi] =iH", [H" Pf]=0
(HY, ME) = iPE, [PEME] =iH*, [HY,PE =0, (2.109)

Two remarks are in order.

(i) First, M is diagonal in w, which in this case has the meaning of the energy conjugate
to the Rindler time ¢5. This clearly shows that the boost generator M{} is the Hamiltonian
for the Wg observer.

(ii) Second, the relative minus sign between Mt and MZ simply means that the “time”

flows in opposite directions in Wg and Wr..

These remarks are expressed by the following simple relations:

HEMS R o—iEMg]  omiwe R (2.110)
ZfMOlak oM _ e“Sal . (2.111)

Thus, acting on the field, the boost generator indeed induces the Rindler time evolution

in each wedge as shown below:
MR B (L, 2, ) EMGE :/ dw/koNf[Kiw(\k]zR)eikxe"“’(tR*g)aka +h.c],
0

[e.e]
M G (1, 2, w)e M = / * / PENE[K (|| 2r)e et 90L 4],
0
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3 Quantization in an eternal Schwarzschild black hole by various
observers

As was emphasized in the introduction, the main aim of this paper is to study the structure
of the Hilbert spaces of the scalar field near the horizon of the Schwarzschild black hole
quantized in the frames of different observers. This is made possible largely due to the
fact that such near-horizon geometry has the structure of the flat Minkowski space, to
be recalled shortly. This allows us to make use of the knowledge of the quantization in
various frames which has been reviewed, with some additional new information, in the

previous section.

Now in studying the quantization around the horizon of a black hole, it will be im-
portant to distinguish the two cases, namely the case of the eternal (i.e. two-sided) black
hole and the more physical one where the (one-sided) black hole is produced by a collapse

of matter (or radiation). There are essential differerences between the two.

In this section, we analyze the simpler case of the eternal Schwarzschild black hole.

3.1 Flat geometry around the event horizon of a Schwarzschild black hole

Let us first recall how the flat geometry emerges in the vicinity of the event horizon of a
Schwarzschild black hole.

We denote the metric for the four-dimensional Schwarzschild of mass M in the asymp-

totic coordinate in the usual way:

r T

oM oM\ !
ds® = — (1 — —) dt? + (1 — —) dr® 4+ r2dQ? . (3.1)

The notations are standard, except that we set the Newton constant GG to one and used
“t” to denote the Schwarzschild time. This will be later rescaled to “t” to denote the

Minkowski time.

First we consider the region Wg outside the horizon. It is convenient to introduce a

positive coordinate “z” which measures the proper radial distance from the horizon:

T ' 1
z= / \ Grr (1) dr! = / —dr’.
2M 2M /1 — M

Near the horizon at r = 2M, we write r as r = 2M + y, expand z in powers of y in the

(3.2)

form z = ay'/?(14 by +---) and then solve for  in terms of z. After a simple calculation

we obtain

=21+ 5 (1)~ 351 (57) oG, (3)



Now if keep up to the second term of this expansion, the Schwarzschild the metric becomes

ds® ~ —2*(dt)* + d2* + r*(2)dQ? (3.4)
= i 2 _ 92 s 027,42
t_4M’ dQ* = df* + sin 0°do” . (3.5)

Further, focusing on the small two dimensonal region perpendicular to the radial direction

around # = 0, we can parametrize it by the coordinates
2% = 2M6 cos ¢, 2% =2M0Osin¢. (3.6)

Then in this region the metric further simplifies and becomes identical to the Rindler

metric for Wg given in (2.5)

ds* = —22dt* + d2* + (dz*)* + (do®)?, (3.7)

which expresses (a portion of) the flat spacetime!?.

To see the region of validity of this approximation, let us find out the condition under
which we can neglect the third term of the expansion (3.3) compared to the second. A
simple calculation shows that the condition is

z
Z <43~ .
77 < V3~T, (3.8)

showing that the flat space approximation is good for z up to the order of the Schwarzschild
radius O(M) out from the horizon.

For the other regions Wy, Wg, and Wp, by appropriate analytic continutations, we
obtain similar flat space form of the metric of appropriate signature, as already displayed
in Sec. 2. In particular, we should remember that as we go from Wg to W the role of

time and space variables are interchanged.

3.2 Exact treatment for the transverse spherical space

The approximation of the vicinity of the horizon as a four-dimensional flat Minkowski
space is certainly a great advantage, as long as we are interested only in the quantities de-
termined by the local properties of the fields. However, as we have repeatedly emphasized,
in quantum treatment the concept of states created by the mode operators is a global one
and that is precisely what we are interested in. It turns out that the inadequacy of the flat

approximation is particularly troublesome for the two-dimensional transverse space, since

13The approximation of taking r to be the fixed value 2M in (3.6) is admissible, since in the expres-
sion (dz?)? + (dz*)? the radial coordinate appears in the forms 72d0?, r2d¢?, dr® and rdrdf. For these
expressions, the order O(22/M?) terms are safely neglected.
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the orthogonality relation needed to extract the modes from the fields requires integration
over the entire range of (22, 23) expressing the flat 2-space, which is unjustified for large

values of these coordinates.

The obvious cure for this part of the problem is to replace the expansion in terms of
the plane waves by the spherical harmonics Y;,,,(6, ). Thus, instead of M3 we will be
dealing with the spacetime RM x SZ, . where the subscript 2M denotes the radius of the
sphere.

Explicitly, we can write the general expansions of a massless scalar and its conjugate

in the vicinity of the horizon in the form

o(t,z', Q) / P T s Y () g + (3.9)

> dq* ig'y' —iE, 1t
toyl, Q) = —i / —————F, e T Y () apaer + hee. (3.10
7T< Y ) ;)mlz_l/ . \/m kyrq l ( ) 'm’q ( )

where = (0, ). The energy Ej,,»1 is determined in terms of p* and [ by the equation of

motion as
[(1+1)
2 12 1.2 _
Eklp = (p ) + kl , kl = W (311)
The equal time canonical commutation relation takes the form
[7(t, 2", Q), o(t,y", )] = —id(z" — y")d(cosf — cos0)6(p — ¢') . (3.12)
The orthogonality for Y}, () is
2
/ dgp/ sin 0dOY,;. (0, 0)Yim (0, @) = 0w bmm (3.13)
while the completeness reads
[e%S) l
Z Z Y (0,0)Yi (60, ¢") = d(cos 8 — cos0)d(p — ¢') . (3.14)
=0 m=—1
Using the orthogonality relation, we can extract the modes as
m R I 0 A (0) P T N (R ) 3.15
Apmp! / 47‘(‘Eklp / (2%} ¢( x ) ( )
f :/ /dQY (Q)e?' @ Bt —a o(t, 24, Q). (3.16)
a m Ilm l’ .
tmp! ,/47TE,W
From the canonical commutation relation (3.12), the modes satisfy
[almpl, a;,m,ql] = O 6 (D' — 1), rest = 0. (3.17)
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In summary, the expansion in flat space described in Sec. 2 can be converted to the present
case by the simple replacements

l

d*k
/Wem(**)akpl E— Z Z }/lm almp s (318)

=0 m=-1
1+ 1)
Ekpl =k + (p1)2 - Eklpl - klz + (pl)Qa klz = (2M)2 ) (319)
akpl I almpl . (320)

As the behavior of the scalar field on the transverse spherical surface near the horizon
is treated exactly as above, we need only be concerned with the dependence on the
remaining two dimensions (¢y7, z'). Thus from now on, we will use expressions such as
“flat approximation” or “flat space” to refer only to the two dimensional part near the

horizon within R,

3.3 Quantization in the frame of freely falling observer near the horizon

Among many interesting questions which stem from the observer dependence of the quan-
tization around a black hole, perhaps the most provocative one is whether the freely falling
observer, hereafter abbreviated as FFO, sees a different Hilbert space structure for the
quantized scalar field before and after he/she passes through the horizon: In other words,

whether the equivalence principle for the field is affected by the quantum effects or not.

In this subsection, we will perform some preparatory computations in the frame of
FFO, who crosses the horizon along various directions in the Penrose diagram, i.e. with

various velocities.

First, let us briefly describe how the geodesic of a massive classical particle (which
represents a FFO) near the horizon maps to the motion in the flat coordinate system
obtained by the non-linear transformation of the previous subsection. Although the final
answer should be a straightline in the flat coordinate system, as the geodesic should map

to a geodesic, it is instructive to see the physical meaning of this mapping.

Consider first the motion in Wg. The geodesic equation in the radial direction of a

massive particle (with mass set to unity) in the Schwarzschild spacetime in the region

Wx takes the form
dr 2M 1
il 1— 22 ) = ZR2 3.21
(7)) 2 () =g o2

’
where F is a constant of motion given

1
2
by
(1 - 7) - (3.22)
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Here ¢ is the asymptotic time and 7 is the proper time. Restricting to the region near the
horizon, we can approximate r by r ~ 2M + (2% /8M) as worked out in (3.3). Then, from
(3.22) one can express dr in terms of ¢ and zg and rescaling ¢ like t = 4Mtg as in (3.5),

we can easily rewrite the geodesic equation as

1 dZR 2 1
SR 2 o1, = 3.23
(zR dtR) TR = AME (3:23)

This differential equation for zx as a function of ¢z is easily solved to give!

= W , c>0, (3.24)
where ¢ is a positive integration constant. This shows that zg vanishes as tg — 400,
meaning that the trajectory starts and ends at the horizon. The physical picture is that,
due to the gravitational attraction of the black hole, the trajectory which starts out at the
horizon at tp = —oo with some initial velocity goes out to a certain maximum distance
(actually zr = 4M FE) away from the horizon where it stops and then gets pulled back to

the horizon at tgr = oc.

Now let us rewrite this motion (3.24) in terms of the flat Minkowski coordinates

(tar, 2') related to (zg,tg) by tyr = zrsinhtg, x' = zg coshtr as in (2.3). Then, we get

1

tar = —Bxl + X, (3.25)
2 —b? 2¢
= — X=——. .2

As expected, this describes a family of timelike straight line trajectories, with the velocity
(. To construct an orthogonal coordinate system with the trajectories above as specifying
the time direction, we must supply spacelike lines perpendicular (in the Lorentz sense) to

them. Clearly they are of the form
ty =—Bxt + T, (3.27)

where T is a parameter. Thus by changing the values of X and T we span (a part of)
the Minkowski space. In other words, (T, X) serve as new orthogonal coordinates. In fact

better coordinates are the rescaled ones (¢, xé) defined in the following way:

1
tg =T, xb =68X, VE — (3.28)

I

ds® = —dt5 + (dxp)®. (3.29)

14 Actually, there is another solution with the sign in front of ¢tz’s flipped. But since they are related
simply by changing the sign of ¢, we deal with the one displayed below without loss of generality.
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Then the relation to the canonical Minkowski variables ()7, ') are obtained from (3.25)

and (3.27) and can be written as

(5)- (1) ()

This is nothing but the Lorentz boost by the velocity 3 in the negative z! direction.

One can perform a similar analysis of the geodesic in Wy region sharing the horizon
as the boundary with Wg. The outcome of the study is that the geodesics which hit the
same point on this common boundary from inside and the outside with the same velocity
[ are actually one and the same straightline which is obtained by the Lorentz boost of
the trajectory along the time axis in the canonical Minkowski coordinate. Physically this
must be the case since the FFO must be able to go through the horizon freely due to the

classical equivalence principle.

With this preparation, let us now discuss the quantization and the mode expansion
of the free scalar field by an FFO in the vicinity of the horizon where the flat space
approximation for the dependence on (¢, ') is valid. In the case of the two-sided eternal
Schwarzschild black hole studied in this section, we have both Wi and Wy, regions and
approximately flat region near the horizons can be dipicted as the shaded region in Figure
3.1.

Two-sided Schwarzschild black hole Rindler coordinate (flat spacetime)

Figure 3.1: Approximately flat regions, shown in gray, near the horizon of the two-sided
Schwarzschild black hole and the corresponding region in the Rindler coordinate of the
flat spacetime.

In this region the general solution for a scalar field as seen by an FFO is

[e¢) dpl gl iR .
M 10Oy ip'al —iE, M
¢ (ta, 27, Q) = lgm /OO Tklpl (e 51 MY (€2) Gt + h.c.) . (3.31)

This expression is perfectly valid locally but as we try to extract the mode operators

at 1 and their conjugate and check that they obey the usual commutation relations, we
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encounter a problem of the same nature as occured for the use of the flat coordinates
(22, 2%). Namely, such an extraction requires orthogonality relations for the plane waves,
which involves integration over an infinite range for the spatial variable z'. As such a
range is not within the flat space region, it appears to be quite difficult to solve this

problem.

The observation which allows us to overcome this obstacle is that regions of infinite
range do exist around the horizon along the lightcones in the (7, z!) space. Technically,
however, the quantization using the exact lightcone variable as the time is rather singular.
Therefore, we shall make a very large (but not infinite) two-dimensional Lorentz boost
so that the z'-axis is rotated to the direction which is almost lightlike yet still slightly
spacelike. Then assuming the usual regularization that the scalar field vanishes at t); =

1 axis, which is practically contained in the flat

+00, we can integrate along this new x
region, and extract the modes. Since what we used here is a Lorentz transformation,
the exponent is invariant, while the modes are transformed in a well-known simple way;,

namely

a’l]\ip,l, JE 0= af\fnpl V Ekp (same for the conjugates), (3.32)

where prime signifies the Lorentz transformed quantities. The mode operators satisfy the
usual commutation relations, i.e. [a;mp,l,a’ j,m,q,l] = 0 G 0(p"" — ¢'') ete. This immedi-
ately tells us that the number of degrees of freedom observed by the FFO in the horizon
region is exactly the same as that of the scalar field in the usual Minkowski space and
the structure of the Hilbert space is unchanged across the horizon. In this sense, the

equivalence principle is still valid quantum mechanically around the eternal black hole.

3.4 Relation between the quantization by a freely falling observer and the
stationary observers in Wy and Wp

As the argument for Wp is the same as that for Wy we will concentrate on the case of

Wr observer.

In the approximately flat region near the horizon, the scalar field ¢ can be expanded

in modes simply like
" (tr, 2p, Q) = / dwNF <e*i“’tFHi(5)(kle)Ylm(Q)af;nw +h.c.> . (3.33)
Im ¥~

Contrary to the case of the Minkowski frame discussed above, the extraction of the modes
in Wy is straightforward. This is because the equal-time spacelike lines near the horizon

are entirely contained in the approximately flat region, as is clear from the Figure 3.1.
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Therefore orthogonality relations for the Hankel functions can be used just as in the case

of the entire Minkowski space, described in Sec. 2.5.

This means that in the flat region around the horizon, the number of modes are the
same between Wg observer and the FFO. More explicitly, the relations between the mode
operators are just as in the case of the Minkowski space (with k replaced by Im taken
for granted). This is particularly clear in the rapidity representation given in (2.55) and
(2.56). Since |k| coshu in the definition (2.51) is the energy F, the operator a}’ is Lorentz
invariant as seen from (3.32), which means o’ %, = a)!, where v/ = u + £, where £ is the
rapidity for the boost. On the other hand, the invariance of ¢ and 2z and tp — tp + ¢
under the Lorentz transformation in (2.39) dictates that we should have a'f, = e™¢al. .
With the angular-momentum indices explicitly implemented, we have, under the Lorentz

transformation,

M M F i F
a/lm,u+§ = Q5 a,lmw = 6W£almw : (334)
It is easy to see that this is indeed compatible with the Fourier transform relation (2.55)

with k replaced by Im.

3.5 Relation between the quantization by a freely falling observer and the
stationalry observers in Wi and Wy,

We now come to the more difficult situation of the quantization from the viewpoints of
the Wgr (and Wy, ) observer in the flat region. Expansion of the general solution into
modes using the K, functions is the same as in the Minkowski space and the canonical

quantization condition for the fields can be imposed. But the extraction of the mode

M My

imew> G, and verifying that they satisfy the canonical commutation relations

operators a
cannot be performed explicitly. In contrast to the case of Wy discussed in the previous
subsection, there is no spacelike line covering the interval tg € [—o0, 00] within the flat
region, and hence we cannot use the orthogonality relation to express the mode operators

in terms of the fields.

What we can check easily is that, if we assume the canonical form of the commutation
relations for the modes as in the flat space, then by using the completeness relation,
which is a local relation, the correct canonical commutation relations for the fields are

reproduced. This shows the self-consistency of the assumption.

Actually, we can argue that the relation between a” and a* should be the same as in

the full Minkowski space in the following two ways:

(i) In the flat region, using completeness, we can reexpand the field ¢, which contains a’

and @' in terms of the plane waves, i.e. in terms of the modes of ¢™. In this calculation,
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we only need to use integration over the momenta. Now, as described in Sec. 3, we can
use the orthogonality of the plane waves along the contour which by a suitable Lorentz
transformation is brought within the flat region extending to infinity near the horizon
and extract @™ modes. Along such a line, we can relate a™’s with a®’s as in the full
Minkowski space. Then Lorentz transforming back this relation, we should be able to

express a®’s in terms of a™’s in any flat region around the horizon.

(ii) Another argument goes as follows. For simplicity, consider the case where we try to
use the orthogonality integral along the spacelike straight line at ¢;; = 0 extending from
2! = —00 to 2! = co. This passes both Wy, and Wg and only a portion of the contour
is within the flat region. Outside the flat region, the eigenfunctions f,.,(zr 1) satisfying
the equation of motion starts to differ continuously from the modified Bessel functions
K, (kizr). But since the differential equation expressing the equation of motion does
not acquire any new singularities, one expects that such deformed eigenfunctions continue
to satisfy appropriate form of orthogonality relations. Then, using them, one can extract
a™%’s from the fields and compute the commutation relations among them. These rela-
tions should reduce (continuously) to the usual commutation relations in the flat region,
as they must lead, with the use of the completeness relation, to the correct canonical
commutation relations for the fields expandable in terms of the modified Bessel functions

in such region.

These arguments indicate that as far as the flat region near the horizon is concerned
the relations between the modes for the FFO and the observers in various Rindler frames
should be the same as those already exhibited in Sec. 2 for the fully flat case, with the

replacement of the linear momentum label k& by the angular momentum label Im.

4 Quantization in a Vaidya model of a physical black hole by
various observers

Black holes of more physical interest are the ones formed by a collapse of matter as actually
occurs in nature. They are “one-sided” and have rather different spacetime structures

compared with the two-sided eternal black holes discussed in the previous section.

In this section, we investigate how the observers in various frames quantize a massless
scalar field in the simplest model of Schwarzschild black hole of such a type, namely the
so-called Vaidya spacetime [28-30]'°, created by the collapse of a thin spherical shell of

matter at the speed of light, often referred to as a shock wave.

5For a review, see for example [31].
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4.1 Vaidya model of a physical black hole and the effect of the shock wave
on the field as a boundary condition

4.1.1 Vaidya model of a physical black hole

Let us begin by recalling the basics of such a Vaidya spacetime. After a black hole
is formed by the spherical collapse, by the Birkohoff’s theorem, the metric outside the
horizon is always that of the Schwarzschild black hole. On the other hand, for the simplest
situation above, the metric inside is isomorphic to a part of the flat Minkowski space.
Thus the Penrose diagram of the entire spacetime is obtained by gluing these two types of

geometries along the light-like line representing the falling shell, as shown in Figure 4.1.

i

Figure 4.1: Penrose diagram of the simplest Vaidya spacetime. It consists of two parts.
One is the flat region inside the matter shell (v < vg) shown in white. The other is the
Schwarzschild spacetime outside the matter shell (v > vg) shown in gray.

The Vaidya metric is a solution of the Einstein equation

1
R, — §9WR =81, , (4.1)

with the energy momentum tensor

M

T’U’U =
47r2

d(v — vp). (4.2)

The delta function at v = vy represents a shock wave induced by the matter collapsing

along the lightlike direction u. The metric of the Vaidya spacetime is described by

2
ds? = — (1 — @) dv? + 2drdv + r*dQ? (4.3)
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where

{ m(v) =0 for v < vy (4.4)

m(v) =M for v > vy

The metric above consists of two parts, one of which corresponds to the region inside
the shock wave v < vy and the other describes the outside, i.e. the region v > vy. The

solution inside the shock wave is actually a flat spacetime described by
ds® = —dv® + 2drdv + r?dQ* = —dt* 4 dr® + r*dQ? (4.5)

where v =t + r is a lightcone coordinate. This is expected from the spherical symmetry
of the matter shell. The solution for the region v > vy is the Schwarzschild black hole in
the Eddington-Finkelstein coordinate

2M
ds* = — (1 - —) dv? + 2drdv + r*dQ? (4.6)
r
as dictated by the Birkohoff’s theorem. This metric can be transformed into the Schwarzschild
form
2M dr?
ds® = — (1 - 7) dt* + o T r2dQ? (4.7)

T

by the coordinate transformation v = £ 4 r*. Here £ is the Schwarzschild time and r* is

the tortoise coordinate which is defined by

d
T*Z/F—Z_M:T+2Mln<ﬁ_l>' (4.8)

Notice that the two time coordinates, ¢ inside the shell and ¢ outside, are different. They

are related as

t+r=t+1r* at v = vy,

~ Uo—t
t=t—2M1 -1 . 4.9
& n<2M ) (4.9)

In the subsequent sections, we mainly focus on the special limit of the Vaidya spacetime
for which vy is vanishingly small for the technical reason that the analysis is much easier

than the general case of finite vy and can be explicitly performed.

4.1.2 Effect of the shock wave on the scalar field as a regularized boundary
condition

In order to be able to study the quantization of a scalar field in an explicit manner, in what

follows we shall (i) make a reasonable assumption about the effect of the matter shock
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wave on the field and (ii) implement it in a well-defined way by making a regularization

which replaces the lightlike trajectory by a slightly timelike one.

As for (i), since we focus on the Schwarzschild region outside of the locus of the shock
wave, the effect of the shock wave on the scalar field ¢(z) should be taken into account
by an imposition of an effective boundary condition on ¢(x) along the trajectory of the
shock wave, which must be consistent with the bulk equation of motion. Such boundary
conditions are either Dirichlet or Neumann. This depends on the nature of the interaction
between the shock wave and the scalar field and for definiteness in this work we adopt

the Dirichlet condition and demand that ¢(z) vanishes'® along the boundary.

Next, let us elaborate on the point (ii). If we take the boundary to be strictly lightlike,
i.e. along ty; = —a!, there is a complication for the spherical mode with zero angular
momentum, for which &, = 0. Thus this component of the scalar field becomes massless
in two-dimensions and the future directed massless field satisfying the Dirichlet condition
along the light-like line above can only be right-moving and hence chiral. As is well-
known, quantization of a chiral scalar in two-dimensions is notoriously troublesome and
we would like to avoid it. A physically natural regularization is to endow an infinitesimal
mass to the falling matter so that the trajectory is slightly timelike. Then the boundary
condition can be treated in a non-singular manner by the standard canonical quantization

procedure.

Another advantage for making such a regularization is the following. As it will become
evident, the effect of the boundary condition on the quantization can be easily taken into
account in the frame of FFO moving in the direction of the shock wave. When this
direction is slightly timelike, we can change it by a Lorentz transformation into the case
for a general FFO moving with any velocity. On the other hand, even if we could manage
to treat the case of the strictly lightlike shock wave and the FFO moving along such a
direction, we cannot relate such an observer by a Lorentz boost to a general FFO moving

with a finite velocity.

4.2 Quantization of the scalar field with a boundary condition by a freely
falling observer

In this section, we explicitly perform the quantization of a scalar field with the boundary
condition imposed along a slightly timelike line from the point of view of FFO’s traversing

the horizon with various velocities.

16For a massless scalar, by using the invariance of the action under a constant shift, we can do so
without loss of generality.
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4.2.1 Three useful coordinate frames and the imposition of a boundary con-
dition

In what follows, we will concentrate on the flat two dimensional portion in R%!' and
introduce three flat coordinates related by Lorentz transformations. One is the canonical
coordinates (¢, z'), (where we use t for ), for simplicity in this subsection) for which ¢
and ! axes respectively run vertically and horizontally. The second is the coordinates
(t,#'), where the ¢ axis runs almost lightlike but slightly timelike direction. To go from

(t,x') to (t,2'), we make a large Lorentz transformation of the form

£\ t (1
(1)a(h) w(l) o

ey

A 1 1
f=1—¢, = ~ , (4.11)
1— BQ V2¢e
where ¢(> 0) is an infinitesimal parameter. Thus, the explicit transformations are
fe (1 — e +8), &' = (1=t +2). (4.12)
V2e ’ V2e
We shall take the boundary line to be the one expressed by (see Figure 4.2)
M m0 e f— oty (4.13)
T :

and demand that ¢(z' = 0) = 0.

slightly timelike boundary line
L
t=— T

Figure 4.2: Slightly timelike boundary line (shown in red).

We should remark that this corresponds to the case where the shell of matter collapses
along the line for which the so-called tortoise light-cone coordinate v* = ¢ + r*, where
r* = [dr/(1—(2M/r)), takes a very large negative constant value compared to the scale

of the Schwarzschild radius 2M. An example is the case where t — —oo. The reason
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for this rather special choice is strictly for technical convenienece: Such a trajectory is
contained entirely within the region where the flat space approximation is valid and hence
the computations can be done explicitly and reliably. We can deal with a general FFO
later by making a Loretz transformation, as explained below. As far as the qualitative
conclusions are concerned, a constant shift in v* should not affect the quantum property
of the scalar field drastically, because the Dirichlet condition ¢ = 0 along the matter

trajectory, as we shall see, will act just like a reflecting wall for the scalar field.

The third set of coordinates to be introduced is (¢, '), where t is the axis along
which a FFO travels with a general velocity B , which can be positive or negative. He/she

quantizes the scalar field with ¢ as the time. This frame is defined to be related to the

() e

X
t=At+pzY), =7+ 6t). (4.15)

canonical frame by a Lorentz transformation

PN (i (13
t=~t+p3"), & =~(F +p1), (4.17)
where A, in terms of the Lorentz transformations already introduced in (4.10) and (4.14),

is the combination A = A.A~!. For infinitesimal €, the relations between (3,~) and (B, 3)

can be approximated as

ey

1+ 11-8)

~1— ~€, ~
5 5 Y NoT:

(4.18)

4.2.2 Quantization of the scalar field satisfying the boundary condition by a
FFO in the (¢,7!) frame

We begin with the quantization in the (f,4!) frame. Since the boundary condition is
imposed along the line ! = 0, obviously the quantization is easiest in such a frame. More
importantly, (regularizing the scalar field to vanish at infinity, as usual) the trajectory of
the FFO along the ¢ axis is contained in the region where the flat space approximation is

valid. Therefore, the following procedure is justified.

The quantized scalar field which vanishes for ' = 0 is obtained by simply imposing
such a condition on the one without the boundary condition, namely the expression

given in (3.9) with unhatted variables replaced by hatted ones. Explicitly, setting the
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coefficient of cosp'z!, which does not vanish for 2! = 0, in the expansion exp(ip'2!) =

cos prat + isin p'a!l, we obtain the relation between the modes

5= — G - (4.19)

alm —p

This clearly shows that the mode with negative p' is directly related to the mode with
positive p! and hence the number of independent modes is halved by the imposition of
the boundary condition. Intuitively the wave as seen in the hatted frame is reflected
perpenticularly by the boundary line. Therefore, the scalar field as quantized by a FFO

moving in the direction of the ¢ axis and its conjugate momentum are of the form

. oy
t x Z Z / \/47TEklﬁ1 <6

=0 m=

TPt Y, () (gt — Gimpt) + hic. ) sin p'a! |

(4.20)
ﬁ(fv ‘%17 Q) = atﬂs(gv ‘%17 Q)

Ek L X A o
= —zz Z / PV Fhipt ( By p1t }/lm<Q)(aJlmﬁ1 — ) — h.c.) sin pla!

=0 m=—1
(4.21)

where the notation 7 reminds us that the conjugate momentum in this frame is defined
using the derivative with respect to . By using the commutation relation [dlmi,l , d;,m,ql
O O 0 (P' — ¢*) and the formula [ dp' sin p'a! sinp'y' = (7/2)(6(2' — ') —6(&' +4")),

one can verify that the commutator of the conjugate fields takes the canonical form!7

[ﬁ—(fa jl) Q)? gb(tAa glu Q,)] = _Zé(i’l - gl)é(COS 0 — cos 0/)5(90 - 90/> : (422>

4.2.3 Comparison of Hilbert space of FFO and the genuine Minkowski Hilbert
space

Let us define for convenience the following combinations of the mode operators:

~dt N o
almﬁl = Apmp! + A, —pt (423)

e ot
e (4.24)

Cearly, the operators with plus and minus superscripts commute with each other. Then,
from the discussion above, the Hilbert space Hppo of the FFO in the (f, 21) frame is
constructed upon the vacuum |0)_, defined by

10y =0, (4.25)

lmp

17Since #! and §* are both positive, we can discard —&(2* + §1).
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by applying the operators al o repeatedly. In contrast, the genuine Minkowski Hilbert
space Hy is built upon the vacuum |0),,, which is defined to be annihilated by G,z for
all values of [,m and p', by the (repeated) applications of &;rmﬁl’s . This means that Hy,

can be written as the tensor product
Hvy=H QHT, (4.26)

where H~ stands for Hrro and the other half H™ is constructed in the entirely similar
manner as for H~, using the a* type operators. From the point of view of FFO, H* is
unphysical but it is needed for the construction of Hy;. Note that this decomposition is

completely different from the left-right decomposition Hy = Hw, ® Hyy,.
This structure will be important in the discussion of the Unruh-like effect near the
horizon of a physical Schwarzschild black hole, to be discussed in Sec. 5.

4.2.4 Quantization by a FFO in a general frame (¢,7!) with the boundary
condition

We now consider the quantization by a FFO in a general frame (£, ') with the same
boundary condition ' = 0 along the shock wave. Since this boundary condition is simplest
to describe in the (#,4') frame, the most efficient way to quantize in the (£, Z!) frame with
such a boundary condition is to express the new conjugate momentum 7 = J;¢ in terms

of the quantities in the (¢, 2') frame by applying the relation

o oto o990

—= =t = =7= 4.27
ot 0tot " ot 0t ot (4.27)

0 ¢(f, #1,Q), which we already have. Because O; contains the spatial derivative d;1 as
well, this leads to an important non-trivial change in the conjugate momentum, however.
The result is'®

F(E7.Q) = —iN ( —inEp e Pty () aums +h.c.> sin pl 3!
¢ 33 [ (s @ )i
+vBp* (eiiEklﬁlfylm(Q)almﬂ + h.C.) Cosﬁlil} ) (4.28)

where we have denoted the normalization constant in this frame as ./\N/ .

Now let us compute the equal  canonical commutation relation between 7 and ¢. In

this process we need to take into account the following two points:

18To get the explicit form of 7 (¢, %', ), we must rewrite all the hatted quantities in terms of the tilded
ones obtained by the Lorentz transformation (4.16). This produces a rather involved expression. The
procedure adopted here can avoid this complication.
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(i) Since t = v(f — #2'), equal f is equivalent to equal ¢ — B!, In other words, if we

denote the hatted time that appears in 7 given by (4.28) by ¢ and the one in ¢ by #/,

1

then the equal £ can be expressed as ¢ — 32! = t' — 3¢", where &' and ¢' are the spatial

coodinates that appear in 7 and ¢ respectively. Therefore we have the important relation
t—t =—p(@* -9 at equal £. (4.29)

(ii) The second point to keep in mind is that from the Lorentz transformation we easily
find

&t — gt =~(E@' - ¢')  at equal £, (4.30)

so that the difference in the spatial coodinates in the hatted frame can be rewritten as

the rescaled difference in the tilded frame.

With these facts in mind, the equal  commutator [, ¢] is given by

[7(,2,9), 6, 5", )]
2 ! P e
W ;ZZ / dp / “ \/M

s 1t+zE AltA’ ~ N cAlal e Alal
|:(—ZE]€”31’Y) ( By + h.c.) |:almﬁ1, a;,m,(f] sinp z° sing gy

~ —iE, 1 i+iE, i ~ ~ ~1 A S N
+~8p" <e Fip Furd h.c.) [almﬁl,a;,m,q1] cosp'a! sin qul}

= O+ s, (4.31)

where

dAl iBE, 1 (319
:—W\/ZZ Z / Ly (QYE () <e BB @ y1>+h.c.) sinp'2! sinp'g!

=0 m=—1

(4.32)

=—wﬁN22 Z / Vi (@)Y () (%0 ) cos e sin '

47T kypt

(4.33)

Note that for the the exponents involving Eklﬁl we used the relation (4.29). The sum over

m can be done by the well-known addition theorem for Y}, namely

me'WQq P -n'), (4.34)

m=—1

where Py(x) is the Legendre polynomial and n = (sin 6 cos p, sin @ sin ¢, cos ) denotes the

unit vector corresponding to the pair of angles Q(6, ¢). Furthermore, the integral over

44



pt, after rewriting the product of trigonometric functions into a sum of them, can also be
performed using the formulas 3.961 of [45] (with the aid of the relation 0,Ky(z) = —K1(z))

X ETTRT bk
e cosardr = ———=K;(kva? + b?), 4.35
/ va g e (43)

> ) k
/ \/ﬁe_b ki ta sin axdx = \/CLZ:WKl(kV a? + b2) s (436)
0

where K(z) is the Macdonald function (i.e. one of the modified Bessel functions) of order
1 and the both formulas are valid for Reb > 0,Rek > 0. In particular, the convergence
condition b > 0 is important since in our case, b = +i3(2! — ') and are pure imaginary.
Thus, we must regularize them by introducing an infinitesimal positive parameter n > 0

and replace b by

b = —ip(a' — 9t +in), (4.37)
by = +iB@t — 9t —in). (4.38)

Since the rest of the calculations are somewhat tedious but more or less straightfor-
ward, we shall describe some intermediate steps in the Appendix D and only list here the

important structures that one will encounter as one proceeds.

e The terms which contain cos(z! + ¢') and sin(2! + ') produced from the product
of sines and cosines turn out to cancel completely due to the fact that 2 + ¢! is
positive and generically finite and the regulator n after performing the integrals can

be ignored compared to them.

e On the other hand, for the terms containing the difference 2! — ¢!, there are two
cases. When the difference is finite and hence 7 in b1 can be ignored, all the terms

cancel just as in the case above and hence the commutator vanishes.

In contrast, when the difference is of order n or smaller, then the contribution re-
mains and becomes proportional to the structure K (ak;n), with a finite constant «.
Now if we first make a cut-off on the angular momentum I so that k; = /1(1 + 1)/2M
can be large but finite, then ak;n — 0 as we send n — 0. Then, from the behavior
of Ki(z) for small z, i.e. K1(z) ~ 1/z, we see that the contribution diverges like
1/n. Thus, we see that as &' — ' — 0, the commutator diverges as we remove the

regulator.
Together, this is nothing but the behavior of the d-function §(2' — §') which is
proportional to §(z! — 7') due to the relation (4.30).

e In the other limit where [ becomes so large that k;n is large, then, K;(z) damps
like ~ e7#/y/z and such a region does not contribute. This indicates that we can

effectively replace k; by a large constant independent of [.
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e Then, we are left with the sum over [, which produces the angular J-functions in

the manner

Z: o i) = ?:0: m§:_ Yim () Y7, (€Y)
= 0(cosh — cos0)d(p — ') = QL(S(ﬁ ' —1). (4.39)
m

Combining, we find that the commutator is proportional to the desired product of
d-functions and the quantization for an arbitrary FFO with the boundary condition along

#! = 0 in the vicinity of the horizon is achieved.

Several remarks are in order:

e Although the correct d-function structure for the canonical commutation relation
is confirmed, unfortunately we cannot compute the exact normalization constant
because the relevant integrals and the infinite sum cannot be performed exactly.
This is regrettable since such a constant must become singular as we let the almost
lightlike trajectory approach exactly lightlike, and it would be interesting to see how

this comes about.

e Nevertheless, the fact that the quantization for a general FFO with the boundary
condition ¢(z' = 0) = 0 can be carried out as we have shown shows that the number
of modes that the FFO sees as he/she passes the horizon does not change and is

naturally half as many as for the case of the two-sided black hole.

4.3 Quantization of the scalar field by the observer in the Wy frame

We now consider the quantization in the Wy frame with the same boundary condition
along the slightly time-like line, namely (1 — €)t); + ' = 0. Expressed in terms of the
Wg variables (see (2.8)), this becomes

zp(e'" —ecoshtp) =0. (4.40)

Since zr need not vanish, we should set e'¥ = ecoshtr. This can be easily solved for tx

as

(4.41)

tpﬁ

N =
N

which is very large and negative.

Now we impose the vanishing condition for ¢ along this line. An advantageous feature

of the Wy region is that such a line is, practically, contained entirely in the flat region.
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Therefore we can make use of the expression in the flat spacetime and the boundary

condition on the field ¢ (tp, 2, Q) can be written as

o0 w2
0= /_ ) dury ﬂ/ﬂ %; Yin(Q) (HE (kizp)e 7 af,,, + hc.) | (4.42)
where for ¢z the value given in (4.41) should be substituted. Evidently, the factor e=*r
is oscillating extremely rapidly and this is expected to suppress the integral over w. In
order to estimate this effect, we need to know the behavior of Hi(i)(kle) for large w.
Unfortunately, this has not been understood for the Bessel functions of imaginary order.
What is known in the literature [44] is the behavior of Hi(i) (wy) for large w with fixed
y. Just for a guess, if we take y to be very small so that wy can be regarded as “finite”

compare to w itself in such a formula, it gives the estimate

1
|H? (2)| & —=e/2. (4.43)
W \/E

This means that the e™/2 factor in (4.42) is canceled but still the integral is divergent
like ~ [ dw/y/w ~ y/w for larte w.

In any case, regardless of whether the above estimate is fully reliable or not, let us
consider the states for which |w| can be large but finite. In other words, we discard states
with very high momenta by placing a cut-off in the w-integral. Then the integral, with
the highly oscillating factor e~™ removed, is absolutely convergent. Then, with the
factor e~ reinstated, we can invoke the Riemann-Lebegues lemma to conclude that as

¢ — 0 the w-integral vanishes and the boundary condition (4.42) is automatically fulfilled

F Fi

Imw and almw .

without requiring any relation between a

Thus, the conclusion is that, except for highly excited states, the boundary condition
does not place any relations among the modes and hence the number of independent
modes observed in the Wy frame is not halved but is the same as in the case for the
two-sided black hole. As for the highly excited states, we cannot make definite assertion
without the detailed knowledge of the asymptotic behavior of the function Hg)(z) as

w — o0 with z fixed.

4.4 Quantization of the scalar field by the oberserver in the Wy frame

Finally, let us consider the quantization by the observer in the Wy frame.

If we take the same special slightly timelike boundary line which goes through the
origin of the coordinate frame (t,7, '), this line is outside of the region Wg. Therefore,
there is no boundary condition to impose and the modes which exist for the two-sided

case are all present and independent.
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Although it is a valid argument, it certainly depends crucially on the special choice of
the boundary line. Therefore we should also consider the case where the boundary line
is slightly shifted to the positive ! direction so that it passes inside Wy very close to its

lightlike boundary. Explicitly, the boundary line is now taken to be along

1
1—¢

t=—

'+, (4.44)
where ¢ is a very small shift. In this case, the imposition of the boundary condition is
meaningful and the argument to follow is of more general validity.

slightly timelike boundary line
shifted in the z! direction

Figure 4.3: A slightly timelike boundary line (shown in red), which is shifted infinitesi-
mally in the positive ' direction compared to Figure 4.2.

As discussed in Sec. 3.5, the expansion of ¢*(zg, t, ) near the horizon is given by'?

¢R(ZR, tR, Q) = / dwNw Z Yzm(Q) (Kiw(klzR)e_i“tRaffnw + hC) s (445)
0 lym
V/sinh
N, — YT (4.46)
m

Since (4.44) can be rewritten as a1 = zge'® = et + 0, zg is small along the boundary line
for finite tg. Now to make use of the form of the K, (z) for small z, we make a cut-off
for the angular momentum [ and consider the states for which k; is bounded. Then, we

can use the behavior of N, K;,(y) for small y, which is given by

inh
N Ki,(y) ~ \/SH; ™ 2\/w sirirh — coS <w ln% —arg F(z’w))

2 1
= NN cos <w ln% — arg F(z’w)) . (4.47)
Note that this oscillates wildly as y becomes small. y here is k;zg and as we send the
regulator € to zero, it becomes of order ¢, which is very small. Then, just as in the case

of the quantization in Wpg, by imposing a cut-off for the w-integral, we can apply the

9Due to the use of the spherical harmonics instead of the plane wave in the transverse directions, the
normalization factor N,, is slightly different from the one in (2.31).
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Riemann-Lebesgue lemma to conclude that the Fourier type integral tends to vanish and

the boundary condition ¢f = 0 is automatically satisfied along the matter trajectory.

Therefore, the conclusion should be the same as in the case of the Wg observer: If
we exclude the the highly excited states, the boundary condition does not impose any
relations to the mode operators and the degrees of freedom remain the same as in the
two-sided case. For the energetic states, more exact computation is needed to make

definite statements.

5 Implications on the quantum equivalence principle, the fire-
wall phenomenon and the Unruh effect

Having analyzed and compared the quantization of a scalar field by different natural

observers in a concrete manner, we now consider the implications of our results.

5.1 Quantum equivalence principle and the firewall phenomenon

One of the clear results is that the degrees of freedom of the modes that the observer sees
are in general different, both for the case of the two-sided eternal black hole and the more
physical one-sided one. Explicitly, the FFO and the Wg observers see the same number
of modes, while the observer in the Wg frame finds half as many as the above two. This
property is common to the two-sided and the one-sided cases. On the other hand, due
to the imposition of the boundary condition, which expresses the effect of the collapsing
matter, the degrees of freedom of the modes for the one-sided case are halved for each

type of observer compared with the two-sided case?.

The fact that the size of the quantum Hilbert space is halved for Wg observer is
natural since such an observer can only see a part of the spacetime due to the presence

of the horizon for him/her.

Whether the equivalence principle holds quantum mechanically is quite a different
question. It asks whether the FFO upon crossing the “horizon”, which does not exist for
him /her classically, sees extra or less degrees of freedom of the quantum excitation modes
of a field. Our explicit computation shows that for both the eternal and the physical
black holes the quantum equivalence principle holds naturally. This is essentially due to
the fact that no new boundary conditions for the scalar field appear as seen by a FFO

who goes through the “horizon”.

29To be precise, as described in Sec.4. 3 and 4. 4, for the Wr and Wy observers, we cannot make a
completely definite statement on the highly excited states about the effect of the boundary condition for
technical reason.
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Needless to say, this conclusion is valid under the assumption that the metric of the
interior of the Schwarzschild black hole is essentially given by the Vaidya type metric. If
the interior of the black hole is such that it cannot be specified just by the information of
the metric, the conclusion may differ. However, as long as the classical Schwarzschild black
holes produced by the collapse of matter is concerned, our assumption is conservative and

should be reasonable.

Thus, for a large enough black hole which itself can be treated classically, our explicit
computations for the quantum effects of the massless scalar field as seen by the three
types of observers should be reliable and in particular the freely falling observer does not

encounter the so-called firewall phenomenon.

5.2 Unruh-like effect near the horizon of a physical black hole

The Unruh effect [15] is the simplest example of the non-trivial quantum phenomena due
to the difference of the vacua for the relatively accelerated observers. In the original
case treated by Unruh, a Rindler observer uniformly accelerated in the flat Minkowski
space in the positive ! direction with accleration a (confined to the wedge Wg), sees in
the Minkowski vacuum |0),; a swarm of particles of energy w with the number density

distribution given by

R Rt ,R
<Nw> _ M<0|aw aw‘0>M x 1 . (51)
Vol. — n(0[0)pVol. — e?m/a —1

Evidently, this coincides with the thermal distribution of bosons at temperature a/27. In
fact this computation is truly thermal in nature since |0),, is an entangled state consisting
of the states of Wy, as well as of Wg, and one must take a trace over all the states of
Wi, to obtain the distribution above.

Although in this example the background is taken to be the flat spacetime to begin
with, one might expect a similar phenomenon to be seen by the stationary observer just
outside the horizon of a physical Schwarzschild black hole, since the spacetime there is

well-approximated by the right Rindler wedge of a flat Minkowski space.

However, the analysis cannot be the same for the following reasons. First, there is
no Wi, region for the one-sided black hole and hence whatever distribution we obtain is
not truly thermal in nature. It simply shows that the concept of “a particle” depends
crucially on the vacuum state, even if it is a pure state. The second reason is the fact
that, although the region of our interest is locally a flat Minkowski space, we must take
into account the effect of the boundary condition for the scalar field and its vacuum seen
the FFO, who corresponds to the Minkowski observer in the Unruh’s set up. As discussed

in Sec.4.2.3, however, the vacuum |(A)>7 for the FFO is not the genuine Minkowski vacuum.
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A related difference is that, as discussed in Sec.4.4, in our setup the scalar field in the
Wrg frame is not affected by the boundary condition and hence the number of modes seen
in that frame is the same as that of FFO. This is in contrast to the case of the flat space,
where the number of modes for the Wy observer is half that of the Minkowski observer.

Thus, the question of interest is what the distribution of the Wg particles is in the
R

vacuum of the FFO. To answer this question, we must express the mode operators a;,,,

and their conjugates of the Wy observer in terms of the field ¢(Z, #', Q) and its modes of
a FFO?!,

Unfortunately, in general this computation cannot be performed accurately due to the
lack of our knowledge of the fields outside the approximately flat region. The required

calculation is of the form

OodZR %

alt =i / dyo / sin 0dOY;", () / . w,l(tR,zR)ﬁtigzﬁFFo(f, @, Q), (5.2)
0

where f,(tr, 2r)Yim(Q2) is the solution of the equation of motion, corresponding to the
mode aff,, in the right Rindler wedge in the background of the Schwarzschild black hole.
What we only know is that this function takes the form f,,;(tr, 2r) ~ N, K (|ki|zr)e "
in the approximately flat region where 2z < M. Therefore, integration over zg, which

extends outside such a region, cannot be performed explicitly.

There are, however, a class of modes for which the computation can be performed suf-
ficiently accurately by the use of the function for the flat space region. These are the ones
with large anglular momentum [ such that |k|M = /I(1 +1)/2 > 1. To see this, let us ex-
pand the scalar field into angular momentum eigenstates as ¢(¢,7, Q) = >, @i (7)Y ($2)
and write down the equation of motion for ¢y, (¢, ) in the Schwarzschild metric. It is given

by

1
0=——-570 bun + .

2M
1 e

2(r— M)

Now we look at the region r > M where the flat space approximation is no longer valid.

In such a region, writing ¢, (t,7) = ei“télm(r), the equation for qglm(r) simplifies to

I(1+1)

r2

0= (w2 + %ar + 02 — ) D (1) . (5.4)

The solution is well-known and is given, with a certain normalization, by

Pum (1) = \/gJH;(wr), (5.5)

21The reason for focusing on the FFO in the (£,2') frame is simply that the effect of the bound-
ary condition is the simplest in such a frame. For the other frames of FFO, one can make a Lorentz
transformation for the FFO, with the boundary condition kept intact.
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where J;, 1 (wr) is the Bessel function. Its asymptotic form for large I can be obtained
from the formula 10.19.1 of [46] as

Jugs(wr) ~ mew%ﬂn = (5.6)
This shows that for [ 2 wr, this expression is exponentially small in [ and contributes
negligibly to the integral over zr. Thus, for such modes with high angular momenta, we
can effectively need only the function in the flat region and the computation is possible.
Such a calculation is at the same time self-consistent because K;,(|k;|zr) damps expo-
nentially for large |k;|zr and for large enough [ this quantity is already large for zg ~ M.
Therefore, contribution from zr 2, M region is safely neglected.

To perform the computation of (5.2), first consider the projection of the angular part
in (5.2) with the use of the orthogonality of the spherical harmonics. Since ¢F¥©
tains both Y, and Y}, the relevant formulas are [ dQY ()Y (Q) = 0pdmm and
QY ()Y (Q) = (=1)™0w0m,—nr. (The second formula follows from the first by

using the relation Y;) = (-1)™Y, _,,. )

Ccon-

Therefore, after the removal of the angular part, what we need to compute is

e} d o0 ~1 R
z T d —
R _ R iwtRp p 1B, s1ta—
_2/0 N K, (|ki|2)e™ 0y, e Ay

a Y
l
" 2R —oo /AT E 51

+ (—1)meiEkmlilemﬁ1> sinp'a’. (5.7)

)

To perform the differentiation with respect to ¢z, we must use the relation between ¢ and

tr given by the Lorentz transformations

f:’?(tM*FﬂAﬂ?l) Z‘yzR(sinhtR—i—BcoshtR), 5.8
it = 4(z' + Bty) = Yzr(coshtp + Bsinh tr), (5.9)
5 1
f=1—¢e=tanh¢, = cosh¢, (5.10)

where we introduced the rapidity variable &. Then, the relevant part of (5.7) can be

computed as
. <> ; n
—iE, 1t . Al s
ezthatR [6 ehy pt sm(plxl)}
__ _iwtr _—iazR v - b bl b
= e"“'fe [—i(a'zp +w)sinbzg + b'zR cos bzg]

_ —%(CL,Z + w)eiwt (efi(afb)z . efi(a+b)z) + lblzeiwt (efi(afb)z + e*i(aer)z) : (511>

2
where
a = Eyp4(sinhtp + Beoshtp), b= p'(coshtp + Fsinhtg), (5.12)
a' = EppA(coshtg + Bsinhtg), b =p'4(sinhtg + Gcoshtg). (5.13)
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These expressions can be further simplified by introducing the parametrization

Epp = |ki|coshd,  p' = |k|sinha. (5.14)

Then, we can write
a =+ b= |k sinh py , a +V = |k coshpy , (5.15)
pr =& +tp . (5.16)

Now we consider the integral over zg in (5.7). The basic integrals we need are A, (c, k)
and As(c, k) given in (B.24) and (B.25) in Appendix B.2.1. Specifically, the ones we need
are with ¢ = £(a £ b) and k = |k;|. When these parameters are substituted the integrals

simplify drastically and we obtain

Al(a £ b, |k]) = C, (™/Pert 4 7™ 2eior) (5.17)

wC, , .
Ap(a £ b, |ky|) = — 250 (gre2g=ives _ gmmef2giops 1

2(a | l|) |kl|COShp:|: (6 € € € ) ) (5 8)

A1<_(a + b)) ’kl|> —_ Cw ( Tw/2 'pri + efmu/Qefiwpi) ’ (519)
wC‘-" Tw iw —Tw —iw

A2( (a + b) |kl|) M (e /26 Pt _ o /26 P:l:) , (520)

where
s
= —F. 21
Co 2w sinh Tw (5:21)

Further, it is convenient to use the rapidity-based oscillators

VEpiy, 5, (5.22)

i
similarly to (2.51).

Now, using these formulas, it is straightforward to compute the RHS of the formula

(5.7) and get the form of aff  (and its conjugate) in terms of the FFO mode operators

Uy, a0 dl;j[ ,- The answers take rather simple forms:
R et - /2 /25—t
ap = d sinw < ™Ea, —1)™e ™ a, ) 5.23
Imw — \/m P P Ilmp ( ) l—mp ) ( )
all = iL h dpsinwp <(—1)me_“‘”/2d_ — ™21 ) (5.24)
Ilmw % \/m - l,—mp Ilmp
One can check that they satisfy the correct commutation relation [af, aﬁ rot] = O Oy O (wW—

W').
Finally, with the expressions (5.24), we can compute the expectation value of the

number operator for the Wy “particles” in the FFO vacuum [0)_. The result is

<0|a’lmwa’lmw|0>— 1 2 - 202
(o) = e 1n dpsin®wp. (5.25)

—00
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Several remarks are in order:

(i) We recognize that the first factor is of the same form as the familiar “thermal” distribu-
tion. We emphasize however that in this case it is not genuinely thermal since W, modes
do not exist and hence no tracing over them is involved. The fact that the form looks
thermal stems from the fact that the expression of aff  in terms of a, , and its conjugate
in (5.23) is essentially the same as (2.53), valid for the entire Minkowski space including
the region Wr..

(ii) The last integral represents the cohererent sum over infinite number of rapidities which
contribute to the Wi mode. Although it appears to depend on w, this factor is divergent
and depending on how we cut it off, the w-dependence will be different. Moreover, as it
becomes clear from the comparison with the usual Unruh effect below, this factor comes
from the nature of the boundary condition along the shock wave, i.e. it depends on the
interaction between the falling matter and the scalar field. Therefore, this integral is
ambiguous and the form of its w dependence should not be taken seriously. It indicates,
however, that an extra w-dependence, other than the usual thermal factor, can be possi-
ble.

(iii) As the last remark, note that the dependence on &, the Lorentz boost parameter,
disappeared in the distribution. This is quite natural since the vacuum |0)_ should be

Lorentz invariant.

In any case, we have found that, even in the case of the one-sided black hole, the

Unruh-like effect does exist.

It is instructive to compare this with the case of the usual Unruh effect. From (2.53),

it is easy to find

M<0|akR<Iagw|O>M — /OO du /OO dule—iw(u—u’)e—ww M<O| [CL%, ai\fj] |O>M

v(0]0) o dmsinhw J_ v(0]0)
1 Vg2 o
= d 5.26
27 (e?™ — 1) (2m)? /_Oo “ (526)

where (‘2/%)22 = 6%(k — k) is the volume of the two-dimensional space and the divergent

integral ffooo du counts all the modes with different rapidities making up a Wy particle
wave. Note that in this flat space Unruh effect, the w dependence e=*(“=%) cancels out
due to the appearance of §(u — ') coming from the commutator [af,, ar,] and we have

exactly the thermal form, as is well-known.
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6 Summary and discussions

6.1 Brief summary

In this work, we studied the issue of the observer-dependence for the quantization of
fields in a curved spacetime, which is one of the crucial problems that one must deal
with whenever one discusses quantum gravity. Understanding of this issue is particularly
important in cases where an event horizon exists for some of the observers. Explicitly, we
have focused on the quantization of a scalar field in the most basic such configuration,
namely the spacetime in the vicinity of the horizon of the four dimensional Schwarzschild
black hole, including the interior as well as the exterior. Detailed and comprehensive
analyses are performed for the three typical observers and clarified how the modes they
observe are related. We studied both the two-sided eternal case and the more physical
one-sided case produced by the falling shell, or a shock wave. For the latter, the effect
of the collapsing matter upon the scalar field outside of the shell is represented by an

effective boundary condition along the shock wave.

One important conclusion obtained from such explicit calculations is that the free-
falling ovserver sees no change in the Hilbert space structure of the quantized field as
he/she crosses the horizon. In other words, the equivalence principle holds quantum

mechanically as well, at least in the above sense.

Another result worth emphasizing is that in the one-sided case despite the fact that
there are no counterpart of the left-Rindler modes in the vacuum of the freely-falling
observer and hence no tracing procedure over them is relevant, there still exists a Unruh-
like effect. Namely, in such a vacuum the number density of the W modes contains the
universal factor of “thermal” distribution in the frequency w (apart from a divergent piece

which depends on the interaction between the scalar field and the falling matter.)

Besides these results, comprehensive and explicit knowledge of the properties and the
relations of the Hilbert spaces for the different observers have been obtained and we
believe this will be of use in better understanding of quantum properties of gravitational

physics.

6.2 Discussions

Evidently, the problem of observer dependence that we studied in the semi-classical regime
in this work is of universal importance in any attempt to understand quantum gravity.

In particular, it would be extremely interesting to see how this problem appears and
should be treated in the construction of the “bulk” from the “boundary” in the AdS/CFT
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correspondence, which is anticipated to give important hints for formulating quantum
gravity and understanding quantum black hole. Although there have been some attempts
to address this question, it is not well-understood how the change of frame (i.e. the choice
of “time”) for the quantization, both in the bulk and the boundary, is expressed and
controled in the AdS/CFT context. The best place to look into would be the AdS;/CFT,
setting, where at least we have some knowledge of how the structure of CFTy changes

7

under a re-definition of “time ” by a conformal change of variable [47,48]. A further
advantage to explore the observer dependence in AdS;/CFT, is that AdSs black holes
(i.e. , BTZ black holes) are locally equivalent to the pure AdS; spacetime and we can
solve the equations of motion in the black hole spacetime in the same manner as for the

pure AdSs.

In this work, we have concentrated on the relations between the modes seen by dif-
ferent observers and have not touched upon the correlation functions between the fields,
especially the ones in different frames. Some correlation functions in the Rindler wedges of
the Minkowski space have been studied [49], but the most interesting quenstion of whether
one can extract physical information from behind the horizon by quantum means is yet
to be answered. We hope to study these and related questions and give a report in the

near future.
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A Orthogonality and completeness relations for the modified
Bessel functions of imaginary order

For various basic computations performed in the main text using the expansions in terms
of the eigenmodes, the orthogonality and the completeness of the modified Bessel functions
of imaginary order are essential. In this appendix, we give some useful comments on such

relations previously obtained in the literature and provide additional information.

A.1 Orthogonality

The orthogonality relations are needed in extracting each mode from the expansion of the

scalar field appropriate for various coordinate frames. Such relation for Kj;,(x) is proven
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in [39-41] and takes the form

*“dx 1
— K () K () = —— (0(w — ') + d(w + '), Al
| SR ) = 5 (0= + 8+ ) (A1)
where p(w) here and below is given by
2w sinh Tw

The corresponding relations for the Hankel functions Hi(i) for 7 = 1,2 have not been
explicitly given in the literature but can be derived without difficulty, for example, by the
method described in [41]. The result is

& d.’E i i 4€m7rw ’ ’
/0 ?Hi(w)(;p)]—]i(w),(x) = W (w—w)+dw+w) m=4+1, m=-1. (A3)

A.2 Completeness

The completeness relation for the function Kj;,(z) can be written as

/0 " dop() Koo (2) Ki(y) = 2(z — ). (A4)

Since K_;, = K, we can, if we wish, extend the range of integration to [—oo < w < 0]
and multiply the RHS by a factor of 2.

This relation is equivalent to the inverse of the so-called Kontorovich-Lebedev (KL)
transform [42] below. KL transform f(w,y) of a function g(x,y) with respect to 2 (where
y is a parameter) is defined by

flw,y) = M(W)/

0

TV K@otry). (A.5)

Then, g(x,y) is obtained in terms of f(w,y) by the formula

o(e,y) = / " A (0) fw.y). (A.6)

If we take g(z,y) = xd(z — y), then the formula (A.5) gives f(w,y) = pu(w)K(y).
Substituting this into (A.6) then gives

si(e—9) = [ den@)Kinla) Kuulo), (A7)
0
which is precisely the completeness relation (A.4).

In fact, without resorting to the KL-formula, there is a rather elementary derivation

of (A.4), starting from the following integral formula [43]:

/ dw cosh aw K, (2) Ky, (y) = gKo(\/x2 +y% + 2xycosa), (A.8)
0
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valid for z,y > 0, |[Rea| + |arg x| < 7. (The second condition is stringent. We cannot set

a = 7 from the beginning.) First by differntiating this with respect to a, we get

B wrr' sina
2¢/72 + 42 + 2xy cosa

/ dww sinh aw K;,, () K;,, (y) Ki(\/x2 + 42 + 2zycosa),
0

(A.9)
where we used the formula 0,K,(z) = —K;(z). Now we set a = m —¢, where € is a positive
infinitesimal quantity. Then the RHS becomes

TIYeE
Ky ). (A-10)

2¢/(z — y)? + xye?
For x — y # 0, this vanishes as € — 0, i.e. as @ — 7. On the other hand, for small x — y,

using the small argument expansion K;(z) ~ é, (A.10) becomes

€Ty
(z—y)? + ey

s
2

(A.11)

By making a rescaling * — x/,/ry and y — y/,/Ty in the well-known representation of
the delta function, namely, §(z — y) = (¢/7)/((x — y)? + €?)), we readily obtain

1 €Ty
m(r—y)?+eay’

0((z = y)/Vay) = Vayd(r —y) = (A.12)

Comparing with (A.11) we obtain the completeness relation (A.4).

The corresponding completeness relations for the Hankel functions are given by

/ " 4T 5O () EO(y) = (e - y) (A.13)

4emmw "W

where the sign 7; is as defined in (A.3).

B Extraction of the modes in various wedges and their relations

In this appendix, we provide some details of the computations concerning the extraction

of the modes and their relations described in Sec. 2 of the main text.

B.1 Klein-Gordon inner products and extraction of the modes

We will be interested in a d—dimensional curved space with the metric of the form

ds® = —N(2)*dt* + gapdar*da’ (B.1)
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where N (z) is the lapse function. Let fa, fp be two independent solutions of the Klein-

Gordon equation for this metric. Define the following current

T4 (@) = Fi(@) V¥ f, (B.2)

which is covariantly conserved V,.J¢ I, fB( x) = 0. Let X be the constant ¢ surface. The

conservation property above means that the Klein-Gordon inner product defined by

U faa =i [ 0 ¥0n, 0, g, (B.3)

where n# is the future directed unit vector normal to X, is independen of ¢. This formula

is useful in extracting the modes from the field expressed in various coordinates.

B.1.1 The right Rindler wedge
Hereafter, we will sed d = 4. In the right Rindler wedge, the metric is given by
3
ds® = —22dt* + d2* + Z(dxi)Q. (B.4)
=2

In this case, we can identify N = 2,g.. = 1, g;; = d;5, /9 = 1, and hence the Klein-Gordon
inner product in the right Rindler wedge is defined as

[ dz L
(ndfia=i [ Z [ Ea(s3 0 0m). (B3
0
The solutions of the Klein-Gordon equation in this coordinate frame are

flﬁu(ty Z, $) = Nszw(’k|Z)el(kx_Wt) 7

inh 7w
NEYZ — &.

Let us compute the Klein-Gordon inner product of such functions explicitly. We get

o0 d . 12 - ’
U i = [ 2 [ aNENIK b2 Ko (]2 o+ o)l H e
0 z
, d
= (2n (o + )k — KINENSe 0 [T R b]2) K (K2
0
— 5k — K)(w — ), (B.7)

(B.6)

where, getting to the last line, we used the orthogonality of the modified Bessel function
(A.1) for w,w’ > 0.

Recall that the scalar field in the right Rindler wedge can be expanded as
¢"(tg, 2g, ) = /00 dw/ko [f&(tr, 2R, 2)ag, + hc] . (B.8)
0
The modes af and akRLZ are extracted using the Klein-Gordon inner product as
ai, = (fit, 0")ke » alf(j —(fis, o™i - (B.9)
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B.1.2 The future Rindler wedge

In the future Rindler wedge, the metric is given by
3
ds® = —dz3 + 25dt3 + 2:((1!7:")2 : (B.10)
i=2

In this case, zp is the time variable, ¢x is the space variable and N =1, .1, = 2%, gij =

dij,+/9 = zr. The Klein-Gordon inner product in the future Rindler wedge is defined as

F . > 2 *<—>
(ncdubic =i [ dte [ ozr(£30 ). (B.11)
Then the solutions of the Klein-Gordon equation which damps at large |k|zp are

1 (tp, 2, x) = NEHD ([k|2p)eitketr)
( F)2_ e

L) = W (B.12)

The Klein-Gordon inner product of these functions is given by

( kw’fk’w’ KG

=i [ [ @eNENE (O 200, HE (blzr) — HE (k20 B 26))

Wwezk kKx —z(w Wt

= i(2m)36(k — k)6 (w — ')
2pNENG (HU W 2)0- HE (Kl2p) = BE (K|20)02, HD(K)2) ) ™
=0(k —K)o(w—u'). (B.13)

To get to the last line, we used the identity

4
HY (1k|2)0.HD (|k|z) — HO (|k|2)0. HY (|k|2) = —i— . (B.14)

Tz

By similar manipulations, it is easy to get the following inner products

(fkw >fk’ ’)KG - _(S(k - k/)a(w _w/)a ( lgi)afk’ ’) KG — =0. (B15)

Recall that the scalar field in the future Rindler wedge can be expanded as
o (tp, zp,x) = /OO dw/d2k [f,gi)(tp, zp,x)af, +he.| . (B.16)
Taking the inner product with f,gi), we obtain
= ([ 0ker ad = (K" 0 ke (B.17)
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B.2 Mode operators of Wr and Wr in terms of those of the Minkowski space-
time

B.2.1  Useful integrals involving K;,(z)

We shall first derive several useful integrals involving K, (z), which play important roles

below in B.2.2 and in 5.2 in the main text.

Formula (I): The first formula is

*d o . .
/ _ZKiw(z)efzzsmhtfez — m (ezwtefmu/Q + efzwtemu/2) : (B18)
0

2 2w sinh Tw

where € is an infinitesimal positive parameter, needed to make the integral convergent.
To prove this formula, we start with the formula 6.795-1 of [45], which can be expressed

as
T _zcoshr - m
5¢€ = dw cos(wT) K, (2), |[Im7| < 50 2> 0. (B.19)
0

By extending the region of w to [—oc, o] for convenienece®?, the integral on the RHS can
be rewritten as

T[> .
RHS = 5/ T K (z)dw'. (B.20)

o0

We now act [ (dz/z)Ki,(z) on this expression, with w non-negative. Then using the

orthogonality relation (A.1) for K;,(z), we get

1 [ o [ dz 1 [ V|
- ! _dw'T K, K. _ = fiw't I /
5 /oo duw'e /0 . iw(2) K (2) 2/Ooalwe o) (0(w' —w)+ (W +w))
1 ) - 1
= e“T 4+ e ") = —— coswrT, B.21
) )= ) (S

where p(w) is as given in (A.2). Performing the same integral for the LHS as well, (B.19)

becomes
/OO %Kw(z)e_zc"ShT _ 2 COSWT . (B.22)
0
We now make a substitution
T=t+((7/2) —e)i, (B.23)

where € is an infinitesimal positive quantity. This is legitimate since Im 7 satisfies the
condition for the formula (B.19) to be valid. Then by a simple calculation we get cosh 7 =

cosh (t + 30— ie) = isinht 4 ¢, where we reexpressed a positive infinitesimal quantity

22This is purely as a mathematical equality. The physical energy w is of course non-negative.
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ecosht as e. Substituting (B.23) into the RHS of (B.22) and expanding cos wT, we obtain
the formula (i).

Formula (IT) The second formula is

Ai(e, k) E/ %Kw(k Je teme
0

_ _{ mol2 (_Z-wm (% (c+ m)))

2w sinh Tw

+e ™ exp <z’w In (% (c n m))) } , (B.24)

where c is real and k is real positive. To prove this formula, we first rescale z — kz in
formula (I) and then set ¢ = ksinht¢. Solving e’ in terms of ¢ and substituting into the

RHS of formula (I), we obtain the integral above.

Formula (ITI)  Finally, a formula similar to (II) we need is

As (e, k:)E/ dz K, (kz)e e
0

T 1
— Tw/2 o /2 2
2 sinh Tw 02+k2{6 exp( zwln( <C+ ¢ +k>))

1
k
— e ™/ 2 exp (iw In (% (c +Ve2+ k:2 )) } (B.25)

This formula is obtained simply from A;(c, k) as As(c, k) = i(0A1(c, k) /Oc).

R M
B.2.2 ), in terms of a; ,

The free scalar field in the right Rindler wedge can be expanded as in (B.8). On the other
hand, in this region we should be able to express ¢ in terms of ¢™ and hence a%, in
terms of the Minkowski modes a% .. In the Minkowski spacetime the scalar fields can be

written in terms of the coordinate of Wy as

ko/ zk’m-{—i Ipl 4E t
P & pl Mak/ L+ h. c.

oM (zp,tr, v /
\/27“ /2Ek,

ht E ht
x+iplzg coshtp—i  p 1zrsinhtg M1+hC

d2k:’
zk’
/ \V4 271'\ / 2Ek’ /

(B.26)

where in the second line we substituted t3; = zgsinhtg, 2! = 2z coshtr. Thus using the

Klein-Gordon inner product we can extract the annihilation operators in the right Rindler
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coordinate from the expression of the scalar field in the Minkowski spacetime as

akw - fk:w’

/ / PR O™

271./
ST L [ g
47TEk/

<€ i(kx— th)bT)

R

2rdp' NF — [ dz 1 , ,
w _iwtr R 7 —ip zrcoshtp—iE, 1zrsinhtr M
Oy g Khene e
0

A/ 47TEk/ 1 P

5 dZR iplzp coshtp+iFE zgpsinhtgp Mt
4 [ e e i)
0

—k
R P

K/ htp—iE h
o et s )

Let us now use a convenient parametrization Ey,1 = |k| cosh p, pb = —|k|sinh p, such that

Ef 1 = (p')* + k? is realized. Then the expression above can be written as

2mdp? /CO dzp . . . _

R . R iwt —i|k|zg sinh(tgp+p) M i|k|zg sinh(tg+p) , MT

Ay = ———F————=N_ "'’ —K;, (|k|z [e a1+ e a ,
k vV 27 z\/ 2Ek’ tr 0 ZR (| | R) kp! —kp!

where we used the property K;,(z) = K_;,(2).

Now by using the formula (I) given in (B.18 ), we can perform the integral over zg

and get
CLR — 27po1 R m eithb? (efiw(tRer)emu/Z + eiw(tR#»p)efﬂw/Q) CLM1
o V21 /2B, 2wsinh Tw r kp
+ (e—iw(tR+p)e—7rw/2 + eiw(tR+p)67rw/2> aMkTp :|
D 1 Ekpl_pl);w[ /2, M /2, Mt ]
e™ e ™4 . B.27
V21 \/2E, Vsinh 7w (Ekpl + pt —kp! ( )

This is the formula quoted in (2.47). Taking the hermitian conjugation we obtain the

creation operator

1 (Ekpl — pl) 5 [eﬁw/z MYy —mof2gM (B.28)
V2m\/2E}, Vsinhrw \ Egp +p! Ea '

F o M
B.2.3  ay, in terms of a;,

As in Wy the free scalar field in Wg frame should be describable in terms of the
Minkowski modes. It is expanded as in (2.39) in terms of the Hankel functions H (|k’\z )

which is recalled in (B.16) for convenience. If we write such a field in the Minkowski
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spacetime in terms of the coordinates of Wy , using the relation ty; = zpcoshtp, z!

zpsinhtp, it reads

¢

S .
k Tp+ip zsmhtR—zEk,wzcoshtFaé\{[pl + h.c.. (BQQ)

d*k'
M
ZFatFa / /
V 27r\/ 2Ek,
Using the Klein-Gordon inner product, we can extract aff, from the Minkowski field

oM (zp, tp, x) as
& R
o, = (5, ") = i / zthd:c2< PG )
>k .
=7 dt dx NFefl(k.’Epfth)
Z/— e /\/ /2B / w

% (Hiw (|k’ZF)?F[ezk’zF+zp zpsmhtp—zEk,mecoshtFali\CIpl —i—h.C.])

Tw/2

o0 dp? e
_ V27\/2E 2/2

. . . M
+e iplzp sinhtp+iFE & 1ZFCObhtFeltha/ kTp ]) (B30)

( (2)*(|]{Z| ) zp[ ip ZFSinhtpfiEkpleCOShtFeitha]kwl

We now use the following integral representations [46]

() (“”)WHS (Va5 = ¢

a—f
vri)/2

v/2 00
(11) (OZ + ﬁ) HIEQ)(\/m) _ _6 . / e—z‘azcosh7——1',6’sinhﬂ'—l/TdT7 IIH(O( + 6) < 0.
W NN

(B.31)

—vmi/2

/ eiacoshﬂ-—l—iﬁsinh’r—m—dT7 Im(a + 6) >0
-0

e

Note that the formula (i) can be obtained by analytic continuation a — e, 3 — ™3

from the formula (ii).

For the part of (B.30) containing aj,, namely
(2)*(|k| a / dt ezp zpsinhtp— zEk, 1z2p coshtp ztha]k\{ - (B32)
we can use the formula (ii). On the other hand, for the part containing al]‘ﬂ, i.e.

Hi(Q)* |k‘| 8 / dt —iplzsinhtp+iE,, 1zcoshtpezwtpa£if1‘l : (B33)

it is convenient to use the formula (i). In this way, we can compute (B.30) as

mdp! emw/? Eyn —p

— (B0 T (12 ke (222
’ V21\/2E 0 2v/2 By +p Y

iw

— O (e (B =) F g ]
M E—kp1 +p ket

dpl Ekpl - p 2 &Ml (B 34)
/27TE7kp1 Ekpl +p1 kpl - .

64



In the last step, we used the identity (B.14).

Fy

Together with the similar result for a, , we can summarize the results as

dpl (Ekpl —p1>_2 aM
1,
V27 E \ B + p' kp

dpt (B —p'\ ?
all = —i/ P ( k! p1> art. (B.35)
’ \/ 27TEkp1 Ekpl +p P
This is the relation quoted in (2.54) in the main text and its hermitian conjugate. As
shown in (2.55), in terms of the rapidity variable u defined in (2.48), these relations can

be interpreted as the Fourier transforms and then it is practically trivial to check the

desired commutation relations

[l ait] = 0(k — K)o(w — '), rest =0. (B.36)

B.3  Sketch of the proof that ¢*(t);,2',7) depends only on the modes of
Wi (Wg ) for 2! <0 (2! > 0)

In this appendix, we give a sketch of the proof that the scalar field in the Minkowski space
&M (tyr, v, ), when expressed in terms of the oscillators of the Rindler wedge W and

those of Wy, , receive only the contribution of the former(resp. the latter) in the region
Wg (resp. Wy, ).

As in (2.20) in the main text, ¢™ (t)s, 2!, z) is expanded in the plane wave basis as

zkx+ip1x17iE t M
oM (tyr, 2t 1) M ays + hie. (B.37)

| %

Now substitute the expression of ayl, = apl,/\/Ejy in terms of af, given in (2.56) and
further use the expressions of aj,, and aj_,, in terms of aj}, and aj, given in (2.83) and

(2.84). This gives ¢ in terms of the modes of Wy and Wy, . After a simple rearrangement

we obtain
&’k o dw
M 1 ikx
ty,x ,x) = — ¢
ot ) /27TV 4 0o V27V 2sinh mw
. <_I(w) |: mu/2ak e—mu/Q LT] —|—I( ) |:6_7rw/2(l§j emu/2 L i|> + h.c.
(B.38)

where

](w) = /OO du 6i|k|acl sinh u—ilk[t s cosh u—iwu (B39>

We must study the conditions under which this integral exists. First, for u — oo, the

dominant part of the exponent is z‘ e u(x! — tpr). Thus for the integral to converge in
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this region, we need the condition Im (z' + ¢5;) < 0. On the other hand for u — —o0,
the dominant part of the exponent is —i@(ml + tp) and for the convergence we need

Im (2 + ¢37) < 0. These two conditions can be met simultaneously if we make the shift
Then, we can make use of the formula 10.9.16 of [46] and get

tM — .’L‘l — ié)iw/2

PR — H(2)(((tM . ie)2 . (x1)2)1/2) ‘ (B.41)

w

I(w) = —ime™/? (

To express ¢™ (tyr, 21, x) in (B.38) it is clear that in addition to I(w) we need the integrals
I(—w), I(w)* and I(—w)*. To obtain them from I(w), we need to make use of the well-
known relations among the Hankel functions (see for example 10.46 and 10.11.9 of [46])

HY (2)=e™HY(2),  HE(2)=eHD(2), (B.42)
HY(2) = HE, () = e HD (%), (B.43)
HE (2) = HO, () = e ™ H{) (). (B.44)
We then get

tv — xl — e w/2

I{w) = —ime™!? (tM — ) HO (b — i€)? — (2)2)Y),  (B.45)
—iw/2
ta — —

I(—w) = —imem? (w - e Z) HO ((tar — i€ — (@))V2),  (BAG)

1) F )2 1\211/2
ta + xt +ie H;,) (((tar + ie) = (21)%)2), (B.47)

ty —xt +ie
tau +xl +ie

[(w e w2 <tM—£E +Z€) —iw/2

w2

[(~w)* = ime ™/ < ) HO(((tyy +i€)® — (2H))?). (B.48)
Now rather than displaying the complete expression for ¢ (tys, 2%, x), it should suf-

fice to demonstrate that the coefficient of aff, vanishes in Wy, region, as the rest of the

calculations are entirely similar.

Let us note that alf appears in two places, namely al  part of aﬁ/[ . and a”[ part of

ak T, The total contribution for the coefficient of al from these sources is proportional
to _]( ) ﬂw/2+](_ )* 7rw/2.

Consider now the region Wy, , where ty; + 2! < 0, t3; — 2' > 0 and of course x; < 0.
Thus, apart from the +ie, we have 3, — (z')* = —27 < 0 and we must choose the square
root branch for the quantity (—z%)/2. ( Since z;, = zg, we denote it by z for simplicity
hereafater. ) As a concrete choice, let us take the branch cut to be along [—o00, 0] in the

z plane. This means that (—22 4 id)"/2 = +iz for small positive 4.
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First consider the region of Wy, where t;; > 0. Then, we have § = et); and in the
expressions of —I(w) and I(—w)*, we have, respectively, Hg)(—iz) and Hl(i)(zz) In this

case, from the formula 10.11.5 of [46], we have
HP (e7™iz) = —e ™ H (iz). (B.49)

Using this relation, it is easy to see that —I(w) + I(—w)* = 0 and the coefficient of al

vanishes in Wy, ; as desired.

Next, consider the region in Wy, where ¢); < 0. Then, we have instead Hi(i) (iz) for
—I(w) and Hi(i)(—iz) for I(—w)*. Then, again from 10.11.5 of [46], we have

HD(emiz) = —e™ H P (iz) (B.50)

and —I(w) and I(—w)* cancel with each other in this case as well.

Combining, we have shown that af, does not contribute in the expansion in the region
Wy, .
C Poincaré algebra for the various observers

C.1 Proof of the Poincaré algebra in Wy frame

In this appendix, we shall demonstrate that the generators M{;, HY', and P[" constructed
in (2.97), (2.101) and (2.102) form the Poincaré algebra.

First, consider the commutator [HY, MJ]. This can be computed as

[HY M) = — / PPE || / A2k / dw'dwlal), cos (%) af , waltal ]

d d
= —/ko || /dwwaﬂ <cos (@) (way,,)) — wcos (%) a?w)
. [ d
- /d2k ]k]/dwaﬂ sin <%> ar,

=ipPl, (C.1)

where in the second line we used the simple identity

(%)" (way) = n (%y_l G+ <%>naw. (C2)

In an entirely similar manner, with cos and sin interchanged, [P, M{]] = iH" can be

shown.

67



Finally, the fact that [HT, Pl vanishes can be checked as

d d
_ d— d— Ft Fi
[HY, PF| = —z/d 2K K| /d 2k |K| /dw'dw[akw, cos (W) ar ., a;.) sin (@) ak |
. . , d d dy . d
_Z/dd 2L \k\z/dwwa,ﬂ <sm <%> cOos (%) at — cos (%) sin (%) ar,

=0. (C.3)
C.2 Poincaré generators for Wy by the unitary transformation

Recall that the unitary transformation Up defined by

i 1 oe] d2
UF:e 2A7 A:i/_oodwaFT(—w —i—wz—l)afw, (C4)
converts the mode operator aj, into agy, in the manner
Uray, UL = iy/Egpapl, . (C.5)
As an application of this operation, let us show that it transforms M{] into My, namely
o0 o0 8
Ur ( / d?k / dwwafjaﬁw> Ul =i / 4’k / dp* By aﬁﬁa—aggl. (C.6)
o —x P1
First, expand the unitary transformation as the sum of multiple commutators in the usual
way:
. N2
v 1 i
Up Mg Uf = Mgy — —[A, Mg] + (—5) (A, [A, Mg )1+ - - - (C.7)

The single commutator can be computed as
[A, M) = / d*k / dwwa,ﬂafw
2, d’ F Ft F
d*k dw dw a), —n ) G Lwayag,]
2
= ——/d2 / dw [akw <—> way,  — waij dd Qafw}
—/d2k:/ dwakw@afw. (C.8)

Based on this result, the double commutator is calculated as

(A, [A, ME]] = /d2 / dwakwd ar |
— _—/d2 / dw/ dw' (w [akw,afw,,agdd ar ]
——3 [k [ afw afiij f, — afl L — 1af.]

:/ko:/ dwwafja,fw. (C.9)

68



Since this is of the original form of MJ, we see that the rest of the multiple commutators
produce [ d%k [*°_dway!-Lal and [ d?k [ dwway, al, alternately. The coefficients can

kw dw w

be easily found in such a way that the series sum up to
T o0
UFM[ﬁU} = cos—/ko/ dwwa,fiafw +isin — /d2 / dw ade ar

—2/d2 / dwade ar . (C.10)

Making the replacements w — p' and af,, — \/Eppiap, we obtain the desired result

: 0
1

D Quantization in different Lorentz frames with an almost light-
like boundary condition

Here we supply some details of the quantization in different Lorentz frames with a slightly

timelike boundary condition discussed in Sec. 4.2.4.

What we shall describe is the computations of the two terms (4.32) and (4.33) which
constitute the commutator [7(%,2',Q), ¢(f, ", Q)] given in (4.31). For the convenience

of the reader let us display them again:

dAl i
= —N? Z Z / - Vi (Q)Y), () ( BBt (#1-91) h.C-) sinp'a! sinp'y’,

=0 m=—1
(D.1)
dAl i gt
- _275/\/22 Z / D V() l;(Q’)( OBy (' )—h.c.> cosp'a! sinp'y’.
1=0 m=—1 47 B
(D.2)

First the sum over m can be performed by the addition theorem for Y}, as already de-
scribed in (4.34). Next, we perform the integral over p'. Although the energy dependence
in the exponent does not disappear at equal #, in contrast to the case for the frame (¢, 1),
such an integral can be performed, after expressing the product of trigonometric functions
into a sum like sinp*z!sinp'g' = 3 (cosp* (&' — ') — cosp' (&' + ¢')). The relevant for-
mulas were given in (4.35) and (4.36), with appropriate regularizations (4.37) and (4.38)

for convergence.
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Then, the result for C7 + Cy takes the form

ﬂfy/\f2 204+1 oA
— P . /
Ci+0Cy=—i 3 E 1 l(n n)

=0
x{ - %Kl(m/a% +b%) + %Kl(kﬁm/a% +b2)
-I—%Kl(km/aivaQ) - %Kl(/ﬁ“/ai—i—bi)
+ ﬁ[ﬁ(kn [a2 +b2) — ﬁf(l(m/ai +b2)
- \/ﬁlﬁ(kl\/a% F02)+ \/a;—_TbiKl(k”/aQ_ + b‘i)} , (D.3)

where

Y+t by = +ip(2' — 9" Fin). (D.4)

Il
=

Q.+

Consider first the four terms in the third and the fourth lines, which contain a? in the
square roots of the denominator and in the argument of K functions. Since 2! and 4! are
positive, a, is positive and generically finite. Therefore, we can ignore 7 for these terms.
Then, b3 = b? and hence the two terms in the third line cancel and similarly the the two
terms in the fourth line cancel. Therefore these four terms actually do not contribute and

we can simplify C7 + C5 to

N &2+,
Cl—I—CQ— ] S Z An Pl(n n)

1=0
o a_+um 5 5 a_ —1in 5 5
X{ g s 00 e ko 40
a_ a_
— ——Ki(kiy/a® +02) + ———K(ki\/a?® + b2 }, D.5
@2_+b2_ 1( 1 ) a2—+b3— 1( l +> ( )

To analyze this expression we must distinguish two regions.

(i) If a? is finite, then we can again ignore n and these four terms cancel in exactly the
same fashion.

(ii) Thus non-vanishing result can possibly be obtained if and only if |a_| < n. In such
a case, since a_ and by are of the order 7, as long as k; is not infinite, we can use the

approximation Ki(z) ~ 1/z and hence each term diverges like 1/7.

Combining, this shows that the sum of terms containing K; function behaves precisely
like ~ §(2!' — ¢*). The rest of the argument is already given in the main text and the
commutator [7(t,2',Q), ¢(f,7", Q)] in the frame of an arbitrary FFO correctly behaves
like the product of appropriate d-functions.
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Thus, we can write
[7(t,2",Q),0(, 5", )] = C1 4+ Co = —iFy6(2" — §")d(cos 0 — cos0')6(¢ — ¢'), (D.6)

where we used the relation §(z' — §') = 70(2! — ¢') valid at equal . F is a constant,
which we want to set to unity by adjusting the normalization constant N. To find such
N, we need to carry out the integral i [ d@td cos0dp(Cy + Cs), perform the sum over [
and set the result to 1. This unfortunately is quite difficult and we have not been able to
find the form of A/ explicitly.
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