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We demonstrate the damping of quantum octupole vibratieasthe touching point when two colliding
nuclei approach each other in the mass-asymmétfieb + 180 system, for which the strong fusion
hindrance was clearly observed. We, for the first time, apiptyrandom-phase approximation method
to the heavy-mass asymmetric di-nuclear system to caéctiat transition strengtB(E3) as a function
of the center-of-mass distance. The obtaiBgl3) strengths are substantially damped near the touching
point, because the single-particle wave functions of the mwclei strongly mix with each other and a
neck is formed. The energy-weighted sum®B(@E3) are also strongly correlated with the damping factor
which is phenomenologically introduced in the standardpéedrchannel calculations to reproduce the
fusion hindrance. This strongly indicates that the dampihthe quantum vibrations universally occurs
in the deep sub-barrier fusion reactions.

PACS numbers: 21.60.Ev, 24.10.Eq, 25.70.Jj

Heavy-ion fusion reactions are an excellent probe torhey constructed a heavy ion-ion potential with a shallow
investigate the fundamental features of the dynamics fopotential pocket considering the Pauli principtéeet act-
many-body quantum systems. When a projectile aping when two colliding nuclei overlap with each other. The
proaches a target, the Coulomb barrier is formed, becauseher is the adiabatic approach proposed by Ichikatva
of the strong cancellation between the Coulomb repulsioml. [10]. In this approach, neck formations between the col-
and the nuclear attractive force. Nuclear fusion takesgplacliding nuclei are taken into account in the overlap region.
when the projectile penetrates through this Coulomb barBased on this picture, the sudden and adiabatic processes
rier. At incident energies in the vicinity of the Coulomb were smoothly jointed by phenomenologically introducing
barrier height, called the sub-barrier fusion, the stromg e the damping factor in the coupling form factor [11]. Later,
hancements of fusion cross sections, compared to the estire showed that the physical origin of the damping factor
mations of a simple one-dimensional potential model, havés the damping of quantum vibrations of the target and the
been observed in many systems. These enhancements arejectile near the touching point using the random-phase
well accounted for in terms of the couplings between theapproximation (RPA) method for the light mass-symmetric
relative motion of the colliding nuclei and the intrinsic-de *°0 + 60 and*°Ca+ “°Ca systems [12].
grees of freedom such as collective vibrations of the target In this Letter, we show that the damping of the quantum
and the projectile [1]. The coupled channel (CC) modelyibrations near the touching pointis a universal mechanism
which takes into account this mechanism, has been suin the deep sub-barrier fusions and is responsible for the
cessful in describing such enhancements|[2, 3]. fusion hindrance. A typical example optimally suited for

Recent experiments at extremely low incident energieshis purpose is the recent precise data forfeb + 10
called the deep sub-barrier energies, revealed, howevdysion [5]. The performances of both the sudden and adi-
that steep fallis of the fusion cross sections, comparedabatic models have been well tested in this system [9, 11].
to the estimations of the standard CC model, emerge iffthe adiabatic model can reproduce well the experimental
a wide range of mass systems|[4, 5] (see Ref. [6] for dedata rather than the sudden model for the fusion hindrance.
tails). These steep falilbphenomena are often called the To discriminate which model is a better description, we
fusion hindrance. An important quantity for understandinghere show the physical origin of the damping factor intro-
this fusion hindrance is the potential energy at the toughin duced in Ref.[[11] in the heavy-mass asymmetffPb +
point of the colliding nuclei, which is strongly correlated 60O system.
with the threshold incident energy for the emergence of the In the standard CC model (and the sudden model), the
fusion hindrance. That is, the fusion hindrance would bevibrational modes of the individual colliding nuclei are as
associated with the dynamics in the overlap region of thsumed not to change, even when the two nuclei strongly
two colliding nuclei (see Fig. 1 in Ret.l[7]). overlap with each other. However, as shown in Ref. [12],

A theoretical challenge is how to extend the standard CG@he single-particle wave functions are drastically chahge
model to describe these fusion hindrance phenomenain they level repulsions, which are associated with the neck
overlap region. Two dierent models based on assumptionsformations. We apply the RPA method to the heavy-
opposite to each other have been proposed [6]. One is theass asymmetric systeA1®Pb+ 160, and show that these
sudden approach proposed by Misicu and Esbensen [8, 9hechanisms lead to damping of quantum vibrations in the
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colliding nuclei near the touching point. This is exhib- 10
by low-energy RPA excitation modes. \ \

To illustrate our main idea, we first discuss the Nils- %70
son diagram for protons as a function of the center-of-
late the mean-field potential for tH&€Pb + 180 system
using the folding procedure with the single Yukawa func- \
tion [13]. Before the touching point, we assume the spher—_g
describe the nuclear shapes with the reflection-asymmetrif} e
lemniscatoids parametrization [14]. (The parametrizatio T F : 'fm/{ :bf’
dependence is negligible, because in this Letter we d \/ 32 %)
these densities, we also calculate the Coulomb potentiaE -5 M~ 5,,"0)
We use the radius for the proton and neutron potentials, : 1s. @y
Ro, with Ry = 1.27A13 fm, where A is the total nu- s A dop"P0)
cleon number. The depths of the neutron and proton po- e I B mererer
tentials for individual*0 and2%8Pb nuclei,V+ and Vp, 10 12 14 16 18 20
smoothly joint the two dferent depth parameters of the

: i 8 208 i

mean-flelld potentials fot?0 and?°8Pb by the function FIG. 1. (Color online) Nilsson diagram for tR8%Pb + 160 sy-
Vo(@) = 5 [(Vr - Vp) - erf{(z— z)/u} + (V1 + Vp)], Where  aem as a function &R The light gray (red) thick lines represent
the colliding nuclei angt denotes the smoothing parameter.thick solid lines show the occupied state€9fPb. The gray area
We takeu = 0.8 fm, which is the same as thefiiliseness indicates the overlap region of the colliding nuclei. Theowas
parameter of the single-particle potential. In the calcularepresent the main particle-hole excitations constitutire RPA
the two nuclei.

Using the obtained mean-field potentials, we solve the _ . .
axially-symmetric Schrodinger equation with the spin- The single-particle energies of thm/, and ps/, states
are similar to Refs/[13, 15]. Then, trecomponent of increasing Coulombféect from?%®Ph. Then, many level
the total angular momenturgy, is the good quantum num- crossings and repulsions between the energy level¥of
ber. Note that the parity is not a good quantum num-and=°®Pb occur. With decreasirfg the energy of the
tem breaks the space-reflection symmetry. We expand tHgto aresonance state, but there is still a fiiciently high
single-particle wave functions in terms of the deformedCoulomb barrier. After that, it goes across tlge andps)»
harmonic-oscillator bases in the cylindrical coordinager  States of%®Pb aroundR = 16 fm and thep; » state 0f%%Pb
tions is determined so as to cover the target and the proje¢ier becomes lower due to the attractive nuclear mean-field
tile. The basis functions with energies lower than/2é  potential. Then, the strong mixture of the single-particle
are taken into account. states betweetPO and?°®Pb starts in many levels, which
center-of-mass distand® In the figure, we can see ex- We now solve the RPA equation at edelior the mass-
tremely strong Coulombfect of°°8Pb on'®0. The single- asymmetric®®®Pb + %0 system. We calculate the first
particle py/2 and ps2 states in‘®0 are shown by the (red) excited 3 (octupole vibrational) states f0O and?°®pb,
R = 20 fm, the energies of these two states are higher thaculations. We can easily apply the RPA method to the di-
the Fermi energy of they , state i"°®Pb. The miss-match nuclear system, because its the wave function is described
of the two Fermi levels betweéRO and?°8Pb occurs due with a one-center Slater determinant. We take the single-
tance, the energies of thm,, and ps/, states for'®O are  and the coherent superposition of all one-particle one-hol
-5.88 and-10.7 MeV, respectively. Thus, & = 20 fm, states with excitation energies below 30 MeV. We follow
the depth of the mean-field potential f80 becomes shal- the diabatic single-particle configuration corresponding

ited by a drastic decreases of tBéE3) strengths carried “Pb + %0

mass distanceR, in the 2%8Pb + 0 system. We calcu-

ical shape for both nuclei. After the touching point, we

not discuss the strongly overlapping region.) Based ong 1 9/:08

are taken from Ref. [15]. In the folding procedure, we R (fm)

Z denotes the center position between the two surfaces @fe occupiedps /> and ps» states int®0. The dark gray (blue)

tions, the origin is located at the center-of-mass posiion Mmodes.

orbit force. The details of the model and the parameteri *°0 remarkably increase with decreasiRgiue to the

ber because the mean-field potential for the whole sysstate becomes positive arouRe 18 fm, thatis, it changes

resentation. The deformation parameter of the basis fun@roundR = 13 fm. BelowR = 13 fm, the Coulomb bar-
Figure[1 shows the Nilsson diagram as a function of th&auses many level splittings seen in the Nilsson diagram.

thick solid lines. Even at the large separation distancevhich give the main contributions in the standard CC cal-

to the strong Coulombfiect. At an infinite separation dis- particle levels for each neutron and proton up to 200th

low by about 5 MeV due to the Coulomifect from?%®Pb.  the ground state dfO. The occupiegy/, and ps/, states



in 10 are represented by the light gray (red) thick curves 10 T
in Fig.[d. We carry out the RPA calculation avoiding im- i :

mediate vicinities of the level-crossing points. We use the 5 F
density-dependentresidual interaction taken from Réf. [1 — A
and tune it so that the energy of the spurious center-ofg 0o F
mass motion becomes zero. We calcuB{E3) values for x i
the RPA solutions witl2 = 0 in individual nuclei using -5 [
the shifted octupole operatdzo(R — Ry), whereRy is the .
center-of-mass position of the projectile or target nusleu 10 [+
Atthe large separation distanBe= 20 fm, we obtain the !
first 3= excited states of individual nuclei. The obtained 5 [

energies and(E3, 3, — 07) values are 2.86 MeV and

7.13x 10* € - fm® for 2%8Pb and 4.64 MeV and 12# - fm®

for 0. The obtained transition densities and currents fo
the first 3 states 0f%0 and?®®Pb are depicted in Figs] 2 (a)
and (c). AtR = 20 fm, these modes are isolated. When the
two nuclei approach each other, however, these modes start
to fragment into several states. To evaluate the octupole
collective strengths carried by low-energy excitations, w
then calculate the energy-weighted sunB¢E3) strengths.

By checking the spectrum of all obtained RPA modes as
function of R, we determined to take the sum for octupole=
excitations withE < 4 MeV andE < 6 MeV for?%®Pband X
160, respectively.

Figure[3 shows th&(E3) strengths for (a)°0 and (b)
208pp as functions oR. The calculated values (the solid
circles) drastically decrease near the touching point (the
boundary between the white and gray areas) in both nuclei.
The transition densities and currents for the RPA modes_
with the maximunB(E3) at the touching point are depicted £
in Fig.[2 (b) and (d). These figures indicate that the oc~
tupole collectivities of botA®O and?°®Pb are considerably
diminished by each colliding partner.

The microscopic origin of the damping of these vibra-
tions is easily seen as follows. & = 20 fm, the main
proton components of the 3nodes are the excitatioms,»

E of
I’>< [

-10 [ WA PR | PN IR 0 I A I A
-10 -5 O 5 10 15 20 25

- d5/2 and P32 — d5/2 for 160, and the excitatior&/g - Z (fm)

hg/2 ands; 2 — f7/2 for 2%8Pb [see the (red and blue) arrows

aroundR = 19 fm in Fig.[1]. The density distributions of FIG. 2. (Color online) Contour maps of the proton transitiem-
the p;2 andds, states in'%0 are displayed in (a) and (b) sities and current distributions for the first excitedsdates of 6O

and?%8Pb atR = 20 and 10.73 fm. The contour lines correspond

of Fig.[4. Their wave functions $ier major modifications i > AT 08
to multiples of 0.01 fm< and 0.005 fm< for ~°O and<"°Pb, re-

near the touching point ® = 11.65 fm, as depicted in (c) spectively. The arrows represent the current density. Thewots
and (d) of Figl# [see also the (red) arrowraE 1165 fm and colors are normalized Bt= 20 fm in individual nuclei. The

in Fig.[1]. We can clearly see the neck formations in (d).(req) thick solid circles indicate the half depth of the méatd
Also for **Pb, similar drastic changes of single-particle yential.

wave functions occur for both protons and neutrons near

the Fermi surface, causing the damping of the collectivity

_of the 3" vibration [see the (blue) arrows around 10.6 fm¢@ = 1), whereaq and., denote the damping width and the

in Fig.[1]). eigenvalues of the coupling matrix elements, respectively
Finally, to see the correlation with the damping factorThe parameteRy is given byRy = ra(AY>+AL?), whererg

phenomenologically introduced in the CC calculation, wedenotes the damping radius parameter, Apcnd Ap the

compare the calculated results with the damping factor thahass numbers of the target and the projectile, respectively

well reproduced the experimental data of the fusion crost the calculation of Refl [11},4 = 1.298 fm andag = 1.05

section for’%®Pb + 1°0 [11]. The damping factor is given fm are used. Then, the largest eigenvalugofs 1.46 fm.

by @(r, 1,) = e "R/ for r < Ry + A, (otherwise InFigs[3 (a) and (b), the dashed curves represent the damp-
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800 £ | N they approach each other. To show this, we, for the
F . O (E<6Mev) ] first time, applied the RPA method to the heavy mass-
s 600 .,3—.-———3—'—0—.—’—*-4--+.4o::» asymmetric2®Pb + 160 system. We have discussed the
2 200 E E Nilsson diagram as a function of the center-of-mass dis-
- C / ] tanceR and have shown that the single-particle energies
E 200 |/, = in 10 are largely sifted to the positive-energy direction
© 0 ;/:/I g, NN by the ﬁ_t(;(_)ng Coulombf\;b\}cts flronlﬂ thz hB(?éaE\/g)-ma%SPE
) i i in a colliding process. We calculated t strengths
W 300000 ¢ “®Pb(E<4MeV) 1 for 160 and?%ph as a function oR. The obtainedd(E3)
g 200000 E B ! strengths.a.re substantially dam_ped near the tquching point
o r / 1 of the colliding nuclei. The obtained energy-weighted sum
100000 B .’7 k of _B(E3) in the Iow-gnergy region exhibits a strong corre-
- 1 lation with the damping factor that reproduces well the ex-
0 ] perimental data of the fusion cross sectionfPb+ 160.
10 12 14 16 18 oo  Thisis a clear evidence that the damping of the quantum
R (fm) octupole vibrations indeed occur near the touching point in

the deep sub-barrier fusion reactions. The drastic chaihge o

FIG. 3. Energy-weighted sums B{E3) for (a)'%0 and (b}*°®Pb single-particle wave functions consitituting the low-ege
as functions oR. The solid circles show the results of the RPA coIIeICtlve equtatll(l)rzis dlscuzsgd In this paper Woﬁld cfom—
calculations. The dashed curves represent the dampingrfactmon y occur in all deep sub-barrier reactions. Therefore,

which well reproduces the experimental data of the fusiessr the damping of quantum vibrations in both the target and
section for’%Pb + 180 taken from Ref/[11]. The gray area indi- the projectile near the touching point seems to be a univer-

cates the overlap region of the colliding nuclei. sal mechanism causing the fusion hindrance, which should
be taken into account in the standard CC model.
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FIG. 4. (Color online) Density distributions of ttm,,> andds;»
states originally belonging t#0 atR = 20 fm and their evolu-
tions atR = 1165 fm. The (red) thick solid circles indicate the
half depth of the mean-field potential. The contour lineseor
spond to multiples of 0.0015 fm. The colors are normalized at
0.01 fn73.



