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We demonstrate the damping of quantum octupole vibrations near the touching point when two colliding
nuclei approach each other in the mass-asymmetric208Pb + 16O system, for which the strong fusion
hindrance was clearly observed. We, for the first time, applythe random-phase approximation method
to the heavy-mass asymmetric di-nuclear system to calculate the transition strengthB(E3) as a function
of the center-of-mass distance. The obtainedB(E3) strengths are substantially damped near the touching
point, because the single-particle wave functions of the two nuclei strongly mix with each other and a
neck is formed. The energy-weighted sums ofB(E3) are also strongly correlated with the damping factor
which is phenomenologically introduced in the standard coupled-channel calculations to reproduce the
fusion hindrance. This strongly indicates that the dampingof the quantum vibrations universally occurs
in the deep sub-barrier fusion reactions.
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Heavy-ion fusion reactions are an excellent probe to
investigate the fundamental features of the dynamics for
many-body quantum systems. When a projectile ap-
proaches a target, the Coulomb barrier is formed, because
of the strong cancellation between the Coulomb repulsion
and the nuclear attractive force. Nuclear fusion takes place
when the projectile penetrates through this Coulomb bar-
rier. At incident energies in the vicinity of the Coulomb
barrier height, called the sub-barrier fusion, the strong en-
hancements of fusion cross sections, compared to the esti-
mations of a simple one-dimensional potential model, have
been observed in many systems. These enhancements are
well accounted for in terms of the couplings between the
relative motion of the colliding nuclei and the intrinsic de-
grees of freedom such as collective vibrations of the target
and the projectile [1]. The coupled channel (CC) model,
which takes into account this mechanism, has been suc-
cessful in describing such enhancements [2, 3].

Recent experiments at extremely low incident energies,
called the deep sub-barrier energies, revealed, however,
that steep falloffs of the fusion cross sections, compared
to the estimations of the standard CC model, emerge in
a wide range of mass systems [4, 5] (see Ref. [6] for de-
tails). These steep falloff phenomena are often called the
fusion hindrance. An important quantity for understanding
this fusion hindrance is the potential energy at the touching
point of the colliding nuclei, which is strongly correlated
with the threshold incident energy for the emergence of the
fusion hindrance. That is, the fusion hindrance would be
associated with the dynamics in the overlap region of the
two colliding nuclei (see Fig. 1 in Ref. [7]).

A theoretical challenge is how to extend the standard CC
model to describe these fusion hindrance phenomena in the
overlap region. Two different models based on assumptions
opposite to each other have been proposed [6]. One is the
sudden approach proposed by Mişicu and Esbensen [8, 9].

They constructed a heavy ion-ion potential with a shallow
potential pocket considering the Pauli principle effect act-
ing when two colliding nuclei overlap with each other. The
other is the adiabatic approach proposed by Ichikawaet
al. [10]. In this approach, neck formations between the col-
liding nuclei are taken into account in the overlap region.
Based on this picture, the sudden and adiabatic processes
were smoothly jointed by phenomenologically introducing
the damping factor in the coupling form factor [11]. Later,
we showed that the physical origin of the damping factor
is the damping of quantum vibrations of the target and the
projectile near the touching point using the random-phase
approximation (RPA) method for the light mass-symmetric
16O + 16O and40Ca+ 40Ca systems [12].

In this Letter, we show that the damping of the quantum
vibrations near the touching point is a universal mechanism
in the deep sub-barrier fusions and is responsible for the
fusion hindrance. A typical example optimally suited for
this purpose is the recent precise data for the208Pb+ 16O
fusion [5]. The performances of both the sudden and adi-
abatic models have been well tested in this system [9, 11].
The adiabatic model can reproduce well the experimental
data rather than the sudden model for the fusion hindrance.
To discriminate which model is a better description, we
here show the physical origin of the damping factor intro-
duced in Ref. [11] in the heavy-mass asymmetric208Pb+
16O system.

In the standard CC model (and the sudden model), the
vibrational modes of the individual colliding nuclei are as-
sumed not to change, even when the two nuclei strongly
overlap with each other. However, as shown in Ref. [12],
the single-particle wave functions are drastically changed
by level repulsions, which are associated with the neck
formations. We apply the RPA method to the heavy-
mass asymmetric system,208Pb+ 16O, and show that these
mechanisms lead to damping of quantum vibrations in the
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colliding nuclei near the touching point. This is exhib-
ited by a drastic decreases of theB(E3) strengths carried
by low-energy RPA excitation modes.

To illustrate our main idea, we first discuss the Nils-
son diagram for protons as a function of the center-of-
mass distance,R, in the 208Pb + 16O system. We calcu-
late the mean-field potential for the208Pb + 16O system
using the folding procedure with the single Yukawa func-
tion [13]. Before the touching point, we assume the spher-
ical shape for both nuclei. After the touching point, we
describe the nuclear shapes with the reflection-asymmetric
lemniscatoids parametrization [14]. (The parametrization
dependence is negligible, because in this Letter we do
not discuss the strongly overlapping region.) Based on
these densities, we also calculate the Coulomb potential.
We use the radius for the proton and neutron potentials,
R0, with R0 = 1.27A1/3 fm, where A is the total nu-
cleon number. The depths of the neutron and proton po-
tentials for individual16O and208Pb nuclei,VT and VP,
are taken from Ref. [15]. In the folding procedure, we
smoothly joint the two different depth parameters of the
mean-field potentials for18O and 208Pb by the function
V0(z) = 1

2

[
(VT − VP) · erf{(z − zc)/µ} + (VT + VP)

]
, where

zc denotes the center position between the two surfaces of
the colliding nuclei andµ denotes the smoothing parameter.
We takeµ = 0.8 fm, which is the same as the diffuseness
parameter of the single-particle potential. In the calcula-
tions, the origin is located at the center-of-mass positionof
the two nuclei.

Using the obtained mean-field potentials, we solve the
axially-symmetric Schrödinger equation with the spin-
orbit force. The details of the model and the parameters
are similar to Refs. [13, 15]. Then, thez component of
the total angular momentum,Ω, is the good quantum num-
ber. Note that the parity is not a good quantum num-
ber because the mean-field potential for the whole sys-
tem breaks the space-reflection symmetry. We expand the
single-particle wave functions in terms of the deformed
harmonic-oscillator bases in the cylindrical coordinate rep-
resentation. The deformation parameter of the basis func-
tions is determined so as to cover the target and the projec-
tile. The basis functions with energies lower than 26~ω
are taken into account.

Figure 1 shows the Nilsson diagram as a function of the
center-of-mass distanceR. In the figure, we can see ex-
tremely strong Coulomb effect of208Pb on16O. The single-
particle p1/2 and p3/2 states in16O are shown by the (red)
thick solid lines. Even at the large separation distance
R = 20 fm, the energies of these two states are higher than
the Fermi energy of thes1/2 state in208Pb. The miss-match
of the two Fermi levels between16O and208Pb occurs due
to the strong Coulomb effect. At an infinite separation dis-
tance, the energies of thep1/2 and p3/2 states for16O are
−5.88 and−10.7 MeV, respectively. Thus, atR = 20 fm,
the depth of the mean-field potential for16O becomes shal-
low by about 5 MeV due to the Coulomb effect from208Pb.
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FIG. 1. (Color online) Nilsson diagram for the208Pb+ 16O sy-
atem as a function ofR. The light gray (red) thick lines represent
the occupiedp1/2 and p3/2 states in16O. The dark gray (blue)
thick solid lines show the occupied states in208Pb. The gray area
indicates the overlap region of the colliding nuclei. The arrows
represent the main particle-hole excitations constituting the RPA
modes.

The single-particle energies of thep1/2 and p3/2 states
in 16O remarkably increase with decreasingR due to the
increasing Coulomb effect from208Pb. Then, many level
crossings and repulsions between the energy levels of16O
and208Pb occur. With decreasingR, the energy of thep1/2
state becomes positive aroundR = 18 fm, that is, it changes
into a resonance state, but there is still a sufficiently high
Coulomb barrier. After that, it goes across thef5/2 andp3/2
states of208Pb aroundR = 16 fm and thep1/2 state of208Pb
aroundR = 13 fm. BelowR = 13 fm, the Coulomb bar-
rier becomes lower due to the attractive nuclear mean-field
potential. Then, the strong mixture of the single-particle
states between16O and208Pb starts in many levels, which
causes many level splittings seen in the Nilsson diagram.

We now solve the RPA equation at eachR for the mass-
asymmetric208Pb + 16O system. We calculate the first
excited 3− (octupole vibrational) states of16O and208Pb,
which give the main contributions in the standard CC cal-
culations. We can easily apply the RPA method to the di-
nuclear system, because its the wave function is described
with a one-center Slater determinant. We take the single-
particle levels for each neutron and proton up to 200th
and the coherent superposition of all one-particle one-hole
states with excitation energies below 30 MeV. We follow
the diabatic single-particle configuration correspondingto
the ground state of16O. The occupiedp1/2 and p3/2 states
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in 16O are represented by the light gray (red) thick curves
in Fig. 1. We carry out the RPA calculation avoiding im-
mediate vicinities of the level-crossing points. We use the
density-dependent residual interaction taken from Ref. [16]
and tune it so that the energy of the spurious center-of-
mass motion becomes zero. We calculateB(E3) values for
the RPA solutions withΩ = 0 in individual nuclei using
the shifted octupole operator,̂Q30(R − R′0), whereR′0 is the
center-of-mass position of the projectile or target nucleus.

At the large separation distanceR = 20 fm, we obtain the
first 3− excited states of individual nuclei. The obtained
energies andB(E3, 3−1 → 0+1 ) values are 2.86 MeV and
7.13×104 e2 · fm6 for 208Pb and 4.64 MeV and 124e2 · fm6

for 16O. The obtained transition densities and currents for
the first 3− states of16O and208Pb are depicted in Figs. 2 (a)
and (c). AtR = 20 fm, these modes are isolated. When the
two nuclei approach each other, however, these modes start
to fragment into several states. To evaluate the octupole
collective strengths carried by low-energy excitations, we
then calculate the energy-weighted sum ofB(E3) strengths.
By checking the spectrum of all obtained RPA modes as a
function ofR, we determined to take the sum for octupole
excitations withE ≤ 4 MeV andE ≤ 6 MeV for 208Pb and
16O, respectively.

Figure 3 shows theB(E3) strengths for (a)16O and (b)
208Pb as functions ofR. The calculated values (the solid
circles) drastically decrease near the touching point (the
boundary between the white and gray areas) in both nuclei.
The transition densities and currents for the RPA modes
with the maximumB(E3) at the touching point are depicted
in Fig. 2 (b) and (d). These figures indicate that the oc-
tupole collectivities of both16O and208Pb are considerably
diminished by each colliding partner.

The microscopic origin of the damping of these vibra-
tions is easily seen as follows. AtR = 20 fm, the main
proton components of the 3− modes are the excitationsp1/2
→ d5/2 andp3/2→ d5/2 for 16O, and the excitationsd3/2→

h9/2 ands1/2→ f7/2 for 208Pb [see the (red and blue) arrows
aroundR = 19 fm in Fig. 1]. The density distributions of
the p1/2 andd5/2 states in16O are displayed in (a) and (b)
of Fig. 4. Their wave functions suffer major modifications
near the touching point atR = 11.65 fm, as depicted in (c)
and (d) of Fig. 4 [see also the (red) arrow atR = 11.65 fm
in Fig. 1]. We can clearly see the neck formations in (d).
Also for 208Pb, similar drastic changes of single-particle
wave functions occur for both protons and neutrons near
the Fermi surface, causing the damping of the collectivity
of the 3− vibration [see the (blue) arrows around 10.6 fm
in Fig. 1].

Finally, to see the correlation with the damping factor
phenomenologically introduced in the CC calculation, we
compare the calculated results with the damping factor that
well reproduced the experimental data of the fusion cross
section for208Pb+ 16O [11]. The damping factor is given
by Φ(r, λα) = e−(r−Rd−λα)2/2a2

d for r < Rd + λα (otherwise
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FIG. 2. (Color online) Contour maps of the proton transitionden-
sities and current distributions for the first excited 3− states of16O
and208Pb atR = 20 and 10.73 fm. The contour lines correspond
to multiples of 0.01 fm−2 and 0.005 fm−2 for 16O and208Pb, re-
spectively. The arrows represent the current density. The currents
and colors are normalized atR = 20 fm in individual nuclei. The
(red) thick solid circles indicate the half depth of the mean-field
potential.

Φ = 1), wheread andλa denote the damping width and the
eigenvalues of the coupling matrix elements, respectively.
The parameterRd is given byRd = rd(A1/3

T +A1/3
P ), whererd

denotes the damping radius parameter, andAT andAP the
mass numbers of the target and the projectile, respectively.
In the calculation of Ref. [11],rd = 1.298 fm andad = 1.05
fm are used. Then, the largest eigenvalue ofλα is 1.46 fm.
In Figs. 3 (a) and (b), the dashed curves represent the damp-
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FIG. 3. Energy-weighted sums ofB(E3) for (a)16O and (b)208Pb
as functions ofR. The solid circles show the results of the RPA
calculations. The dashed curves represent the damping factor
which well reproduces the experimental data of the fusion cross
section for208Pb+ 16O taken from Ref. [11]. The gray area indi-
cates the overlap region of the colliding nuclei.
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FIG. 4. (Color online) Density distributions of thep1/2 andd5/2
states originally belonging to16O atR = 20 fm and their evolu-
tions atR = 11.65 fm. The (red) thick solid circles indicate the
half depth of the mean-field potential. The contour lines corre-
spond to multiples of 0.0015 fm−3. The colors are normalized at
0.01 fm−3.

ing factor with these parameters normalized atR = 20 fm.
We can see that the damping factor strongly correlates with
the calculated energy-weighted sums ofB(E3) in the low-
energy region, which clearly indicates that the damping of
the quantum vibrations indeed occurs when the colliding
nuclei approach each other.

In summary, we have demonstrated the damping of the
quantum octupole vibrations of both16O and208Pb, when

they approach each other. To show this, we, for the
first time, applied the RPA method to the heavy mass-
asymmetric208Pb + 16O system. We have discussed the
Nilsson diagram as a function of the center-of-mass dis-
tanceR and have shown that the single-particle energies
in 16O are largely sifted to the positive-energy direction
by the strong Coulomb effects from the heavy-mass208Pb
in a colliding process. We calculated theB(E3) strengths
for 16O and208Pb as a function ofR. The obtainedB(E3)
strengths are substantially damped near the touching point
of the colliding nuclei. The obtained energy-weighted sum
of B(E3) in the low-energy region exhibits a strong corre-
lation with the damping factor that reproduces well the ex-
perimental data of the fusion cross section for208Pb+ 16O.
This is a clear evidence that the damping of the quantum
octupole vibrations indeed occur near the touching point in
the deep sub-barrier fusion reactions. The drastic change of
single-particle wave functions consitituting the low-energy
collective excitations discussed in this paper would com-
monly occur in all deep sub-barrier reactions. Therefore,
the damping of quantum vibrations in both the target and
the projectile near the touching point seems to be a univer-
sal mechanism causing the fusion hindrance, which should
be taken into account in the standard CC model.
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