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Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach
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The depletion of the nuclear density at its center, called the nuclear bubble, is studied within the Skyrme
Hartree-Fock mean field consistently incorporating the superfluid pairing. The latter is obtained within the finite-
temperature Bardeen-Cooper-Schrieffer theory and within the approach using the exact pairing. The numerical
calculations are carried out for 22O and 34Si nuclei, whose bubble structures, caused by a very low occupancy
of the 2s1/2 level, were previously predicted at T = 0. Among 24 Skyrme interactions under consideration, the
MSk3 is the only one which reproduces the experimentally measured occupancy of the 2s1/2 proton level as well
as the binding energy, and consequently produces the most pronounced bubble structure in 34Si. As compared
to the approaches employing the same BSk14 interaction, our approach with exact pairing predicts a pairing
effect which is stronger in 22O and weaker in 34Si. The increase in temperature depletes the bubble structure
and completely washes it out when the temperature reaches a critical value, at which the factor measuring the
depletion of the nucleon density vanishes.
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I. INTRODUCTION

The depletion of the nucleon density at the center of an
atomic nucleus was first proposed by Wilson in 1946, who
employed a classical oscillation of the spherical shell (bubble)
to describe the low-lying excited states in spherical nuclei
[1]. Siemens and Bethe also discussed the existence of stable
spherical shells [2]. The first microscopic model of the bubble
structure was presented by Campi and Sprung in 1973 [3],
initiating many works by other authors ever since [4–11]. In
recent years, the study of the nuclear bubble structure was
extended to superheavy and hyperheavy nuclei [12–17].

The depletion of the nuclear density at its center is charac-
terized by the absence of the s-orbital wave function. A special
character of the s-radial wave is a pronounced maximum,
which is located at the nuclear center (r = 0). Therefore, the
s-radial wave is expected to significantly contribute to the
nuclear density distribution at r = 0 and the absence of the s
wave is the main reason causing the bubble structure in the
nuclear density at its center. An example is seen in the electron
scattering on 206Pb and 205Tl, where the ground state and
excited states of 205Tl are described as three-hole states, which
consist of one proton hole (3s1/2)−1

Z and two neutron holes
(2d3/2)−2

N , with respect to the closed shell 208Pb [18,19]. These
experiments confirmed the theoretical predictions [20] that
the single-particle strength of the proton-hole configuration
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3s1/2 in 205Tl amounts to 70%–90%, whereas the remaining
strength of 30%–10% is mainly exhausted in the two-neutron
hole configuration 2d3/2 [18]. This indicates that the candidates
to the bubble structure must have unoccupied s levels, such as
22O and 34Si (unoccupied 2s level) [9,11], 46Ar (unoccupied
2s level) [8,21], and 206Hg (unoccupied 3s level) [21]. In these
bubble candidates, the shell closure often takes place when
the states of low angular momenta are located at or near the
top of the Fermi energy. In the case of a bubble structure, the
energies of these states increase in such a way that they become
unoccupied and are located at appreciably higher energies as
compared to the adjacent lower states, creating new magic
numbers [5]. Several “bubble magic numbers” were proposed
by Wong [4,5] and Campi [3] as 18, 34, 50, 58, 70, 80, 120.
These nuclei were called the possible bubble nuclei. Some
among them, such as 36Ar and 200Hg [3,4], have been turned
down in later calculations and experiments [10,22] because
of strong correlations (such as pairing and deformation). To
ensure the low occupancy of s levels for the bubble structure
to take place, the pairing correlation and deformation should
be weak [23]. Therefore, the optimal bubble candidates are
the spherical nuclei with shell closures at unoccupied s levels.
These nuclei must have the s-single-particle level separated
from those around it to reduce the correlations. Some good
neutron and proton bubble candidates are 22O (N = 14,
Z = 8) and 34Si (N = 20, Z = 14), respectively. For 22O,
the neighboring isotope 24O, which can be referred to as its
adjoint candidate, is used to investigate the depletion of the
neutron density in the interior of 22O because 24O has two
neutrons filling the 2s1/2 level, which is empty in 22O. This
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makes 22O a good bubble candidate. The depletion factor was
predicted to be around 24%–28% for 22O [9]. With the same
structure, an excellent candidate for the proton bubble is 34Si,
whose adjoint candidate is 36S (Z = 16, N = 20). The neutron
shells of 34Si are sufficiently tight to prevent the coupling
and correlation effects. The observation of proton densities
in 34Si and 36S would demonstrate the importance of s-orbital
contributions. In Ref. [9] three different models, namely the
shell, relativistic, and nonrelativistic mean-field models, were
used to predict the proton bubble in 34Si. The results showed
that the depletion of proton and charge densities are about
40% and 25%, respectively. The occupancy of the 2s1/2 level
was predicted to be around ∼0.08, which reinforces the belief
that the existence of the proton bubble in this nucleus is very
likely. Most recently, the occupancy of the 2s1/2 level in 34Si
was measured in Ref. [24] to be 0.17 ± 0.03, which serves as
useful information for simulating the bubble structure in this
nucleus by using different microscopic models.

The bubble structure in low-lying excited states was inves-
tigated by Yao [25], where a relativistic version of configura-
tion mixing of both particle-number and angular-momentum
projected quadrupole deformed mean-field states was used to
study the possible existence of the proton bubble in 34Si in the
low-lying states. Pairing correlations and nuclear fluctuations
were included in the calculations. The results showed that the
proton bubble in these states is very unlikely. However, the oc-
cupancy of s1/2 levels, which play an important role in the
description of the central nuclear density, remains unknown.
Any effect which alters the occupancy, such as the pairing
correlations [3,9,10,26] and shape fluctuations [10], must be
taken into account, but they cannot sufficiently quench the
bubble structure at zero temperature (T = 0) [8]. In general,
the correlations tend to flatten the density distribution [10].

In the present work we will study the bubble structures in
two spherical nuclei, namely 22O and 34Si, at zero temperature
as well as their evolution as a function of temperature. This is
performed by using a Skyrme interaction and pairing strength
that reproduce the binding and two-proton separation energies
as well as the experimentally measured occupancy of the 2s1/2

level in 34Si at T = 0 [24]. For 22O, because the experimental
occupancy of the 2s1/2 level is not available, we use the same
Skyrme interaction, which is employed in the calculations for
34Si, and adjust the pairing strength to reproduce the binding
and two-neutron separation energies. The candidate nuclei are
treated in the Hartree-Fock (HF) method with temperature-
dependent densities plus temperature-dependent pairing cor-
relation in a consistent way. The latter is taken into account
by using the finite-temperature Bardeen-Cooper-Schrieffer
(FTBCS) theory and the approach which incorporates the exact
eigenvalues of the pairing problem in the canonical ensemble
(CE). The density-dependent Skyrme interactions are used to
calculate the single-particle spectra in the nuclear mean fields,
which are expected to be better as compared to those obtained
by using the density-independent interactions [3]. On the other
hand, Skyrme interactions also include the spin-orbit terms
[27,28], which are stronger at low j momenta towards the
nuclear center and weaker at the nuclear surface [21]. Hence the
depletion of the spin-orbit splitting around the nuclear center
can be explained by the bubble structure [10,25]. The results

obtained at T = 0 within the present work are also compared
with the predictions by the Hartree-Fock-Bogolyubov (HFB)
approach [9,11,29].

The paper is organized as follows. The formalism
of the finite-temperature Hartree-Fock (FTHF) and finite-
temperature exact pairing (FTEP) methods are reported in
Sec. II. The results of numerical calculations are analyzed in
Sec. III. The paper is summarized in the last section, where
conclusions are drawn.

II. FORMALISM

A. Finite temperature Hartree-Fock (FTHF) method

The Hartree-Fock method at T = 0 considers a nuclear
Hamiltonian in the form [28],

Ĥ =
∑

i

t̂i +
∑
i<j

vij +
∑

i<j<k

vijk, (1)

where t̂i is the kinetic energy operator; vij and vijk are two-
and three-body interactions, respectively. By using the density-
dependent nucleon-nucleon interaction given in the form of the
Skyrme interaction, the two-body and three-body terms can be
explicitly written as [27,28]

vij = t0(1 + x0Pσ )δ(�r) + 1
2 t1[δ(�r)�k2 + �k′2δ(�r)]

+ t2 �k′δ(�r)�k + iW0( �σi + �σj )�k × δ(�r)�k, (2)

vijk = t3δ(�ri − �rj )δ( �rj − �rk), (3)

where �r = �ri − �rj , �k = 1
2 (∇i − ∇j ), �k′ is the conjugate of �k,

and Pσ = 1
2 (1 + σiσj ) is the spin-exchange operator with σi(j )

being the Pauli matrix. The three-body interaction can be
approximately expressed in terms of the two-body one by using
the nucleon density,

vijk −→ vij = t3

6
(1 + Pσ )δ(�ri − �rj )ρα

( �ri − �rj

2

)
, (4)

where the total nuclear density ρ = ρZ + ρN is the sum of the
proton and neutron densities, ρZ and ρN , respectively.

The derivation of the Skyrme Hartree-Fock equations was
described in detail, e.g., in Ref. [28], so we report here only its
final equation in the coordinate space as[

−∇ h̄2

2m∗(�r)
∇ + U (�r) + UCoul(�r) + 1

i
W (�r)(∇ × σ )

]
ϕj (�r)

= εjϕj (�r), (5)

where m∗(�r) is the effective mass, whereas U (�r), UCoul(�r),
and W (�r) are the Skyrme, Coulomb, and spin-orbit potentials,
respectively. To obtain the wave functions ϕj and energies εj

of the single-particle levels, the HF equation (5) is often being
solved by using the currents and densities of the form [30],

ρq(r) =
∑

j

fj

2j + 1

4π
ϕj (r)2, (6)

τq(r) =
∑

j

fj

2j + 1

4π

[
[∂rϕj (r)]2 + l(l + 1)

r2
ϕj (r)2

]
, (7)

Jq(r) =
∑

j

fj

2j + 1

4π

[
j (j + 1) − l(l + 1) − 3

4

]
2

r
ϕj (r)2,

(8)
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where fj are the occupation numbers of the corresponding
single-particle levels j , and the sums are carried out separately
over the proton or neutron levels. Within the HF approach
at T = 0, the single-particle occupation numbers fj of the
levels below the Fermi one are always equal to 1, and those
above it are zero. In other words, the levels j with εj < εF are
fully occupied, and those with εj > εF are empty. Therefore,
Eqs. (6)–(8) contain only occupied levels εj < εF (εF is the
Fermi energy). At finite temperature (T �= 0), instead of being
evaluated in the ground state, the expectation values in the HF
equation are taken in the grand canonical ensemble (GCE),
resulting in the single-particle occupation numbers in terms of
the Fermi-Dirac distribution as

fj = 1

e(εj −λ)/T + 1
. (9)

The temperature-dependent chemical potential λ (distorted
Fermi level) is found by solving the equation for the particle
number,

N = 2
∑

j

�jfj , �j = j + 1/2, (10)

for proton (Z) or neutron (N ) numbers, separately. Therefore,
at T �= 0, the HF single-particle spectra consist of single-
particle levels below as well as above λ. The levels with εj > λ
are obtained by discretizing the continuum [31]. The set of
Eqs. (5)–(9) forms the FTHF equations. By solving them, one
obtains the temperature-dependent single-particle spectra εj ,
wave functions ϕj , and occupation numbers fj .

B. Pairing effect in hot nuclei

Pairing plays an important role in nuclei, in particular in the
neutron-rich ones, where a strong pairing effect was observed
[32–34]. It is the source of the odd-even staggering effect,
which affects the single-particle occupancies, single-particle
spectra, nuclear level density, nuclear binding energy, and
nucleon separation energy [33,35,36]. In ground-state (cold)
nuclei, that is, nuclei at T = 0, pairing is often described
approximately within the BCS theory [37] or exactly by
using the exact eigenvalues of the pairing problem, which
can be obtained, for example, by diagonalizing the pairing
Hamiltonian [33,34]. In highly excited nuclei, such as nuclei at
T �= 0 (hot nuclei), the temperature effect breaks the nucleon
pairs, leading to the quenching of pairing as T increases
[38–40]. The approaches using the BCS and exact pairing (EP)
formalisms at T �= 0 are summarized below.

1. The finite-temperature BCS (FTBCS) theory

The present paper considers a pairing Hamiltonian of the
form [28],

Ĥ =
∑

j

εj a
†
jmajm − G

∑
mm′

a
†
jma

†
jm̃aj ′m̃′aj ′m′ , (11)

where a
†
jm and ajm are the creation and annihilation operators

of a nucleon moving on the j th orbitals with projections
±m and degeneracies �j = j + 1/2 and the single-particle
energy εj . The symbol˜denotes the time-reversal operator
ajm̃ = (−1)j−maj−m. This pairing Hamiltonian (11) describes

a system of N neutrons and Z protons interacting via a
monopole-pairing interaction with a constant pairing interac-
tion G. The FTBCS equations are conventionally obtained by
applying the variational procedure to minimize the expectation
value of the Hamiltonian H = H − λN̂ within the GCE [41],
where N̂ = ∑

jm a
†
jmajm is the particle-number operator and

λ is the chemical potential. The explicit form of the FTBCS
equations for the pairing gap  and particle number N is then
given as

 = G
∑

j

�jujvj (1 − 2nj ), (12)

N = 2
∑

j

�j

[
nju

2
j + (1 − nj )v2

j

]
, (13)

where the coefficients uj and vj of the Bogolyubov transfor-
mation from the particles to the quasiparticles read

u2
j = 1

2

(
1 + εj − λ

Ej

)
, v2

j = 1 − u2
j , (14)

with the quasiparticle energies Ej and quasiparticle occupation
numbers nj defined as

Ej =
√

(εj − λ)2 + 2, (15)

nj = 1

eEj /T + 1
. (16)

Within the FTBCS, the single-particle occupation numbers
fj in the HF densities (6)–(8) are expressed in terms of the
Bogolyubov coefficients uj , vj and quasiparticle occupation
numbers nj as

fj = nju
2
j + (1 − nj )v2

j . (17)

The major drawback of the BCS theory is that it conserves
the particle number only in average N = 〈N̂〉. At T �= 0, the
FTBCS gap collapses at a certain critical temperature Tc ∼
0.57(T = 0), signalizing the transition from the superfluid
phase to the normal one. However, various approximations
beyond the FTBCS have already shown that thermal fluctua-
tions in finite systems as atomic nuclei smooth out this phase
transition, resulting in a thermal gap, which does not vanish at
T � Tc, but monotonically decreases with increasing T (see,
e.g., Refs. [40–45]).

2. Exact pairing at finite temperature (FTEP)

Based on the SU(2) algebra of angular momentum, the
pairing Hamiltonian (11) can be directly diagonalized to
obtain the exact eigenstates ES and single-particle occupation
numbers f S

j at T = 0 and at different values of the total
seniority S, which is the total number of unpaired particles
[33,34]. Using these eigenvalues, one can construct the exact
partition function within the CE as [40,46]

Z(T ) =
∑

S

2Se−ES/T . (18)

Knowing the partition function, one can easily calculate all the
thermodynamic quantities including the free energy F , total
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energy E , heat capacity C, and pairing gap  as

F = −T lnZ(T ), S = −∂F
∂T

, (19)

E = F + T S, C = ∂E
∂T

, (20)

 = √−GEpair, Epair = E − 2
∑

j

�j

[
εj − G

2
fj

]
fj ,

(21)

where the temperature-dependent single-particle occupation
numbers fj are calculated from the state-dependent occupation
numbers f S

j as

fj = 1

Z

∑
S

2Sf
(S)
j e−ES/T . (22)

Within the FTEP, the particle number is exactly conserved
at both zero and finite temperatures. As a result, the exact
pairing gap does not vanish at T = Tc as the FTBCS gap but
monotonically decreases with increasing T and remains finite
at T as high as 4 MeV [40,46].

C. Nucleon density

The procedure of solving the FTHF, FTBCS, and FTEP
equations, making use of the HF single-particle spectra, is
explained as follows. First, the HF equation (5) is solved
at T = 0 to obtain all the occupied and unoccupied single-
particle levels. These single-particle energies are then used
in solving the FTHF, FTBCS, and FTEP equations to obtain
the corresponding single-particle occupation numbers f FTHF

j

[Eq. (9)], f FTBCS
j [Eq. (17)], and f FTEP

j [Eq. (22)] at a given T .
The obtained temperature-dependent occupation numbers are
used to calculate the HF currents and densities (6)–(8), which
are now temperature dependent. By using these temperature-
dependent currents and densities, one can solve the HF equa-
tion (5) again to obtain the new single-particle spectra εj and
wave functions ϕj (r), which are also temperature dependent.
These new spectra and wave functions are then used to obtain
the single-particle occupation numbers f FTHF

j ,f FTBCS
j , and

f FTEP
j by solving the FTHF, FTBCS, and FTEP equations.

The process is repeated until the convergence is reached. It
is worth mentioning here that, within the FTEP, the exact
diagonalization of the pairing Hamiltonian is limited to a
truncated spectrum of single-particle levels around the Fermi
surface because of the limitation in the size of the matrix
to be diagonalized [40]. (The effect of the configurational
truncation in the exact solution of the pairing problem was
thoroughly discussed in Refs. [47,48]). The levels outside the
truncated spectrum are treated within the independent particle
model (IPM), whose occupation numbers are expressed in
terms of the Fermi-Dirac distribution as in the case of the
FTHF [Eq. (9)] [46]. Regarding the FTHF and FTBCS cases,
in general, no cutoff is required as the matrix diagonaliza-
tion is not used in solving them. However, to be consistent
and physically meaningful, we also use the same truncated
single-particle spectrum for the FTBCS as that employed for
the FTEP.

TABLE I. Occupation numbers f2s1/2 of the 2s1/2 level, pairing
gaps , and depletion factors F of 22O and 34Si obtained by using
different Skyrme interactions within the FTEP at T = 0.

Interaction 34Si 22O

f2s1/2 Z F(%) f2s1/2 N F(%)

MSk1 0.096 1.35 17 0.203 1.15 2
MSk2 0.129 1.67 15 0.241 1.34 1
MSk3 0.090 1.34 19 0.247 1.54 2
MSk4 0.125 1.68 16 0.280 1.70 0
MSk5 0.126 1.69 16 0.279 1.69 0
MSk6 0.149 2.03 15 0.280 1.77 0
MSk7 0.154 2.10 15 0.285 1.82 0
MSk8 0.163 2.08 14 0.308 1.87 0
MSk9 0.136 1.94 16 0.275 1.78 1
BSk1 0.183 2.50 13 0.321 2.17 0
BSk2 0.171 2.40 12 0.252 1.58 1
BSk3 0.186 2.43 10 0.273 1.58 0
BSk4 0.120 2.01 15 0.169 1.25 6
BSk5 0.140 2.28 14 0.176 1.30 5
BSk6 0.106 2.09 18 0.165 1.51 7
BSk7 0.291 8.35 1 0.319 5.89 2
BSk8 0.198 3.79 12 0.282 2.82 2
BSk9 0.208 3.78 10 0.288 2.73 2
BSk10 0.209 3.28 8 0.282 2.10 1
BSk11 0.144 2.15 12 0.184 1.19 4
BSk12 0.137 2.05 13 0.178 1.14 4
BSk13 0.136 1.99 13 0.188 1.16 4
BSk14 0.122 2.18 14 0.140 1.14 7
BSk18 0.278 5.56 3 0.364 4.21 0

After solving the FTHF, FTBCS, and FTEP equations,
one obtains the temperature-dependent single-particle spec-
tra εj , occupation numbers fj , and wave functions ϕj (r)
for neutrons and protons. The nucleon density is then
calculated as

ρ(r) = 1

2π

∑
j

�jfjϕj (r)2. (23)

These occupation numbers and densities will serve as indica-
tors in the study of the bubble structure discussed in Sec. III.

D. Center-of-mass correction

Because the solutions of the HF equations (5) represent a
localized mean field, the translational invariance is always bro-
ken within the HF, causing the oscillation of the nuclear center
of mass in the mean field. To eliminate this oscillation one
should project the exact ground state, that is, a state with good
zero angular momentum, out of the given mean-field state. This
complex task is often substituted with a simple subtraction
of the zero-point energy Ec.m. of the center-of-mass (c.m.)
quasiharmonic oscillation [30,49], which is estimated in terms
of the momentum operators p̂ and single-particle occupation
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(a)

(b)

(c)

(d)

FIG. 1. Binding energy per nucleon BE/A and two proton (neutron) separation energy S2p (S2n) obtained from different methods using the
MSk3 interaction at T = 0. The results of HFB with BSk14 are extracted from the mass excesses taken from RIPL3 [29]. The dashed lines
represent the experimental data.

numbers fj as

Ec.m. =
〈
P 2

c.m.

〉
2Am

, (24)

〈
P 2

c.m.

〉 =
∑

j

fj 〈ϕj |p̂2|ϕj 〉

−
∑
i,j

(fifj +√
fi(1−fi)fj (1−fj )|〈ϕi |p̂|ϕj 〉|2.

(25)

where Pc.m. is the total momentum operator, and A and
m are the nucleon number and the average nucleon mass,
respectively. The Ec.m. correction is subtracted a posteriori
from the total energy after variation of Hartree-Fock mean
field following Refs. [30,50].

III. ANALYSIS OF NUMERICAL RESULTS

A. Ingredients of the numerical calculations

The numerical calculations are carried out within the FTHF,
FTBCS, and FTEP for 22O and 34Si, whose bubble structures

are predicted to be dominant at T = 0 [9]. As for the HF
calculation, we employ the computer code, which was devel-
oped by Colò and collaborators [31]. We select two series of
BSk [51–62] and MSk [63,64] interactions to make a test for
22O and 34Si because of the suitability of these interactions
in the calculations with pairing [29,51–64]. These Skyrme
interactions are tested within the HF plus exact pairing in
combination with the full center-of-mass correction for the
ground-state energy [50]. The value of the pairing strength G
is adjusted to reproduce the experimental binding energies at
T = 0 as follows.

Because 34Si has the neutron closed shell, the pairing
treatment within the FTBCS and FTEP is performed only for
protons within a truncated spectrum around the Fermi surface,
as was mentioned in Sec. II C, which includes seven proton
levels with the 1d5/2 level located below the Fermi surface and
the other six levels 2s1/2, 1d3/2, 1f7/2, 2p3/2, 1f5/2, and 2p1/2

above it. The remaining inner proton core is a closed-shell
core with eight protons, so it does not contribute to the pairing
correlation. The 2s1/2 level is the lowest unoccupied level
above the Fermi one, whose occupancy was recently measured
atT = 0 to be 0.17 ± 0.03 [24]. This very low occupancy of the
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TABLE II. Values (%) of the depletion factor F for 22O and 34Si obtained from different methods at T = 0. The asterisk (∗) denotes
the methods used in the present work. The values of F within relativistic mean field (RMF), shell model (SM), and HFB are taken from
Refs. [9,11,29].

Nucleus FTHF∗ FTBCS∗ FTEP∗ FTEP∗ HFB [29] HFB [29] HFB [9] RMF [9] RMF+BCS [11] RMF [9] SM [9]
MSk3 MSk3 MSk3 BSk14 BSk14 D1S SLy4 NL3 NL3 FSUGold

22O 11% 2% 2% 7% 4% 4% 3% 28% 17% 34% 24%
34Si 24% 19% 19% 14% 15% 28% 38% 37% 35% 42% 41%

2s1/2 level is known to be the main source, causing a significant
reduction in the s-wave function, which is the signature of the
bubble structure in the proton density of 34Si. As the s1/2 level is
doubly degenerated, its occupancy is twice the corresponding
occupation number f2s1/2 . The latter, therefore, is equal to
half of the occupancy, namely f2s1/2 = 0.085 ± 0.015. The
values of f2s1/2 in the interval 0.07 � fj � 0.1 shall be used
as a criterion for choosing the suitable Skyrme interaction
in the FTEP calculations. By varying the pairing interaction
parameter GZ for protons to reproduce the experimental
binding energy per nucleon BE/A = −8.336 MeV, the FTEP,
performed at T = 0 with the MSk3 interaction, also eventually
produces the experimentally measured occupation number of
the 2s1/2 level. The value of GZ = 0.547 MeV obtained in
this way is kept unchanged in the calculations at T > 0. The
calculations within the BCS are also performed making use
of the same value of the occupation number of 2s1/2 level. By
doing so, we found the values of the FTBCS and FTEP pairing
gaps at T = 0 to be 0.85 and 1.34 MeV, respectively. The
two-proton separation energy S2p = B(N,Z) − B(N,Z − 2)
calculated in this process, with B(N,Z) being the binding
energy of a nucleus with N neutrons and Z protons, also
reproduces well the experimental value S2p = 33.7 MeV.

The 22O nucleus (Z = 8 and N = 14) was predicted to
have the neutron bubble structure at T = 0 [9,11]. Hence,
the calculation is also carried out for seven selected neutron
shells similar to those in 34Si. Because we do not know
the experimental occupancy of the 2s1/2 level at T = 0 for

FIG. 2. Proton density ρZ(r) for 34Si obtained within the FTHF,
FTBCS, FTEP, and HFB at T = 0.

22O, we first choose the Skyrme interactions and the pairing
parameter GN for neutrons to reproduce the experimental
binding energy per nucleon BE/A = −7.365 MeV. The
occupation numbers of the 2s1/2 level and the pairing gaps,
obtained in this way for 34Si and 22O by using 9 MSk and
15 BSk interactions are listed in Table I. The BSk15-BSk17
interactions failed to reproduce a good binding energy, so they
are not shown in this table. For 22O, we choose the MSk3
interaction to be consistent with that used for 34Si. We also use
the BSk14 interaction to compare the results of our calculations
with those obtained within the HFB employing the same
interaction [9,11,29].

Shown in Fig. 1 are the binding energies per nucleon BE/A
and two proton (neutron) separation energies S2p (S2n) ob-
tained within the FTHF, FTBCS, and FTEP methods by using
the MSk3 interaction for 34Si and 22O at T = 0 without and
including the center-of-mass correction. They are compared
with the experimental data and also with the results of the HFB
calculations by using the BSk14 interaction from Ref. [29].
This figure shows that the FTEP method including the center-
of-mass correction is superior in describing the binding and
two-nucleon separation energies. In particular, it indicates
that the center-of-mass correction using the single-particle
occupation numbers f FTEP

j (22) supplied by the FTEP method
plays a crucial role in reproducing the experimental values of
the binding energy. The HFB results from Ref. [29] slightly
overestimate the binding energies. However, as compared to
the FTEP method including the center-of-mass correction,

FIG. 3. Neutron density ρN (r) for 22O. Notations are the same as
in Fig. 2.
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(a) (b) (c)

FIG. 4. Proton pairing gaps (a) and root-mean-square (rms) radii for protons (b) and neutrons (c) in 34Si obtained within the FTHF, FTBCS,
and FTEP at T �= 0.

the deviation of the HFB predictions from the experimental
two-nucleon separation energies is much larger.

Also shown in Table I are the values of the depletion factor,
which is defined as

F = ρmax − ρcent

ρmax
, (26)

where ρmax and ρcent are the values of the nucleon density at its
maximum and at the nuclear center (r = 0), respectively. In the
presence of pairing, the depletion in the central region of the
proton density at T = 0 is predicted within the FTEP and HFB
[29] as F � 15% by using the BSk14 interaction. This value is
smaller than that obtained in our calculations (F � 19% within
the FTBCS and FTEP by using the MSk3 interaction), whereas
the FTHF produces F � 24%. These comparisons indicate that
pairing, employed in the HFB calculations in Refs. [9,29], is
stronger than that used in our calculations for 34Si, which is
assumed as a doubly magic nucleus. Once again, it also shows
that, for this nucleus the MSk3 interaction is more suitable than
the BSk14 one (see Table II).

(a) (b)

FIG. 5. Single-particle energies for protons (a) and neutrons (b) in
34Si obtained within the FTEP (solid lines) and FTBCS (dashed
lines) as functions of temperature. The dash-dotted line in (a) is the
exact proton chemical potential, obtained as λ(N) = [F(N + 2,T ) +
F(N − 2,T )]/4, where F(N ± 2,T ) are the exact free energies of
the systems with N ± 2 protons, whereas the dotted line in (a) is the
proton chemical potential obtained within the FTBCS. The dotted and
dash-dotted lines in (b) are the chemical potential obtained within the
IPM calculation (without pairing) using the neutron single-particle
spectra obtained within the FTBCS and FTEP, respectively.

A number of zero values of the depletion factor F for 22O
shown in the 7th column in Table I indicate that the existence
of the bubble in this nucleus depends on the interaction. In
particular, the calculations by using a number of MSk and BSk
interactions such as MSk4-MSk8, BSk1, BSk3, and BSk18
do not produce the neutron bubble in 22O, whereas those
carried out within the FTEP by using all of the MSk and
BSk interactions always predict the proton bubble in 34Si.
This also indicates that 34Si is very likely to be a bubble
nucleus. Although both the MSk3 and BSk14 interactions
reproduce the binding and two-neutron separation energies,
the corresponding depletion factors F � 2% and 7% obtained
within the FTEP at T = 0 are quite different. Meanwhile, the
HFB results [9,29], which fail to describe the two-nucleon
separation energies because the binding energies do not com-
pletely match the experimental data (Fig. 1), show the depletion
factor F � 3% and 4% for the SLy4 and BSk14 (or D1S)
interactions, respectively (see Table II). Our prediction also
shows a significant difference with the RMF+BCS which
produces the depletion factor F = 17% by using a very small
pairing (see Table II and also Table 2 in Ref. [11]).

B. Zero temperature

Shown in Fig. 2 are the proton densities ρZ in 34Si obtained
within the FTHF, FTBCS, FTEP (by using the Skyrme MSk3)
and FTEP-BSk14 (by using the Skyrme BSk14) at T = 0 in
comparison with the HFB predictions taken from Ref. [29] by
using the Skyrme BSk14. All the calculations reveal the bubble
structure as the depletion of ρZ at r = 0. Among them the HFB
predicts a shallowest bubble.

The neutron densities ρN (r) obtained for 22O within the
same approaches are displayed in Fig. 3 in comparison with
the predictions of the HFB calculations [29]. The results shown
in Fig. 3 and Table II indicate that the bubbles, predicted within
the FTBCS and FTEP, are much shallower (the depletion factor
F = 2%) as compared to the predictions of the FTHF (F �
11%), where pairing is absent, whereas for other calculations,
F varies from 4% to 34%. The reason comes from the fact that
the neutron-rich 22O nucleus is not a doubly magic nucleus,
and is lighter than 34Si. Therefore the pairing correlation in this
nucleus is stronger than that of 34Si. These features increase the
2s1/2 occupancy of 22O to a value sufficiently large (about 0.25
within the FTEP and FTBCS) so that the bubble structure is
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(a) (b) (c)

FIG. 6. Occupation numbers of proton single-particle levels 1d5/2 (a), 2s1/2 (b), and 1d3/2 (c) in 34Si obtained within FTHF, FTBCS, and
FTEP.

almost washed out at T = 0. The HFB calculations in Ref. [9]
assume that 22O behaves almost as a doubly magic nucleus so
that, although pairing is included, it turns out to be too weak
to overcome this assumed double magicity. The relativistic
HFB calculations by using the density-dependent interaction
DDME2 even result in a deeper bubble for 22O as shown in
Fig. 8 of the same paper.

C. Finite temperature

Given the clear proton bubble structure, 34Si is chosen as
the typical candidate, which can be used to study the evolution
of the bubble at T �= 0. In general, it is naturally expected that
temperature will eventually wash out the bubble structure as
it increases the occupation number of the unoccupied 2s1/2

level. However, the increase of temperature also leads to the
quenching of the pairing gap, so the competition of the two
effects in different approaches may lead to different values of
temperature, at which the bubble structure is washed out. The
present section will analyze in detail these features.

Shown in Fig. 4(a) are the proton pairing gaps in 34Si
obtained within the FTBCS and FTEP as functions of T .
The FTBCS gap collapses at the critical temperature Tc �
0.57 MeV, whereas the FTEP gap remains finite at T as high

as 5 MeV. This nonvanishing FTEP proton gap at high T
significantly affects the proton root-mean-square (rms) radius
of 34Si, as shown in Fig. 4(b), slowing down its increase with T
at T > 2 MeV. This should be compared with the sharp increase
predicted by the FTBCS, which is identical to the prediction of
the FTHF because the FTBCS gap is zero in this temperature
region. Regarding the neutron rms radius, given the absence
of the neutron pairing gap in this neutron closed-shell nucleus,
the three methods predict nearly the same result as can be
seen in Fig. 4(c). A slight difference between the neutron rms
radii obtained within the FTBCS (FTHF) and FTEP at T > 2
MeV comes from the difference between the FTBCS and FTEP
proton pairings, which affects not only the proton but also
the neutron parts of the HF potential and the wave functions.
Both the neutron and proton rms radii increase with T , in
agreement with the results of Refs. [65,66]. The proton single-
particle energies obtained within the FTEP are more strongly
affected by the temperature, resulting in their stronger increase
with T as compared to that of the neutron ones as seen in
Fig. 5.

Shown in Fig. 6 are the occupation numbers of three proton
single-particle levels closest to the Fermi surface, namely 1d5/2

(a), 2s1/2 (b), and 1d3/2 (c), obtained within the FTHF, FTBCS,
and FTEP for 34Si. The occupation number of the 1d5/2 level

(a) (b) (c) (d)

(e) (f ) (g) (h)

FIG. 7. Proton density ρZ(r) in 34Si obtained within the FTHF, FTBCS, and FTEP at several temperatures.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

FIG. 8. Neutron density ρN (r) in 34Si obtained within the FTHF, FTBCS, and FTEP at several temperatures.

decreases with increasing T , whereas those of the other two
levels increase with T . Because pairing is absent within the
FTHF, f1d5/2 decreases from its value equal to 1 at T = 0 to
about 0.43 at T = 5 MeV, whereas f2s1/2 (f1d3/2 ) increases from
0 at T = 0 to about 0.29 (0.19) at T = 5 MeV. The occupation
numbers obtained within the FTBCS are different from the
FTHF ones at T < Tc because of the FTBCS pairing gap in
this temperature region. Within the FTEP, pairing is always
present in the whole temperature region as seen in Fig. 4(a), so
the occupation numbers of the levels below (above) the Fermi
surface obtained within the FTEP decrease (increase) much
slower than those obtained within the FTHF and FTBCS.

The proton and neutron density profiles in 34Si at several
temperatures are plotted in Figs. 7 and 8, respectively. At T =
0, the bubble structure is clearly seen in the proton densities ob-
tained within the three methods. The bubble structure predicted
within the FTHF, which produces the occupation number of
the 2s1/2 level equal to 0, is more pronounced (deeper) than

FIG. 9. Depletion factor F for the proton density ρZ(r) obtained
within the FTHF, FTBCS, and FTEP for 34Si.

those predicted by the FTBCS and FTEP, in which the pairing
interaction G is adjusted to reproduce the experimental binding
energy and the value of f2s1/2 equal to 0.09 as was discussed
previously (see the third line and second column in Table I).
As f2s1/2 increases with T , the bubble structure predicted
within the three methods becomes shallower and gradually
disappears at T = TF . It can also be seen here that exact pairing
keeps the proton central density less sensitive to the change
of temperature. Indeed, as T increases from 0.1 to 2 MeV,
ρZ(r) predicted by the FTHF and FTBCS increase from around
0.054 and 0.058 to 0.069 fm−3, whereas within the FTEP this
increase is from 0.058 to 0.068 fm−3, resulting in a disap-
pearance of the bubble structure at a lower T FTEP

F � 4 MeV
as compared to the value T FTBCS

F � 4.5 MeV predicted by
the FTBCS, which coincides with the FTHF at T � Tc. These
values of TF are confirmed by Fig. 9, which shows the depletion
factor F as a function of T . The disappearance of bubble
structure at these temperatures can also be seen in the density

FIG. 10. Wave function of the proton 2s1/2 level in 34Si obtained
within the FTEP at several temperatures.
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(a) (b) (c)

FIG. 11. Neutron pairing gaps (a) and root-mean-square (rms) radii for protons (b) and neutrons (c) in 22O obtained within the FTHF,
FTBCS, and FTEP.

profiles shown in Figs. 7(f) and 7(g). These results indicate
that the bubble structure in 34Si should completely disappear
when the occupation number of 2s1/2 level reaches a value of
about ∼0.35. They also demonstrate that, owing to the double
magicity, the pairing effect in 34Si is not sufficiently large to
cause a significant difference between the FTBCS and FTEP
results.

The evolution of the bubble structure in 34Si can be ex-
plained in more detail by looking at the wave function of
the 2s1/2 proton level shown in Fig. 10. As mentioned in
the introduction, the s-radial wave has a special character,
which is the pronounced maximum located at the nuclear
center r = 0. If this s-radial wave is absent or its contribution
(occupation number) to the total wave function is somewhat
small, the bubble structure will appear and vice versa. This
feature is clearly seen in Fig. 10 in which the maximum of
the wave function of 2s1/2 proton level at r = 0 is around
0.1 at T = 0.1 MeV and increases with T , leading to the
gradual disappearance of the bubble structure in this nucleus.
Regarding the neutron density of 34Si, no bubble structure is
seen even at T = 0 as the 2s1/2 neutron level is located below
the Fermi surface [see, e.g., Fig. 5(b)], leading to a very large
value of the corresponding occupation number.

As 22O shows a very shallow bubble structure at T = 0, its
disappearance is expected to happen at low T . In this nucleus,
we used the MSk3 interaction to carry out the calculations
within the FTHF, FTBCS, and FTEP and also the BSk14 one
within the FTEP. When the MSk3 interaction is used, the
strong pairing effect at T = 0 produces a relatively large 2s1/2

occupation number of neutron (about 0.25 within the FTBCS

and FTEP). The collapse of the FTBCS pairing gap at the
critical temperature Tc = 0.46 MeV [Fig. 11(a)] leads to a
bending in the FTBCS curves in Figs. 11(b), 11(c), and 12
at Tc. In Figs. 11(b) and 11(c), because of the temperature
effect, the nucleon root-mean-square radii of 22O also increase
as expected. The difference of neutron r.m.s within the FTBCS
and FTEP is much larger than the difference of proton r.m.s.
The explanation comes from the strong pairing effect in the
open neutron shell of 22O. Therefore, this phenomenon is
observed more clearly than what occurs in the doubly magic
34Si nucleus. At 1 < T < 2 MeV, because of the nonvanishing
FTEP gap, the neutron r.m.s within the FTEP slowly increases
as compared to that predicted by the FTBCS. A similar
feature is seen in Fig. 12 for the single-particle occupation
numbers. As T increases, the closed-shell proton density
remains almost unchanged [Figs. 13(a1)–13(a3)]. Meanwhile,
the bubble structure in the neutron density is washed out at
TF = 0.57 MeV within the FTHF and FTBCS, and at TF =
0.85 MeV within the FTEP [Figs. 13(b1)–13(b3) and 14(a)
and 14(b)]. Because of the neutron unclosed shell and the
quenching of the BCS pairing gap at Tc, the value T FTBCS

F

is smaller than T FTEP
F . At these temperatures, the occupation

number of the 2s1/2 level takes the values equal to 0.33 and
0.32 within FTBCS and FTEP, respectively, which are fully
consistent with the FTEP nonvanishing pairing gap.

When the BSk14 interaction is used, the FTEP predicts a
deeper neutron bubble than that obtained by using the MSk3
interaction in 22O (Fig. 3) at T = 0. The 2s1/2 occupation num-
ber is equal to 0.14 with a smaller pairing gap N = 1.14 MeV
as compared to the gap of 1.54 MeV obtained by using

(a) (b) (c)

FIG. 12. Occupation numbers of proton single-particle levels 1d5/2 (a), 2s1/2 (b), and 1d3/2 (c) in 22O obtained within FTHF, FTBCS, and
FTEP.
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 13. Proton [(a1)–(a3)] and neutron [(b1)–(b3)] densities in 22O obtained within the FTHF, FTBCS, and FTEP at several temperatures.

the MSk3 interaction (see Figs. 11(a) and [12]). Conse-
quently, the bubble vanishes at a higher critical temperature
TF = 1.7 MeV (Fig. 14). The 2s1/2 occupation number at
this temperature is equal to 0.43. With increasing T , the
r.m.s of the proton and neutron have the same behavior but
their values are lower than those predicted by using the
MSk3 interaction [Figs. 11(b) and 11(c)] because of weaker
pairing.

IV. CONCLUSIONS

The present paper studies the bubble structures of 22O and
34Si nuclei at zero and finite temperatures within the Skyrme
Hartree-Fock mean field, which consistently incorporates the
superfluid pairing. The latter is obtained within the finite-
temperature BCS theory (FTBCS) and the exact solutions
of the pairing Hamiltonian at finite temperature T (FTEP).
The results obtained by using a series of BSk and MSk
interactions show the existence of proton bubble structure
in 34Si at zero temperature in all cases, whereas the neutron

bubble in 22O does not shows up in the cases using the MSk4–
MSk8, BSk1, BSk3, and BSk18 interactions. This indicates
that the existence of the neutron bubble in this nucleus is
inconclusive as it depends on the interaction. The only way
to resolve this ambiguity in 22O is to know the experimentally
extracted occupation number of its 2s1/2 level. By using the
MSk3 interaction, our calculations within the FTEP reproduce
well the binding energies and two-proton (neutron) separation
energies of these nuclei. The bubble structure exists at T = 0
in both 22O and 34Si. The proton bubble in 34Si, which appears
because of a very low occupancy of the 2s1/2 level, becomes
less pronounced as T increases and completely disappears
when T reaches a critical value TF of around 4 MeV, at which
the depletion factor vanishes. The evolution of neutron bubble
in 22O is similar. However, this bubble structure disappears
at different values of the critical temperature TF within three
different microscopic methods. Because of the nonvanishing
FTEP pairing gap, the value TF = 0.85 MeV, predicted by
the FTEP for the neutron bubble disappearance in 22O, is
significantly higher than that obtained within the FTBCS

(a) (b) (c)

FIG. 14. (a): Depletion factor F for the neutron densities ρN in 22O obtained within the FTHF, FTBCS, and FTEP. (b) and (c) Same as in
Fig. 13 but at two critical temperatures TF correspond to the FTEP calculations which are carried out for the MSk3 and BSk14 interaction.
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(0.57 MeV). This phenomenon does not occur in 34Si, which
is assumed to be a doubly magic nucleus with weak pairing
instead of the neutron-rich 22O nucleus with strong pairing.
The results obtained also show that the bubble structures in 22O
and 34Si completely disappear when the occupation number
of the 2s1/2 level reaches a value higher than 0.32 and 0.35,
respectively. The BSk14 interaction is also used to study the
neutron bubble in 22O only within the FTEP. The results of
our calculations show a deeper bubble structure than that
obtained by using the MSk3 interaction, which disappears at
TF = 1.7 MeV because of the small pairing. In general, our
calculations show a stronger pairing effect in 22O and weaker
one in 34Si as compared to the predictions in Refs. [9,29].

Exact pairing also makes the central neutron density in 22O
less sensitive to the change of temperature in the interval
0 � T � 1 MeV.
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