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Abstract

Some developments of nuclear-structure physics uniquely related to
Copenhagen School are sketched based on theoretical considerations
versus experimental findings and one-particle versus collective as-
pects. Based on my personal overview I pick up the following topics;
(1) Study of vibration in terms of particle-vibration coupling; (2)
One-particle motion in deformed and rotating potentials, and yrast
spectroscopy in high-spin physics; (3) Triaxial shape in nuclei: wob-
bling motion and chiral bands; (4) Nuclear structure of drip line
nuclei: in particular, shell-structure (or magic numbers) change and
spherical or deformed halo phenomena; (5) shell structure in oblate
deformation.

1. Introduction

I came to Copenhagen in September, 1967, holding one-
year’s fellowship from the Nishina Foundation in Japan.
It was my first visit to foreign institutes, where I had to
understand physics discussed in English. Indeed, it took
several years for me to understand some physics which I
heard in English. Everything was new and interesting to
me, but among others, I remember clearly ”experimental
meeting at NBI (= Niels Bohr Institute)” at 11 o’clock
on Monday morning, in which I learned how to talk with
and study from experimentalists. New experimental data
presented by experimentalists coming from all over the
world were of course exciting, however, it was my strong
impression that people were more carefully watching the
questions and reactions by Aage Bohr and Ben Mottelson
to those presentations. In the sixties at NBI we could
meet physicists from both West (USA, Canada, Europe,
Australia, etc.) and East (Soviet Union, East Europe,
China, etc.), and we became good friends for life after we
spent our younger days together.

My stay in Copenhagen, which at the beginning I in-
tended for one year, became for three years. Though I
once left Copenhagen in the summer of 1970, I came back
to Europe already in 1971 and to Copenhagen in 1973.
Since 1971 I helped the completion of Bohr and Mottel-
son’s book, NUCLEAR STRUCTURE vol. II, which was
finally published in 1975. The book is not at all just a text-
book, but the entire volume is a big article, which is full
of their original ideas and deeply-going understanding of
physics. During those years I learned an enormous amount
of physics from Bohr and Mottelson especially because I
could directly talk with them and ask questions to them
almost whenever I wanted. It was the exclusively precious
and happy time and days in my life as a physicist, which
I never forget, and I want to express my heartfelt thanks
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to Aage and Ben.
In the present article I write my personal overview of

five topics that have been centrally placed in the field
of nuclear-structure physics in respective decades. Those
topics perhaps except for the most recently developed
drip-line physics have been developed in the way either
strictly followed from the ideas of Bohr and Mottelson or
strongly influenced by their way of thinking physics, and
the topics are those, the study of which I myself have also
eagerly worked in. In Sec. II particle-vibration coupling,
in Sec. III one-particle motion in deformed and rotating
potentials, and yrast spectroscopy in high-spin physics, in
Sec. IV triaxial shape of nuclei, in Sec. V nuclear struc-
ture as neutron-drip-line approaches, and in Sec. VI nu-
clear shell-structure in oblate deformation are presented,
while conclusions and discussions are given in Sec. VII.

2. Particle-vibration coupling

In the self-consistent system such as nuclei one-particle
motion and collective phenomena are strongly related. El-
ementary modes of excitations may be associated with
excitations of individual particles or they may represent
collective vibrations of the density, shape, or some other
parameter that characterizes the equilibrium configura-
tion. The vibrational motion in nuclei is so profoundly
affected by the shell structure of one-particle motion that
it presents an excellent example of the interweaving of
one-particle and collective degrees of freedom [1].

In the nuclear system the possibility of collective shape
oscillations is strongly suggested by the fact that the
ground states of some nuclei are described by densities and
mean fields that are spherical while others are deformed.
Consequently, one might expect to find intermediate situ-
ations in which the shape undergoes rather large fluctua-
tions away from the equilibrium shape. In addition to the
modes which have classical analogs, in the nuclear spec-
tra vibrational modes unique in a quantal system, such as
those involving charge exchange or excitation of the nucle-
onic spins or oscillations in the pair field, are known and
studied.

In the following of this section we take shape oscillations
as an example of particle-vibration coupling, because ex-
perimental study of various properties of them has been
carried out for years and the resulting data are accumu-
lated. The density variations associated with the vibra-
tional motion make corresponding variations in the aver-
age potential. The distortion of the average potential gives
a coupling between the degrees of freedom of the vibration
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and individual particles [1],

δV = −kλ(r)
∑
µ

Y ∗λµ(θ, φ)αλµ (1)

where

kλ(r) = R0
∂V (r)
∂r

or r
∂V (r)
∂r

(2)

where R0 expresses the radius of the average static po-
tential, V (r), for which we use the form of Woods-Saxon
potential. Either radial form on the r.h.s. of (2) that is
used in various publications gives nearly the same numeri-
cal results because the quantity ∂V (r)/∂r is concentrated
on the nuclear surface, though the first form can be more
reasonable.

One may consider a number of effects which arise from
the coupling: For example, the renormalization of the
properties of both particles and vibrations, or a self-
consistent description of the vibrational motion itself in
terms of one-particle degree of freedom, or the effect of
the exclusion principle between the degrees of freedom of
particles and those involved in the vibrational modes, as
well as the orthogonality of different modes. In particu-
lar, in the case of the coupling being weak enough to be
treated by perturbation, one can systematically calculate
those various effects, and the comparison between the cal-
culated quantities and the observed ones provides a quan-
titative information on the validity of our understanding
of the structure of the basic particle-vibration coupling.

Particle-vibration coupling in low-lying quadrupole vi-
brations is often too strong to be quantitatively treated
by perturbation. In contrast, low-lying octupole vibra-
tions provide the data, by which our understanding can
be quantitatively tested. A beautiful example is related
to the octupole vibration of the doubly magic nucleus,
208
82 Pb126. There are many kinds of data on octupole vi-
brations in neighboring nuclei of 208Pb [2], which were
nicely interpreted in terms of the particle-vibration cou-
pling. In the following we take the septuplet of the oc-
tupole vibration, [(h9/2 3−)I , Iπ = 3/2+, ..., 15/2+], ob-
served in 209

83 Bi126, as a beautiful example of the particle-
vibration coupling. In Fig. 1 observed low-lying energy
spectra of 208

82 Pb126 and 209
83 Bi126 that are relevant to the

present discussion are shown.
In the calculations of respective observed quantities

shown in the following the contributions only in the lowest-
order perturbation were taken into account. However, it is
important to note that all contributions in the lowest order
are included when differential equations appropriate for re-
spective contributions were numerically integrated instead
of expanding the wave-functions in terms of a given finite
basis.

A number of beautiful experiments on many faces of the
septuplet members have been carried out especially dur-
ing the sixties and the seventies, such as energies, decay
scheme and octupole strength of respective members, one-
nucleon transfer reaction cross section to populate some
members. The properties of the octupole vibration itself in
208Pb such as the transition density, quadrupole moment,
and double-phonon states were also explored. Observed
data in connection with this octupole vibration could be
in almost all cases treated by perturbation and gave a firm
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Fig. 1: Observed low-lying energy spectra of 208
82 Pb126 and

209
83 Bi126 that are relevant to the present discussion. Excita-
tion energies are expressed in MeV.

support for our understanding of the shape (surface) os-
cillation and the related particle-vibration coupling. The
detailed comparison between experimental and calculated
results can be found in available publications. See, for
example, [2]. Therefore, in the following I show only two
examples; (i) energy shifts and the decay scheme of the
septuplet members of 209Bi and (ii) the radial transition
density of the octupole vibration of 208Pb.

Parameters used as an input in the numerical calcula-
tions are the two observed quantities in 208Pb; the ob-
served vibrational energy, 2.614 MeV, and the observed
vibrational strength, B(E3) = 32 BW (E3), which is used
to obtain the matrix element of < n3 = 1|α3|n3 = 0 >.
The value of 32 BW (E3) was taken from Coulomb excita-
tion experiments [3, 4, 5].

In Table 1 calculated energy shifts (in the 2nd-order per-
turbation of the particle-vibration coupling) and the de-
cay scheme (in the 1st-order perturbation of the particle-
vibration coupling) of the septuplet members in 209Bi
are compared with experimental ones. The observed en-
ergy splitting of the septuplet is 250 keV compared with
350 keV of the calculated one. We note a remarkable
agreement between the calculated and experimental decay
schemes, in particular, six B(E1)-values obtained using
[epeff (E1)]2 = 0.14 e2, while it is known to be extremely
difficult to predict B(E1) values in strongly-hindered low-
energy E1 transitions in nuclei. This agreement may be
used for supporting our basic understanding of the present
particle-vibration coupling and the surface vibration. In
addition, the obtained value of epeff (E1) agrees approxi-
mately with the value [1] estimated by taking into account
the reduction coming from both the center of mass motion
and the presence of the isovector giant dipole resonance.

In Fig. 2 the calculated radial transition density (in
the 1st-order perturbation of the particle-vibration cou-
pling) of the 3− state of 208Pb [7] is compared with those
obtained from electron inelastic scatterings. The large
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Fig. 2: The upper part expresses the radial transition charge
density of the 3− state at 2.614 MeV in 208Pb. The solid line
shows the calculated value [7], while for the experimental values
the dashed band was taken from Ref. [8] and the crosspoints
were from Ref. [9]. The lower part of the figure denotes the
calculated charge density of the ground state of 208Pb. The
scale of the x-axis in the lower part is the same as the one in
the upper part. The figure is adapted from Fig. 1 of Ref. [7].

peak around the surface can be understood as a feature of
the shape oscillation. The position of the first minimum
around 5 fm coincides closely with the r-value where the
ground-state density reaches the maximum, noting that
the radial transition density is approximately proportional
to the radial derivative of the static density. The struc-
ture of the two small peaks inside the nucleus depends on
the microscopic shell-structure of the octupole vibration
in addition to the general quantum-mechanical oscillatory
structure of the static density.

Another example in somewhat lighter-mass region,
which exhibits a very similar coupling between particles
and an octupole vibration, was reported in 1982 [10]. The
septuplet members in 147

64 Gd83, (f7/2 3−)I+ with I = 1/2,
..., 13/2, in which the octupole vibration 3− of 146Gd at
Eex = 1.579 MeV with B(E3)=37BW (E3) was coupled to
the 83rd odd-neutron in the f7/2 orbit, were identified ex-
cept the Iπ = 5/2+ member. Due to the dominance of the
proton (h11/2 d

−1
5/2)3− component in the 3− state, not all

properties of the septuplet members could be analyzed by
perturbation. However, it is unique in the case of the oc-
tupole vibration of 146Gd that the two-octupole-phonon
angular-momentum-stretched state, [(νf7/2) (3−)2]19/2+ ,
in 147Gd was experimentally identified and the pretty
strong anharmonicity in both the energy and the E3 tran-
sition rate was subsequently analyzed [11].

3. One-particle motion in deformed and rotating
potentials, and yrast spectroscopy in high-spin
physics

The very basic description of nuclear many-body systems
is the (self-consistent) mean-field approximation to the
many-body problem. In particular, shape is the prop-
erty of mean field. The ground states of some nuclei are
described by densities and mean fields that are spheri-
cal, while others are deformed. In Fig. 3 the even-even
nuclei, of which the ground state is observed to be de-
formed, are shown. The deformation results from one-
particle shell-structure, namely bunching of one-particle
levels, in contrast to the prediction of the liquid-drop
model. For the nucleus as a quantum many-body sys-
tem the presence of deformation is a necessary condition
for the occurrence of collective rotation, and the symme-
try of the deformation determines the structure of rota-
tion. The most important deformation around the ground
states of nuclei is the axially-symmetric quadrupole de-
formation corresponding to a spheroidal shape (cigar or
pancake). Axially-symmetric nuclei cannot perform a col-
lective rotation about the symmetry axis.

If some nuclei show deformation with a given symmetry
it is simplest and most convenient to start with the mean
field, which has the same symmetry. One-particle mo-
tion in quadrupole-deformed potentials was solved in the
fifties almost at the same time by three groups [12, 13, 14].
Among them, ”Nilsson model” [12] has been used by many
people in the analysis of data, presumably because the
application of the Nilsson model using modified oscilla-
tor potentials to actual nuclei was easiest and very prac-
tical. The spectrum of one-particle orbits as a function
of deformation, so-called ”Nilsson diagram”, has played
an invaluable role in the study of deformed nuclei. (In
the present article the word, ”Nilsson diagram”, is used
for the diagrams of one-particle energies as a function of
quadrupole deformation using general one-body potentials
such as Woods-Saxon or HF potentials, and not only for
the diagram drawn by using modified oscillator poten-
tials.) Nilsson diagrams have been extremely useful for
analyzing the data on deformed nuclei. This is mainly be-
cause the major part of the (Y ∗20 · Y20) channel of the two-
body quadrupole-quadrupole interaction is absorbed into
the mean field. Consequently, the picture of one-particle
motion in the deformed potential works for deformed nu-
clei much better than that of one-particle motion in spher-
ical potentials for spherical nuclei. For example, see the
successful quantitative analysis of various kinds of exper-
imental data of well-deformed (especially odd-A) nuclei
such as 25Mg, 25Al, 159Tb, 169Tm, 175Yb, 175Lu, 177Lu,
177Hf, 235U, 237Np, 239Pu presented in Ref. [1].

The field of nuclear high-spin physics was activated by
the observation of the ”back-bending” phenomena [15],
which was the first band-crossing (between the ground-
band and the S-band) along the yrast line in well-deformed
collectively-rotating nuclei. During the seventies the
possibility of studying nuclei with very large angular-
momentum was opened up, thanks to the facilities of ac-
celerating heavy-ions. Collisions between two heavy nuclei
could produce meta-stable compound systems with large
angular-momenta. Indeed, in heavy-ion collisions in the
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late seventies it was possible to produce compound nuclei
with angular momentum all the way up to the limit set
by the fission instability. The maximum value of angular
momentum which nuclei can accommodate is the order of
100 h̄ for nuclei with A ≈ 130 [16]. The study of rapidly
rotating nuclei provided the opportunity for exploring new
aspects of nuclear dynamics [17, 18, 19, 20].

When the angular momentum is accommodated by a
quantal system such as a nucleus, one recognizes that there
are two fundamental ways of building the angular momen-
tum [21]. The first one is collective rotation in the presence
of a significant amount of deformation, while the second
one is to build the angular momentum by spin alignments
of individual particles when the angular momentum is di-
rected along an axis of symmetry of the nucleus. In actual
nuclei we encounter situations in which the increment of
angular momentum is achieved partly by increasing the
frequency of collective rotation and partly by rearranging
the occupation of one-particle orbits (namely, by increas-
ing the particle alignments). In fact, the collective rota-
tional spectra together with the crossing of the ground
band with the S-band are characteristic of this kind of
situation.

Special interest in nuclear high-spin states attaches to
the region in the neighborhood of the yrast line repre-
senting the lowest energy for a given angular-momentum.
In this yrast region the nucleus is cold in the sense that
almost the entire excitation energy of the nucleus is con-
sumed in generating the angular momentum. Therefore,
the structure in the yrast region is ordered with simple ex-
citation modes, and the study of those may be expected to
give important nuclear-structure information on how the
nucleus responds to the large centrifugal forces associated
with rotation. The path that the yrast line of actual nuclei
will follow in deformation space with increasing angular-
momentum will result from the competition between the
macroscopic centrifugal distortion effect and the quantal
effects associated with shell-structure.

In the yrast spectroscopy of medium-heavy nuclei an im-
portant role has been played by particles in high-j orbits,
such as 1g9/2-, 1h11/2-, 1i13/2- and 1j15/2-orbits. This is
because the parity of high-j orbits is different from that of
other one-particle orbits in respective major shells, there-
fore, both in quadrupole deformation and under rotation
particles in high-j orbits do not mix with those in neighbor-
ing orbits. That means, the wave functions of particles in
high-j orbits have less ambiguity. Furthermore, as soon as
rotation sets in, particles in high-j orbits start to align due
to the particularly large Coriolis coupling, while particles
in neighboring other orbits still contribute to collective ro-
tation. Consequently, the states consisting of high-j-shell
configurations easily appear in the neighborhood of the
yrast line. A typical example is that the intrinsic struc-
ture of the S-band contains a large alignment coming from
the aligned two quasiparticles in the relevant high-j orbit,
in contrast to the absence of such alignment in the ground
band, at the angular momentum of the band crossing.

The basis for the analysis of shell-structure effects on
nuclear high-spin states is the study of one-particle mo-
tion in rotating potentials. The importance of understand-
ing the physics in the yrast region, especially in terms of
one-particle motion in rotating potentials, was repeatedly

emphasized by Bohr and Mottelson during the seventies.
The cranking model is easily treated and the rotational
frequency appears as an explicit parameter. Indeed, the
major part of the analysis of nuclear high-spin phenomena
has been carried out in terms of cranking models of vari-
ous types. In particular, the so-called Routhian diagram,
namely the diagram plotting one quasiparticle energies in
the rotating frame as a function of cranking frequency,
played for years a central role in the analysis of nuclear
high-spin data. I remember that around the middle of the
seventies Aage Bohr was repeating to say to us working at
the Niels Bohr Institute that one should draw and study
the Routhian diagram for fixed deformation and pairing
parameters. (At that time I stupidly thought that such
simplified Routhian diagrams might be qualitatively excel-
lent for getting ideas and ways of understanding physics,
but they would hardly be useful for practical numerical
applications.) In this connection, I later realized that,
for example, without plotting such Routhian diagrams it
would have been indeed difficult to notice the fact that
the interaction strength between the ground band and the
S-band, namely the sharpness of backbending phenomena,
is an oscillating function of the degree of high-j-shell filling
[22]. The extended study with numerical works using re-
alistic configuration spaces was eventually carried out by
R. Bengtsson and S. Frauendorf [23], and the Routhian di-
agrams of such a simple type turned out to be extremely
useful and have been successfully used in the analysis of
high-spin data for the following years.

However, one should keep in mind that the uniform ro-
tation of a system, which is a basic assumption of the
cranking model, may become a poor approximation under
certain circumstances, because the presence of fluctuations
in the collective rotational frequency is recognized if one
treats more reasonably the exchange of angular momen-
tum between individual particles and the potential pro-
duced by the rest of the system [24]. An example outside
the applicability of the cranking model in its simplest form
is the description of the crossings of the bands with a large
difference of spin alignments, irrespective of whether the
parameters in the model are chosen self-consistently or
not. The inapplicability comes from the fact that a mix-
ing of the two bands for a given rotational frequency is
basically considered in the cranking model, while the two
bands should interact for a given angular momentum [25].

The experimental front of high-spin physics made a
tremendous progress in the decades after the observation
of ”back-bending”, especially due to the development of
multi-gamma-ray detectors, which had a resolution of or-
ders greater than that of the last generation, and 4π or 8π
spectrometers; NORDBALL and TESSA → EUROGAM
and GASP → EUROBALL and GAMMASPHERE.

New frontiers were opened in the nuclear high-spin
physics, when the superdeformed band in 152

66 Dy86 was
reported [26] by finally observing gamma-ray spectra of
discrete transitions in the decay sequence of the superde-
formed band of 152Dy extending to I ≈ 60 h̄, thanks to the
development of detectors. The observation of the discrete
gamma-rays could directly and clearly show the presence
of the superdeformed band, compared with the informa-
tion extracted previously from the painstaking analysis of
complicated continuum gamma-rays. It is noted that the
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largest angular momentum, which was reported in discrete
line studies before the discovery of the superdeformed
band, was only 46 h̄. Because of the large moment of iner-
tia of superdeformed nuclei, the large angular-momentum
needed for the study of such systems does not necessar-
ily mean large rotational frequencies. Consequently, the
unique behavior of particles in high-j orbits could largely
remain also in the analysis of superdeformed bands. The
shape of superdeformation in nuclei, where the axis ratio
of the prolately-deformed shape is approximately 2:1, was
known already in the sixties as (low-spin) fission isomers
in actinide nuclei [27] and was interpreted as the result
of the shell-structure which appears first for much larger
quadrupole-deformation (β ≈ 0.6 in medium-heavy nuclei)
than the one known in nuclear ground states. In subse-
quent years the observation of super- or highly-deformed
bands was reported also in other mass region than A=150,
such as A=130 [28] and 190 [29], though the relevant shape
was not always close to 2:1.

Before 1975 the view might have been accepted that
there were nuclei that were statically deformed and they
were located far away from closed shells, while there
were nuclei that were spherical and they were located in
the neighborhood of closed-shell regions, though in some
nuclei located on the border of spherical and deformed
nuclei the simultaneous presence of the low-lying states
with spherical and deformed shapes was already recog-
nized. Thanks to the marvelous development of exper-
imental techniques in high-spin physics, collective rota-
tional bands were found at the excitation energy of sev-
eral MeV also in some nuclei such as 82Pb, 50Sn and 20Ca
isotopes [30], which are at least semi-magic and were sup-
posed to be spherical. While it has been known that for
a given nucleus Hartree-Fock calculations often predicted
local energy-minima at several different deformations, the
possible presence of such several shapes in a given nucleus
has been indeed confirmed thanks to the modern experi-
mental technique.

In the present special issue of Physica Scripta I expect a
number of contributions by specialists in the field of high-
spin physics. Therefore, to those contributions I would
leave to show a tremendous amount of beautiful results
obtained from all detailed numerical works in comparison
with exciting and impressive experimental data.

4. Triaxial shape in nuclei

Theoretically the existence of nuclear deformation other
than axially-symmetric deformation was predicted, and it
has been a great challenge to find the predicted axially-
asymmetric (triaxial) deformation of nuclei. In order to
pin down triaxial deformation, it is essential to find the
phenomena which are unique in axially-asymmetric shape.
In connection with available experimental data on ”high-j”
configurations in the yrast spectroscopy, some phenomena
such as the signature-dependence of B(E2:I → I−1) val-
ues in odd-A nuclei and anomalous signature-splitting of
Routhians in odd-A and odd-odd nuclei, were theoretically
suggested as the evidence for triaxial shape [31]. However,
before 2000 a very clear and firm evidence for stable tri-
axial shape was hardly obtained experimentally.

On the other hand, the two phenomena, wobbling exci-

tation modes and chiral bands, are unique in triaxial shape
and were intensively searched for by using the advanced
technique developed in high-spin physics. Observation of
beautiful wobbling excitation modes was reported in the
beginning of the 21st century, while, in my opinion, ex-
perimental data which clearly pin down chiral bands have
not yet been obtained though several candidates for chiral
bands have been reported. In this section I describe the
present understanding of these two phenomena.

4.1. Quantized wobbling observed in nuclei

Nuclei with a triaxial shape can rotate about any of the
principal axes showing rich spectra of collective rotation.
Though the rotation about the axis with the largest mo-
ment of inertia is energetically cheapest, while freezing the
intrinsic structure a series of rotational bands can be built
by transferring some angular momentum to the other two
axes. The family of the rotational bands is formulated in
terms of vibrational excitations. The classical analog of
this wobbling motion is the spinning motion of an asym-
metric top, but the motion in the nuclear system is quan-
tized and expressed in terms of the wobbling phonon num-
ber (nW ). A family of rotational bands with wobbling ex-
citations can be pinned down by specific electromagnetic
decay properties between them. This quantized wobbling
phonon picture was first proposed by A. Bohr and B. R.
Mottelson described in [1].

In 2001 such a wobbling band, a one-phonon wobbling
excitation, was discovered in the nucleus 163

71 Lu92 [32]. One
year later, in 2002 the next wobbling excitation, a two-
phonon rotational band, was reported in the same nucleus
[33]. In this experiment high spin states of 163Lu were pop-
ulated using a 29Si beam and a 139La target. The emitted
gamma-rays were measured with the EUROBALL detec-
tor system. The electromagnetic nature of the decay tran-
sitions from the newly observed band is analyzed and the
results clearly show the two-phonon nature of the wobbling
motion in good agreement with calculations, in which the
intrinsic degree of freedom of the rotational bands in 163Lu
is represented by one highly-aligned quasiproton in the
i13/2 shell [34].

The state with high-j aligned particles favors a specific
(triaxial) shape [35] depending on the degree of the j-shell
filling. The γ-value favored by the aligned i13/2 proton
in 163Lu is around +20◦ (in the so-called ”Lund conven-
tion” [36]). States with large alignments can easily appear
in the neighborhood of the yrast line because of the rel-
atively small rotational angular-momentum (and thereby
small rotational energy) needed for building a given to-
tal angular-momentum. Furthermore, using a particle-
rotor model, in which one quasiparticle of i13/2 protons
is coupled to a triaxial core, it was shown [37] that in the
presence of one high-j aligned quasiparticle and for the
γ-value strongly favored by the fully-aligned high-j par-
ticle the wobbling excitation of the collective rotational
angular-momentum of the core appears as the yrare band
in a certain range of angular momentum and the electro-
magnetic transitions between the yrast and yrare bands
show a unique pattern.

The two-phonon wobbling excitation observed in 163Lu
is one of the most exotic properties of the spinning nu-
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cleus. The observation has been possible not least due to
an increased efficiency in the detection of gamma-rays with
high resolution germanium spectrometers which have been
developed and became available during the last decades of
the 20th century. The observation of a two-phonon excita-
tion, of which the relevant degree of freedom is collective
rotation, amplifies the uniqueness of the finding for nu-
clear wobbling. The nucleus has revealed its exploitation
of the quantal wobbling degree of freedom which proves
the existence of triaxial nuclei and adds a new dimension
to the description of a rotating nucleus.

Since 2002 the observation of the rotational bands,
which showed spectroscopic properties (though often only
energies) very similar to those of 163Lu, were reported in
neighboring nuclei including 161,165,167Lu, indicating the
presence of the wobbling bands also in those nuclei. How-
ever, the original data on the nucleus 163Lu are so far
most beautiful and best to pin down the characteristic
features of not only the energies and spin-parity but also
electromagnetic properties and the two-phonon wobbling
excitation. Therefore, in the following I briefly describe
the observed data on 163Lu and their interpretation.

The essence of the experimental data on the wobbling
excitations of 163Lu [32, 33, 39] is shown in Figs. 4 and
5, compared with the calculated results obtained by using
the particle-rotor model, in which one high-j quasiparti-
cle is coupled to the core of triaxial shape [32, 34, 38].
The moments of inertia and alignments of the three TSD
(Triaxial, Strongly Deformed) bands, TSD1, TSD2 and
TSD3, are nearly identical, and the intrinsic structure of
those TSD bands is understood as containing an aligned
high-j (= i13/2) proton. TSD2 is identified as the one-
phonon (nW = 1) wobbling band built on the yrast TSD1
(nW = 0), while TSD3 as the two-phonon (nW = 2) wob-
bling band. The identification of the two-phonon band
is based on, among others, the unusually large (at this
high-spin) B(E2; TSD3→ TSD2) value in agreement with
both the phonon picture and the calculated result of the
particle-rotor model [34]. It is also noted that very small
values of B(E2; TSD3,I → TSD1,I − 2) are in agree-
ment with the assignment of TSD3 and TDS1 as nW=2
and 0, respectively. The γ-value in the calculation (γ ≈
+20◦) was fixed by the observed ratios, B(E2; TSD2,I
→ TSD1,I−1)/B(E2; TSD2,I → TSD2, I−2) and B(E2;
TSD3,I → TSD2, I−1)/B(E2; TSD3,I → TSD3,I−2),
which are insensitive to used values of moments of iner-
tia but are strongly increasing functions of γ, especially for
γ ≥ +20◦. It should be also mentioned that for nuclei with
Z≈71 and N≈94 ”ultimate cranker’ calculations [40] pre-
dicted triaxial shapes (γ ≈ ±20◦) with large quadrupole
deformations (ε2 ≈ 0.38) for all combinations of parity
and signature in the region of angular momenta, which
are relevant for the observed TSD bands of 163Lu. The
local minimum with γ > 0 is generally lowest, and at the
minimum the i13/2 orbital is lowest in energy of the proton
system with the favored signature αf = +1/2 where I =
α mod 2.

M1 transitions between ∆nW = 1 bands are in general
strongly reduced as seen in Fig. 5. This is because in the
text-book example [1] namely in the absence of the high-j
aligned particle, the total angular-momentum ~I is the only
vector in the system, thus, the magnetic dipole operator

is proportional to g~I. Then, M1 transitions should van-
ish in the case of the isotropic g-factor in the body-fixed
system. In the presence of fully-aligned intrinsic angular-
momentum ~j and when possible quantum-fluctuations are
neglected, the argument goes in a similar way to the above
case when ~I above is replaced by ~R where ~R expresses the
rotational angular-momentum of the even-even core. In
contrast, the B(E2; nW , I → nW ± 1, I − 1) value is pro-
portional to I−1. The observed magnitudes as well as the
zigzag pattern of both B(M1) and B(E2) values are in
good agreement with the wobbling picture obtained from
the model consisting of one i13/2 quasiparticle coupled to
the triaxial-rotor. In particular, it is interesting to note
that in Fig. 5 the zigzag pattern of both B(E2) and B(M1)
values of ∆I = 1 transitions in the wobbling regime is op-
posite to the one in the cranking regime. Furthermore,
in the cranking regime one expects that for ∆I = 1 tran-
sitions at high spins the B(M1) values are the order of
unity, while the B(E2)values are the order of I−2. Thus,
it is seen that the expectation from the cranking model
totally disagrees with the observation.

4.2. Chiral bands

Spontaneous formation of handedness or chirality is a sub-
ject of general interest in molecular physics, the charac-
terization of elementary particles, and in optical physics.
The occurrence of chirality in a nuclear structure was con-
sidered theoretically [41] and, subsequently, experimen-
tal level schemes in some odd-odd nuclei (for example,
134
59 Pr75) exhibiting the patterns similar to the predicted
ones have been reported [42].

The total Hamiltonian for the nuclear system is taken
to be invariant under the exchange of the right- and left-
handed geometry. Chirality in triaxial nuclei is character-
ized by the presence of three angular-momentum vectors,
which are generally noncoplanar and thereby make it pos-
sible to define chirality. One of the three angular-momenta
is the collective rotational angular-momentum, while the
other two in odd-odd nuclei are, in practice, angular-
momenta of quasiproton and quasineutron in high-j orbits.
The hallmark of nuclear chirality is the observation of two
almost degenerate ∆I = 1 rotational bands, chiral bands,
having the same parity. Those almost degenerate states
are expected to appear only after an appreciable amount
of collective rotation develops, while for higher rotational
frequency the basis for chirality, namely the noncoplanar
structure of the three angular-momenta, will be destroyed.
The reason is that in order to make a given large total
angular-momentum, it is cheapest to align all constituent
angular-momenta to the direction of collective rotation.
Thus, chiral bands may be found only in a limited inter-
mediate region of angular-momentum.

Observed so-called chiral bands, two ∆I = 1 bands, are
typically a few hundreds keV apart and one must find a
reasonable explanation of this energy difference. Further-
more, though the presence of two close-lying bands may in-
dicate chiral geometry, this geometry can be pinned down
in a more definitive way if electromagnetic transition prob-
abilities expected for the chiral bands are experimentally
confirmed. The trivial behavior of electromagnetic tran-
sition probabilities or the ”trivial selection-rule” expected
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in general chiral pair-bands is: ”For the states with I � 1
the corresponding probabilities and moments in the two
bands should be identical or in practice almost the same.”
Namely, when chiral geometry is realized, observed two
chiral-degenerate states may be written as

|I+〉 =
1√
2

(|IL〉+ |IR〉) (3)

|I−〉 =
i√
2

(|IL〉 − |IR〉) (4)

where left- and right-handed geometry states are denoted
by |IL〉 and |IR〉, respectively. For I � 1 it is expected
that

〈IL|EM |IR〉 ≈ 0 (5)

where EM expresses electromagnetic operators. Then,
within the chiral pair-bands one expects

B(EM ; I1+→ I2+) ≈ B(EM ; I1− → I2−) (6)
B(EM ; I1+→ I2−) ≈ B(EM ; I1− → I2+) (7)

In addition, in Ref. [43] the selection rule derived from
a special case of odd-odd nuclei, in which the orbits of
both odd-neutron and odd-proton are the same high-j, was
obtained by using the particle-rotor model in which one-
proton- and one-neutron-quasiparticle were coupled to a
triaxial core [1]. The majority of observed two close-lying
∆I = 1 bands in odd-odd nuclei around N ≈ 75 [42] be-
longs to this special case where j=h11/2. In this case, an
additional symmetry exists in the model Hamiltonian and
an associated quantum number can be obtained. Using
this quantum number a further selection rule for electro-
magnetic transitions was derived in an unambiguous man-
ner [43]. To my knowledge, two close-lying ∆I = 1 bands
observed in odd-odd nuclei, which approximately satisfy
this selection rule, are not yet found.

As a matter of fact, we have not yet observed two
close-lying ∆I=1 bands, of which electromagnetic tran-
sition probabilities approximately follow even the ”trivial
selection-rule”. Thus, we have to say that in spite of the
nice theoretical idea we have not yet obtained experimen-
tal data which show the presence of chiral bands. This fact
may come from the transient character of chiral bands,
which can survive only in a certain range of angular mo-
mentum. The detailed description of our present knowl-
edge about chiral bands together with so far available ex-
perimental data will be presented in other contributions
to this special issue.

5. Nuclear structure as neutron-drip-line ap-
proaches

An example of the systematic change of energies of one-
particle orbits due to weak binding which we learn in
traditional textbooks is Thomas-Ehrman shift. The re-
duction of the Coulomb energy for the loosely-bound pro-
ton orbits and for the unbound resonance states is called
Thomas-Ehrman shift. A typical example is: the rather
large difference (370 keV) in excitation energies of the
s1/2 levels between mirror nuclei, Ex = 0.87 MeV in 17

8 O9

where the neutron separation energy S(n)=4.14 MeV and
Ex = 0.50 MeV in 17

9 F8 where the proton separation en-
ergy S(p)=0.60 MeV, can be explained in terms of the

reduction in Coulomb energy associated with the loosely
bound proton [44]. In the case of protons the effect of weak
binding on energies and wave functions can be seen only
in such very light nuclei because the height of Coulomb
barrier becomes increasingly high as Z increases. In the
present section I confine my attention to the neutron-drip-
line nuclei despite the significant interest that is also as-
sociated with the proton-rich side (among others, nuclear
astrophysical importance, neutron-proton correlations in
the Z≈N region, new opportunities provided by p and 2p
decays).

The study of unstable nuclei, especially neutron-drip-
line nuclei which contain very weakly-bound neutrons, has
opened a new field in the research of the structure of finite
quantum-mechanical systems. The study is important not
only because of the interests in nuclear astrophysics such
as understanding the production of energy and the synthe-
sis of elements in stars and during stellar events, but also
because it provides the opportunity to learn the proper-
ties of fermion systems with very loosely bound particles,
some density of which can extend to the region far outside
the region of the main density of the system. Because the
Fermi level of drip-line nuclei lies close to the continuum,
both weakly-bound and positive-energy one-particle levels
play a crucial role in the many-body correlations of those
nuclei.

Among various exciting phenomena which have been
explored in the study of the structure of drip-line nuclei I
pick up the following two topics in this section. First, we
can find the systematic change of neutron shell-structure,
as S(n) decreases and approaches zero or even negative
values (namely, one-particle resonances). As a result of
it, traditional magic numbers known for stable nuclei may
be changed and, furthermore, nuclei with closed-shell con-
figurations in the traditional stable nuclei may become
deformed. I describe our understanding of these phenom-
ena in the following first subsection, while in the second
subsection I touch the halo phenomena in spherical and
deformed nuclei which can be found along the neutron-
drip-line having some components of weakly-bound `=0
or 1 neutrons.

5.1. Shell-structure change and deformation

Recent experimental data obtained by using radioactive
ion beams reveal that the neutron numbers such as N=8,
20 and 28 are no longer magic numbers in some nuclei
toward the neutron-drip-line. In traditional stable nu-
clei the neutron separation energy S(n) is typically 7-10
MeV. Thus, the information on one-particle shell-structure
around the energy has been easily obtained experimen-
tally. The prominent change of the level structure in the
region of εj(n) < 7 MeV can be seen, for example, in Fig.
2-30 of Ref. [44], where the energies of neutron orbits in
spherical Woods-Saxon potentials are shown. When the
potential strength becomes weaker by decreasing the mass-
number A, thereby decreasing the radius of the potential,
eigenvalues of all orbits εj(n) < 0 become less bound.
However, neutron-orbits with larger ` (thus, larger j) lose
the binding energy more rapidly than those with smaller
(j`). This is because due to the presence of higher cen-
trifugal barrier the major part of the wave functions of the

7



orbits with larger (j`) stays inside the potential and, thus,
eigenvalues εj(n) are more sensitive to the strength of the
potential than those of the orbits with smaller (j`). Taking
a finite square-well potential as an example, the probabil-
ity for bound one-neutron wave-functions to remain inside
the potential in the limit of eigenvalues εn`(< 0) → 0 is
tabulated in Table II.

Since the effective interactions, which can be reliably
used in Hartree-Fock (HF) calculations of unstable nuclei
far away from the stability line, are not yet established, in
the present article we use the Woods-Saxon potential for
nuclear one-body potential, of which parameters are taken
from p.239 of Ref. [44] unless otherwise stated.

Weakening of the Woods-Saxon potential can be done
by reducing either the potential radius or the potential
depth. The two ways of weakening change the shape of
the potential in respective manners. In Fig. 6 an example
of neutron one-particle energies as a function of the depth
of a spherical Woods-Saxon potential is given. It is noted
that as one-particle energy ε`j(< 0) approaches zero the
2s1/2 level approaches the 1d5/2 level and may eventually
become lower than the latter. Realizing this result the
possible neutron magic number N=16 was suggested in
Ref. [45].

In the following I use the simple argument: a large one-
particle level density around the Fermi level at the spher-
ical point may lead to a deformation. The argument is
based on the following known fact: In very light nuclei the
many-body pair-correlation may be neglected in a good
approximation. Then, nuclei with a few nucleons outside
a closed shell can be already deformed, because using the
near degeneracy of one-particle levels those nucleons have
a possibility of gaining energy by breaking spherical sym-
metry (Jahn-Teller effect [46]).

Due to the same physics mechanism as the nearly-
degenerate 2s1/2 and 1d5/2 levels in the case of weak bind-
ing as shown in Fig. 6, the 2p3/2 and 1f7/2 levels become
nearly degenerate in the case of weak binding or low-lying
resonant levels [47, 48]. The Nilsson diagram based on
a deformed Woods-Saxon potential which is appropriate
for 37

12Mg25 [47] is shown in Fig. 7. The 1f5/2 and 2p3/2

resonant levels for β=0 are found at +5.22 and +0.018
MeV with the widths 2.08 and 0.005 MeV, respectively,
where one-particle resonance in deformed potentials is de-
fined using the eigenphase formalism [49, 50]. Using the
eigenenergy ε(1f7/2) = −0.66 MeV, the distance between
the 1f7/2 and 2p3/2 levels is 680 keV, which is very small
compared with the distance obtained in the case that both
levels are well bound, as known from the presence of the
magic number N=28 in stable nuclei. This near degener-
acy of the 1f7/2 and 2p3/2 levels at β=0 directly means
the disappearance of the N=28 energy gap (or magic num-
ber) and leads to the fact that the N = 20-26 nuclei with
weakly-bound neutrons in the 1f7/2-2p3/2 shells may pre-
fer being deformed in the case that the proton configura-
tion allows the deformation [47].

In recent experiments [51] the even-even Mg-isotopes
(N=22-26) towards the neutron-drip-line are found to
be indeed deformed by observing small values of E(2+

1 )
and possible E(4+

1 )/E(2+
1 ) ratios, while the odd-N nuclei,

31
10Ne21 and 37

12Mg25, are duly interpreted as deformed p-
wave halo nuclei [52, 53].

5.2. Spherical and deformed halo phenomena

Interests in nuclear halo phenomena were aroused by the
observation of a remarkably large interaction cross section
of 11

3 Li8, which suggested a large deformation and/or a
long tail in the matter distribution [54]. The long tail is
later interpreted as a two-neutron halo phenomenon. The
observed neutron-halo structure makes it clear that the ex-
treme difference in the radial motion of weakly-bound `=0
and `=1 neutrons from the radial distribution of the core
particles indicates the approximate decoupling of the halo
particles from the core of the nuclear system. The effects
of this decoupling on pairing, deformation, and collective
rotation is the interesting issue to be studied.

The condition of the formation of neutron halo is that
one or two least-bound neutrons have small separation
energies, say S(n) < 1 MeV, and some components of
low orbital angular-momentum, `=0 or 1. If it is one-
neutron halo in spherical odd-N nuclei, the wave func-
tion of the halo neutron has the `=0 or 1 component with
the probability close to unity. If it is one-neutron halo in
deformed odd-N nuclei, the probability of `=0 or 1 com-
ponent in the halo-neutron wave-function can be consider-
ably smaller than unity. In the latter case the one-neutron
wave-function can contain considerable amounts of high-
` components, which are spatially distributed within the
same limited region as the well-bound even-even core nu-
cleus. Thus, in the reactions to which extended tail ex-
clusively contributes, for example Coulomb break-up re-
actions, one detects only the `=0 or 1 component of the
one-neutron wave-function. This seems to be the case of
Coulomb break-up reactions of 31

10Ne21 [52] and 37
12Mg25

[53]. Though the deformation of 31Ne and 37Mg was pre-
dicted in 2007 [47] as a result of the shell-structure of
neutron-drip-line nuclei described in the previous subsec-
tion, the evidence for deformation of the core nuclei 30Ne
and 36Mg was recently reported. See Refs. [55] and [51],
respectively.

As is seen from the examples of 31Ne and 37Mg, if nu-
clei are deformed, one-neutron halo can be found in many
more nuclei with different neutron-numbers N than in the
case that nuclei are limited to be spherical. This is be-
cause taking the example of `=0 halo, in the spherical
case one-particle s1/2-orbit is obtained only once in every
Nho=even major-shell, where Nho expresses the principal
quantum-number of the harmonic oscillator (ho). There-
fore, spherical `=0 halo may be observed only at very
special drip-line nuclei, in which a neutron s1/2-orbit lies
around the Fermi level. In contrast, in deformed nuclei
all Ωπ = 1/2+ intrinsic states acquire `=0 components in-
duced by the deformation and, thus, all those Ωπ = 1/2+

orbits have a chance to make a deformed s-wave halo if
the orbits are weakly bound [56]. Needless to say, an Ωπ

= 1/2+ orbit can be created from every positive-parity
orbits such as s1/2, d3/2, d5/2, g7/2, g9/2, ..... Further-
more, the `=0 component in a given Ωπ = 1/2+ orbit
increases as the eigenvalue εΩ (< 0) approaches zero, and
the probability of the `=0 component approaches unity in
the limit of εΩ → 0 [57, 58]. Similar comments apply to the
`=1 halo, because in the spherical case one-particle p1/2-
and p3/2-orbits are obtained only once in every Nho=odd
major shell. In contrast, in deformed nuclei Ωπ = 1/2−
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and 3/2− intrinsic states originating from every negative-
parity orbits such as p1/2, p3/2, f5/2, f7/2, h9/2, h11/2,
....... acquire `=1 components induced by the deforma-
tion, and all these orbits may make deformed `=1 halo if
the orbits are weakly bound. The `=1 component in given
Ωπ = 1/2− and 3/2− orbits increases also in the limit of
εΩ(< 0)→ 0, but the amount of increase depends on both
one-particle orbits and potentials.

6. Oblate ground state of even-even nuclei

It is known that almost all known deformed even-even nu-
clei in the medium-heavy mass region can be interpreted in
terms of prolate axially-symmetric dominantly quadrupole
deformed shape. In the absence of pair correlation one ob-
tains the number of prolate systems approximately equal
to that of oblate ones in the simple models such as one-
major-shell harmonic-oscillator or single-j shell. However,
when HF calculations with appropriate effective interac-
tions are performed in many well-bound nuclei, the dom-
inance of prolate shape except for very light nuclei is ob-
tained in agreement with the experimental observations.
In my opinion, the nature of the element responsible for
the overwhelming dominance of prolate shape has not yet
been adequately understood.

Figure 6-48 of Ref. [1] expresses the single-particle
spectrum for axially-symmetric quadrupole-deformed os-
cillator potentials and the resulting magic numbers for
(ω⊥ : ω3) = (1:2), (1:1) and (2:1). The magic numbers for
spherical shape (1:1) are well known in textbooks for years.
On the other hand, the prominent shell-structure with the
prolate shape (2:1) has played an important role in under-
standing the occurrence of both fission isomers [27, 1] and
high-spin superdeformed bands. These phenomena have
provided striking evidence for the shell structure in nu-
clear potentials with much larger deformations than those
encountered in the ground states of heavy nuclei. Though
neither spin-orbit potential nor surface effects, which are
important elements in nuclear potentials, are present, the
shell structure seen in the oscillator potential has helped
us to understand the physics in a simple terminology. In
the present section it is shown that the possible oblate
shape of the ground states of light well-bound nuclei, say
Z < 30, can also be easily understood in terms of the
”Nilsson diagram” based on the deformed oscillator po-
tential.

Recently, the neutron-rich nucleus 42
14Si28 was reported

to show a rotational spectrum [59] , namely the ratio of ob-
served excitation energies is E(4+

1 )/E(2+
1 )= 2.93(5) where

E(Iπ1 ) expresses the excitation energy of the lowest level
with the spin-parity Iπ, though the spin-assignment of the
4+ state is not yet actually pinned down experimentally.
The observed value of E(2+

1 ), 770 keV, is not small com-
pared with possibly prolate Mg isotopes (34,36,38Mg), of
which E(2+

1 ) is around 650 keV. The relatively low mo-
ment of inertia corresponding to E(2+

1 ) = 770 keV may
indicate an oblate deformation. One may wonder the rea-
son why the nucleus with the neutron-number N=28 is
deformed and not spherical, as the neutron-number 28 is
a well-known magic-number in the j-j coupling shell-model
and the observed neutron separation energy of 42Si, S(n)=
3.6 MeV, is not small.

When even-even nuclei in the range of 6 ≤ Z ≤ 30,
of which the observed electric quadrupole moment of the
first-excited 2+ state is clearly positive corresponding to
an oblate shape (or a fluctuation towards oblate shape),
are looked for, one finds only five nuclei: 12

6 C6, 28
14Si14,

34
16S18, 36

18S18 and 64
28Ni36. The proton and neutron num-

bers of these five nuclei remind us of the magic numbers
of oblate deformation with the frequency ratio (ω⊥ : ω3)
= (1:2) and (2:3) in the deformed oscillator potential. See
Figure 6-48 of [1]. Namely, the magic numbers are Z = N
= 6, 14, 26, 44, ... for the (1:2) deformation while N =
Z = 6, 8, 14, 18, 28, 34, 48, ... for the (2:3) deformation.
When the neutron and/or proton numbers are equal to
one of those magic numbers, the system in the deformed
potential is supposed to be especially stable for respective
(ω⊥ : ω3) deformations, though the total deformation is
determined by both proton and neutron numbers. The de-
formation parameter β of the ground state obtained from
experimental data is relatively large for lighter nuclei, but
certainly smaller than | β | = 0.7. The deformation pa-
rameter δosc = (ω⊥ − ω3)/ω̄, where ω̄ = (2ω⊥ + ω3)/3,
is equal to −0.43 and −0.75 for the ratio (ω⊥ : ω3) =
(1:2) and (2:3), respectively. Thus, except for extremely
light nuclei the magic numbers for the (2:3) shape may be
more realistic than those for the (1:2) shape, considering
δosc ≈ β.

In Fig. 8 the calculated Nilsson diagram for 42
14Si28,

which is obtained based on realistic Woods-Saxon poten-
tials, is shown [60]. From Fig. 8 it is seen that the energy
difference, ε(2p3/2)− ε(1f7/2), is only 1.65 MeV, which is
smaller than the standard N=28 energy gap known in the
j-j coupling shell model. Indeed, the energy gap on the
oblate side, which is largest around β = −0.4, is apprecia-
bly larger than the gap at β = 0. Large energy gaps on
the oblate side around β = −0.4 occur at N = 14, 18 and
28. Those neutron-numbers are in fact exactly the magic
numbers for the (2:3) deformation of the deformed oscil-
lator potential, though the Woods-Saxon potentials used
for drawing Fig. 8 of course contain the spin-orbit poten-
tial with the standard strength. In contrast, it should be
noted that the neutron numbers, at which large energy
gaps are found on the prolate side of Fig. 8, such as N =
12, 16, 24 and 28 around β = +0.4 have no relation with
the magic numbers for the prolate (ω⊥ : ω3) = (3:2) defor-
mation of the oscillator potential, N = ..., 14, 22, 26, 34,
... See also Fig. 9 for the particle numbers in slightly heav-
ier nuclei, at which large energy gaps are found in Nilsson
diagrams based on realistic potentials, in comparison with
those based on the oscillator potential.

For N=28 on the oblate side of Fig. 8 four doubly-
degenerate Nilsson levels with Nho=3 are occupied, while
none of Nho=2 orbits are unoccupied. This is the same
configuration as the one at the magic number 28 of the
(2:3) deformation of the oscillator potential. In short, the
possible oblate deformation of 42Si can be understood as
a result of the combination of the facts: (i) Narrowing the
spherical N=28 magic number due to the shell-structure
change in very neutron-rich nuclei; (ii) N=28 remains as
”a magic number” for the moderate-size (β ≈ −0.4) oblate
deformation in realistic nuclear potentials, and it is in fact
the magic number for the oblate (2:3) deformation of the
oscillator potential; (iii) Oblate shape is much favored also
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by the proton number Z=14. Note that the shell structure
for protons in lighter well-bound nuclei is not so different
from that for well-bound neutrons.

The different correspondence between the realistic
Woods-Saxon potential and the oscillator potential for the
prolate deformation from for the oblate deformation seems
to come mainly from the different behavior of the Nilsson
one-particle levels connected to the high-j shell (the 1f7/2

shell in the present case) on the prolate side from on the
oblate side. The different behavior of the high-j Nilsson
levels was discussed in detail in [61] in relation to the num-
bers of oblate/prolate nuclei. Due to the sign of nuclear
spin-orbit potential a given high-j orbit in a spherical po-
tential is strongly pushed down relative to other orbits be-
longing to the same oscillator major shell. Consequently,
on the oblate side the unique shell-structure coming from
the presence of the high-j orbit in realistic potentials is
disturbed soon after deformation sets in, and large energy
gaps in the Nilsson diagram occur at the particle numbers
similar to those in the oscillator potential. In contrast, on
the prolate side the shell structure originating from the
high-j orbit in realistic potentials survives in the range of
the realistic quadrupole deformation and, thus, the parti-
cle number, at which a large energy gap occurs, is consid-
erably different from that of the oscillator potential.

Because of the simple property of the shell structure
on the oblate side mentioned above, which is common
to the Woods-Saxon potentials with realistic parameters
(and also realistic HF potentials), one may pretty reliably
predict the light nuclei, of which the ground state may
have an oblate shape. A good candidate for the oblate
shape of light nuclei, which is immediately obtained from
the above discussion, is 20

6 C14.

7. Conclusions and discussions

In my understanding the interplay between one-particle
and collective degrees of freedom has been a fundamental
theme in the nuclear-structure physics of Bohr and Mot-
telson. In all topics described in the present article the
interplay is explicitly recognized. Taking an example of
particle-vibration coupling presented in Sec. II, first of all
the coupling gives the relation between the vibration of
an even-even nucleus and that of the neighboring odd-A
nuclei. At the same time the coupling specifies the struc-
ture of the vibration of the even-even nucleus itself such
as the transition density, which in turn gives the octupole
vibrational strength. The self-consistent description of the
vibration in terms of one-particle motion has to be satis-
fied. In the case that the coupling is weak enough to be
treated by perturbation, it is easy to quantitatively check
the validity of our understanding of the vibration.

The unique role played by particles in high-j orbits is
noticeable in almost all topics. Some unique features of
particles in high-j orbits are: approximately high-j wave-
functions not only for the practical size of quadrupole de-
formation but also under an appreciable amount of ro-
tation; large Coriolis coupling; strong alignment imme-
diately after rotation sets in; unique contribution to oc-
tupole vibrations; in case of full alignment of one high-
j quasiparticle a given γ deformation is preferred as a
function of shell-filling; unique contributions to the shell-

structure for prolate shape and for oblate shape, respec-
tively; and so on.

Though the idea of particle-vibration coupling itself can
be applied to any kind of vibrations in nuclei, numeri-
cal applications have been so far done extensively in the
isoscalar shape oscillations. When the vibration is the
isoscalar quadrupole oscillation in spherical nuclei, the as-
sociated particle-vibration coupling is often so strong that
it cannot be treated by perturbation. In the present arti-
cle the particle-vibration coupling, in which the vibration
is a typical isoscalar octupole shape-oscillation, the low-
est excited 3− state of 208

82 Pb126, is chosen. In this case
most data can be analyzed by the perturbation treatment
of the coupling. Thanks to the richness of available ex-
perimental data on the octupole-vibrations in neighboring
nuclei of 208Pb, I believe we have confirmed that Bohr and
Mottelson’s basic idea of the shape oscillations and the as-
sociated particle-vibration coupling in nuclei is definitely
on the right track.

Nuclear high-spin physics, in particular the yrast spec-
troscopy, was very actively and successfully developed dur-
ing the last three decades of the 20th century, together
with the tremendous progress in multi-gamma-ray detec-
tors, 4π or 8π spectrometers and heavy-ion accelerators.
At the beginning people were just fascinated by studying
various kinds of rotational bands obtained from the anal-
ysis of observed discrete γ-rays. The analysis of the data
around the deformed ground-state was carried out based
on Nilsson diagrams, while at higher spins it was often
done based on Routhian diagrams. A clear evidence for
Mottelson-Valatin effect [62], which was wondered once to
be the origin of back-bending phenomena, was of course
looked for. However, a clear-cut evidence for the phase
transition might have been difficult to be seen in finite
systems such as nuclei. After the discovery of the superde-
formed (2:1) band in 1986, hyperdeformed (3:1) bands
were looked for, but the analysis of further complicated
discrete and continuum γ-rays has been so far unsuccess-
ful in drawing any clear conclusion.

Experimental findings of quantized wobbling modes are
the result of the technology developed in high-spin physics.
The wobbling mode in 163Lu is the first one observed in
nuclei, and it is even now the most beautiful and complete
one. The presence of one aligned i13/2 proton in the in-
trinsic configuration of 163Lu certainly helped the mode
to appear around the yrast line so as to be found more
easily.

The electromagnetic properties of observed two close-
lying ∆I = 1 rotational bands are being explored presently
by several experimental groups. So far, whenever the elec-
tromagnetic transition probabilities were measured, they
did not follow even the ”trivial selection-rule”. However, if
the close-lying ∆I = 1 bands are not interpreted as chiral
pair-bands, one may wonder what they are.

Drip-line physics with halo phenomena is relatively
newly-developed area in the study of nuclear structure,
as a result of radioactive ion beam facilities constructed
all over the world. It has given us the opportunity to
learn the properties of fermion systems with very loosely
bound particles. The heaviest odd-N halo nucleus so far
known is 37Mg, which is interpreted as the deformed p-
wave halo. In heavier nuclei the ratio of the fraction of
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the particles, which lie in the extended region far outside
the region of the main density of the system, to the total
number of particles becomes smaller. Nevertheless, the
reactions such as Coulomb break-up, which are extremely
sensitive to the density far outside the region of the main
density, may still easily detect the halo structure. Then,
besides the possible halo related to the 2p1/2 level, the in-
teresting region of possible one-neutron halo heavier than
37Mg will be the neutron-drip-line nucleus with N ≈ 50
coming from the weakly-bound 3s1/2 orbit if the shape
is limited to be spherical. In contrast, if we look for the
prolately deformed region as a result of near-degeneracy
of the 1g9/2, 3s1/2 and 2d5/2 orbits in the spherical limit,
a deformed s-wave halo may be expected for the lowest-
lying Ωπ = 1/2+ orbit of the Nho=4 major shell, which
will lie around the Fermi level of neutron-drip-line nuclei
with N ≈ 40. See Fig. 9.

The reason for the overwhelming dominance of prolate
shape compared with oblate shape except for very light
nuclei has not really pinned down. The clear difference
of the splitting of one-particle levels coming from high-j
orbits on the prolate side from on the oblate side may have
something to do with the dominance. Due to the unique
shell-structure on the oblate side the particle numbers, at
which the large energy gap occurs on the oblate side of
the Nilsson diagram of realistic potentials, can be reliably
guessed from the magic numbers of the deformed oscillator
potential. In this connection, it would be interesting to
know whether the shape of 20

6 C14 is oblate or not.
At the end, once more I would like to express my sincere

and heartfelt thanks to Aage Bohr and Ben Mottelson for
guiding me for years to study and enjoy physics.

References

[1] A. Bohr and B. R. Mottelson, Nuclear Structure
(Benjamin, Reading, MA, 1975), Vol. II.

[2] I. Hamamoto, Physics Reports 10C, no.2, (1974).

[3] A. R. Barnett and W. R. Phillips, Phys. Rev. 186,
1205 (1969).

[4] O.Hausser, F. C. Khanna and D. Ward, Nucl. Phys.
A194, 113 (1972).

[5] E. Grosse et al., Nucl. Phys. A174, 525, (1971).

[6] J. W. Hertel, D. G. Fleming, J. P. Schiffer and H. E.
Gove, Phys. Rev. Lett. 23, 488 (1969).

[7] I. Hamamoto, Phys. Lett. 66B, 410, (1977).

[8] M. Nagao, in: Proc. of the Intern. Conf. on Nuclear
Structure Studies using Electron Scattering and Pho-
toreaction, eds. K. Shoda and H. Ui (Sendai, 1972)
p.121.

[9] J. H. Heisenberg and I. Sick, Phys. Lett. 32B, 249
(1970).

[10] M. Piiparinen et al., Z. Phys. A309, 87, (1982).

[11] P. Kleinheinz, et al., Phys. Rev. Lett. 48, 1457,
(1982).

[12] S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29,
no.16, (1955).

[13] S. A. Moszkowski, Phys. Rev. 99, 803, (1955).

[14] K. Gottfried, Phys. Rev. 103, 1017, (1956).

[15] A. Johnson, H. Ryde and J. Sztarkier, Phys. Lett.
B34, 605, (1971); A. Johnson, H. Ryde and S. A.
Hjorth, Nucl. Phys. A179, 753 (1972).

[16] S. Cohen, F. Plasil and W. J. Swiatecki, Ann. Phys.
82, 557 (1974).

[17] A. Bohr, Nobel Lecture, Dec.11, 1975 (Nobelstiftelsen
1976).

[18] A. Bohr and B. R. Mottelson, Phys. Today, 32, 25
(1979).

[19] I. Hamamoto, Treatise on Heavy-Ion Science, Vol.3,
313, (Plenum Publishing Corporation, 1985).

[20] J. D. Garrett, G. B. Hagemann and B. Herskind, Ann.
Rev. Nucl. Part. Sci. 36, 419 (1986).

[21] A. Bohr and B. R. Mottelson, Phys. Scri. 10A, 13
(1974).

[22] R. Bengtsson, I. Hamamoto and B. R. Mottelson,
Phys. Lett. 73B, 259 (1978).

[23] R. Bengtsson and S. Frauendorf, Nucl. Phys. A327,
139 (1979).

[24] I. Hamamoto, NUCLEAR STRUCTURE 1985,
p.129, Proc. of the Niels Bohr Centennial Conference,
Copenhagen, May, 1985 (NORTH-HOLLAND).

[25] I. Hamamoto, Nucl. Phys. A271, 15, (1976).

[26] P. Twin et al., Phys. Rev. Lett. 57, 811 (1986).

[27] S. M. Polikanov et al., J. Exptl. Theoret. Phys.
(USSR) 42, 1464 (1962); Transl. Soviet Phys. JETP
15, 1016 (1962).

[28] P. J. Nolan and P. J. Twin, Ann. Rev. Nucl. Part.
Sci. 38, 533 (1988).

[29] R. V. F. Janssens and T. L. Khoo, Ann. Rev. Nucl.
Part. Sci. 41, 321 (1991).

[30] Some experimental data are collected in: K. Heyde
and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

[31] For example, see: I.Hamamoto, Nucl. Phys. A520,
297c (1990).

[32] S.W. Ødeg̊ard et al., Phys. Rev. Lett. 86, 5866
(2001).

11



[33] D. R. Jensen et al., Phys. Rev. Lett. 89, 142503
(2002).

[34] I. Hamamoto, Phys. Rev. C 65, 044305 (2002).

[35] I. Hamamoto and B. R. Mottelson, Phys. Lett. B127,
281 (1983).

[36] G. Andersson et al., Nucl. Phys. A268, 205 (1976).

[37] I. Hamamoto, Phys. Lett. B193, 399 (1987).

[38] D. R. Jensen et al., Nucl. Phys. A703, 3 (2002).

[39] G. B. Hagemann, Eur. Phys. J. A20, 183 (2004).

[40] H. Schnack-Petersen et al., Nucl. Phys. A594, 175
(1995).

[41] S. Frauendorf and J. Meng, Nucl. Phys. A617, 131
(1997).

[42] K. Starosta et al., Phys. Rev. Lett. 86, 971 (2001).

[43] T. Koike, K. Starosta and I. Hamamoto, Phys. Rev.
Lett. 93, 172502 (2004).

[44] A. Bohr and B. R. Mottelson, Nuclear Structure
(Benjamin, Reading, MA, 1969), Vol. I.

[45] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and
I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000).

[46] H. Jahn and E. Teller, Proc. R. Soc. London, Ser.
A161, 220 (1937).

[47] I. Hamamoto, Phys. Rev. C76, 054319 (2007).

[48] I. Hamamoto, Phys. Rev. C85, 064329 (2012).

[49] R. G. Newton, Scattering Theory of Waves and Par-
ticles (McGraw-Hill, New York, 1966).

[50] I. Hamamoto, Phys. Rev. C72, 024301 (2005); C73,
064308 (2006).

[51] P. Doornenbal et al., Phys. Rev. Lett. 111, 212502
(2013).

[52] T. Nakamura et al., Phys. Rev. Lett. 103, 262501
(2009); 112, 142501 (2014).

[53] N. Kobayashi et al., Phys. Rev. Lett. 112, 242501
(2014).

[54] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).

[55] P. Fallon et al., Phys. Rev. C81, 041302 (2010).

[56] I. Hamamoto and B. R. Mottelson, C. R. Physique 4,
433 (2003).

[57] T. Misu, W. Nazarewicz and S. Åberg, Nucl. Phys.
A614, 44 (1997).

[58] I. Hamamoto, Phys. Rev. C69, 041306(R) (2004).

[59] S. Takeuchi et al., Phys. Rev. Lett. 109, 182501
(2012).

[60] I. Hamamoto, Phys. Rev. C89, 057301 (2014).

[61] I. Hamamoto and B. R. Mottelson, Phys. Rev. C79,
034317 (2009).

[62] B. R. Mottelson and J. G. Valatin, Phys. Rev. Lett.
5, 511 (1960).

12



Table 1: The decay scheme of the septuplet (h9/2 3−) Iπ in 209Bi. In the second column the calculated and experimental
energy shifts from the unperturbed energy 2.614 MeV are shown. In the third, fourth and fifth columns the values
of B(Eν) and B(Mν) are shown in respective Weisskopf units, where the number without brackets is the calculated
value and the one with brackets is the experimental value taken from Ref. [6]. The numbers in parentheses express
the branching ratios. In the calculation the values [epeff (E1)]2 = 0.14 e2, g(3−) = 0.58, gs,eff (Mν) = 0.35 gs,free and
epeff (E3) = 1.3 e were used. The calculated results are taken from Ref. [2].

Iπ δEcalc/δEexp → 9/2− (g.s.) → 7/2− (0.89 MeV) → 13/2+ (1.60 MeV)
(keV)

3/2+ −190/−120 20.8 E3 (99) 3.8 x 10−2 M2 (1)
[(100)]

9/2+ −89/−49 1.1 x 10−3 E1 (99) 3.1 x 10−5 E1 (1)
[(1.4±1.8) x 10−3 E1 (100)] [≤ (2.5±3) x 10−4 E1 (≤ 5)]

7/2+ −6/−29 1.5 x 10−5 E1 (30) 1.2 x 10−4 E1 (70)
[(1.4±0.8) x 10−5 E1 (33)] [(1±0.5) x 10−4 E1 (67)]

11/2+ −31/−14 6.1 x 10−4 E1 (99.5) 3.6 x 10−3 M1 (0.5)
[(1.7±1) x 10−4 E1 (85)] [(6.2±4) x 10−2 M1 (15)]

13/2+ −63/−14 30.2 E3 + 3.5 x 10−3 M2 (14) 6.7 x 10−3 M1 (86)
[(1)] [(1.1±0.6) x 10−1 M1 (99)]

5/2+ +7/+4 31.9 E3 + 8.6 x 10−3 M2 (49) 2.2 x 10−6 E1 (51)
[(41)] [(2.2±1) x 10−6 E1 (59)]

15/2+ +156/+130 30.3 E3 (55) 9.3 x 10−4 M1 (45)
[(53)] [(7±2) x 10−4 M1 (47)]

Table 2: Probability for bound one-neutron wave-functions to remain inside a finite square-well potential with radius
R0, in the limit that eigenenergies εn` (< 0) approaches zero.

` 0 1 2 3 ` ( 6= 0)∫ R0

0
| Rn`(r) |2 dr 0 1/3 3/5 5/7 (2`− 1)/(2`+ 1)
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even-even nucleus with   E4 / E2 > 2.7 
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Fig. 3: Regions of deformed even-even nuclei. Even-even nuclei have the ground-state spin-parity 0+, without exception. The
overwhelming majority of these has 2+ first excited state. Writing the excitation energies of the lowest-lying 2+ and 4+ states
as E(2+

1 ) and E(4+
1 ), the filled circle denotes even-even nuclei, in which E(4+

1 )/E(2+
1 ) > 2.7 . The data are taken from

http://www.nndc.bnl.gov/ensdf/. The line of β-stability is indicated by the thin long-dashed curve. The thin straight lines
parallel to the x and y axes show the magic numbers of protons and neutrons, which are known in nuclei along the β-stability
line. Except for very light nuclei (Z≤8) the neutron drip line, at which nuclei become unstable for neutron emission, is not
known experimentally. The border of deformed nuclei plotted for the neutron-rich region of medium-heavy nuclei is often equal
to the border of neutron-rich nuclei, for which the energy of the 4+

1 state is presently known.
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Fig. 4: Experimental data on the wobbling excitations in 163Lu. The figures on the left and the upper right are made from
measured level scheme, while measured B(E2) values in comparison with calculated B(E2) values are shown in the figure on the
lower right. B(E2)in expresses B(E2; nW , I → nW , I−2), while B(E2)out denotes B(E2; nW , I → nW − 1, I−1) or B(E2; nW , I
→ nW − 2, I−2). TSD2 is identified as the one-phonon (nW=1) wobbling band built on the yrast TSD1 (nW=0), while TSD3
as the two-phonon (nW=2) wobbling band. The author expresses her thanks to G. B. Hagemann for the present figure.

Fig. 5: Experimental electromagnetic properties of the transitions connecting TSD2 with TSD1 are shown by filled squares with
experimental errors. B(E2)out represents B(E2; TSD2, I → TSD1, I−1), and B(M1) expresses B(M1; TSD2, I → TSD1, I−1),
while B(E2)in denotes B(E2; TSD2, I → TSD2, I−2). Filled circles denote calculated values obtained from the particle-rotor
model, of which the result shows that the wobbling excitation becomes the lowest unfavored-signature (αu) state in the relevant
angular-momentum region, while open circles represent calculated values obtained by using cranking model. The figure is taken
from Ref. [32]
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Neutron one-particle levels in Woods-Saxon potential 
R = 3.266 fm (A = 17)               a = 0.67 fm 
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Fig. 6: Calculated neutron one-particle energies as a function of the depth of spherical Woods-Saxon potentials. The `=2
one-particle resonant level continues to be well defined up to ε = 2 MeV, while there is no one-particle resonance for `=0. The
parameters of the Woods-Saxon potential except for the depth are kept constant and are designed approximately for the nucleus
17C, for which the realistic depth should be around −40 MeV. The figure is taken from Ref. [47].
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Neutron one-particle levels in Woods-Saxon potential 
VWS = − 40.0 MeV      R = 4.232 fm (A = 37)     a = 0.67 fm 
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Fig. 7: Calculated neutron one-particle levels as a function of axially-symmetric quadrupole deformation. Parameters of the
Woods-Saxon potential are designed approximately for the nucleus 37Mg. Note that the 2p3/2 level at β=0 is a one-particle
resonant level with the energy +0.018 MeV. The 2p1/2 resonant level is not obtained at β=0, and for β 6= 0 no Ωπ = 1/2−

one-particle level connected to the possible 2p1/2 level can survive as a resonant level. The Ωπ = 1/2− levels are denoted by
dotted curves, the Ωπ = 3/2− levels by dashed curves, the Ωπ = 5/2− levels by dot-dashed curves, and the Ωπ = 7/2− levels by
dot-dot-dashed curves, while positive-parity levels are plotted by solid curves. The Ωπ = 1/2− resonant level connected to the
one-particle resonant 1f5/2 level at β=0 cannot survive as a resonance for β > 0.12 because of the increasing `=1 component
inside the nuclear radius. The definition of one-particle resonance in a deformed potential can be found in [49, 50]. The figure
is taken from Ref. [47].
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Neutron one-particle levels of 42Si in W-S potential 

VWS = − 40.0 MeV        R = 4.41 fm 

Ωπ=1/2± Ωπ=3/2± Ωπ=5/2± Ωπ=7/2± 

 

1f5/2 

2p1/2 

 

 

 

 
 

2p3/2 

1f7/2 

1d3/2 

2s1/2 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-10

-8

-6

-4

-2

0

2

4

6

8

β 

ε Ω
  (

M
eV

) 

Fig. 8: Calculated one-particle energies for neutrons of 42
14Si28 as a function of axially-symmetric quadrupole deformation. Bound

one-particle energies at β=0 are −8.50, −7.24, −2.42 and −0.77 MeV for the 2s1/2, 1d3/2, 1f7/2 and 2p3/2 levels, respectively,
while one-particle resonant 2p1/2 and 1f5/2 levels are obtained at +0.20 MeV with the width of 0.20 MeV and +3.25 MeV with
the width of 0.58 MeV, respectively, which are denoted by filled circles. One-particle resonant energies for β 6= 0 are not plotted
unless they are important for the present discussion. For simplicity, calculated widths of one-particle resonant levels are not
shown. The neutron numbers, which are obtained by filling all lower-lying levels, are indicated with circles. The parity of levels
can be seen from the ` values denoted at β=0; π = (−1)`.
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Neutron one-particle levels of 66Ti in W-S potential 

VWS = − 40.0 MeV        R = 5.13 fm 
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Fig. 9: Calculated neutron one-particle energies as a function of axially-symmetric quadrupole deformation. Parameters of the
Woods-Saxon potential are chosen for the nucleus 66

22Ti44. Bound one-particle energies at β = 0 are −8.82, −5.54, −3.99, −3.94,
and −0.48 MeV for the 1f7/2, 2p3/2, 2p1/2, 1f5/2, and 1g9/2 levels, respectively, while one-particle resonant 2d5/2, 1g7/2, and
1h11/2 levels are obtained at +0.96, +5.66, and +7.57 MeV, respectively. The 2d3/2 one-particle resonant level is not obtained
for the present potential, however, its approximate position at β = 0 is denoted by an open circle, at which an eigenphase does
not reach, but comes close to π/2. The 3s1/2 resonant level does not exist in any case, but the open circle at β = 0 indicates the
energy obtained by extrapolating the solid curve of the bound Ωπ = 1/2+ orbit for β > 0.12 to β = 0, although the calculated
solid curve reaches 0 at β = 0.12 and cannot continue to β < 0.12. The major component of the solid curve for εΩ(< 0) → 0
is clearly 3s1/2. One-particle resonant levels for β 6= 0 are not plotted if they are not relevant for the present discussion.
The neutron numbers, 28, 34, 36, 38, 40 and 48, which are obtained by filling all lower-lying levels, are indicated with open
circles. One-particle levels with Ω = 1/2, 3/2, 5/2, 7/2 and 9/2 are expressed by solid, dotted, long-dashed, dot-dashed, and
short-dashed curves, respectively, for both positive and negative parities.
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