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We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and

the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size,

namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological

black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found

to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and

first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable

to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the

basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a

crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.

1. Introduction

The total reaction cross section (σR) of nuclei is one of the

most fundamental observables in nuclear physics, which helps

us to know nuclear radii and even nuclear density distribu-

tions. The role of σR in deducing the nuclear density distri-

butions is complementary to that of the differential cross sec-

tion of elastic scattering, and both of them are governed by

diffraction phenomena.1) On the other hand, nuclear masses

and radii characterize the bulk properties of nuclei. In fact,

the saturation of the binding energy and density deduced from

systematic data for the masses and charge radii of stable nu-

clei reflects the behavior of the equation of state of nearly

symmetric nuclear matter near the saturation density.2, 3)

As is well known, the nuclear radii and density distributions

are deduced from electron and proton elastic scattering off nu-

clei .4–7) To deduce the matter density distributions and radii,

during the past four decades there have been many efforts of

studying proton elastic scattering cross sections, which are

based on various scattering theories incorporating empirical

nucleon-nucleon scattering amplitudes, such as the Glauber

approximation4, 6) and nonrelativistic and relativistic optical

potential methods .8–12)

We here choose a different approach: We start from a

naive but firm framework, namely, the Fraunhofer diffraction,

which is expected to set qualitative standards for nuclear size.

Unexpectedly, this framework turns out to be quantitatively

very sound, which will be explained below.

For the purpose of deducing nuclear size from proton-

nucleus elastic scattering and σR, we proposed a model in

which a nucleus is viewed as a “black” (i.e., strongly absorp-

tive to incident protons) sphere of radius “a”, which is called

a black-sphere (BS) approximation of nuclei.1, 13, 14) This BS

radius, a, plays a central role in this framework. We determine

a by fitting the angle of the first elastic diffraction peak calcu-

lated for proton diffraction by a circular black disk of radius

a to the measured value. For incident protons of energy above

800 MeV, it was found that πa2 agrees with the measured σR

within error bars. It can thus be regarded as a “reaction radius”

inside which the reaction with incident protons occurs.

Within the BS framework, we developed a formula for σR

of proton-nucleus reactions as a function of the mass num-

ber (A) and the neutron excess of the target nucleus and pro-

ton incident energy Tp in a way free from any adjustable Tp-

dependent parameter.15) We deduce the dependence of σR on

Tp from a simple argument involving the nuclear “optical”

depth for absorption of projectiles. We call the formula the

BS cross-section formula .16) The only scale included in the

formula is set by the BS radius a, which is determined in

the same way as described above.14) For stable nuclei, this

formula reproduces the empirical Tp dependence of σR at

Tp = 100–1000 MeV remarkably well. In this formula, the

Tp dependence of a is determined by that of proton-nucleon

total cross sections, while the target mass-number dependence

of a is sensitive to the surface thickness of the target nucleus.

This formula can be easily extended to nucleus-nucleus reac-

tions and is shown to well reproduce the empirical data for

energies above 100 MeV/nucleon.15, 17)

Due to its suitability for systematic calculations, the present

formula is incorporated into the Particle and Heavy Ion Trans-

port code System (PHITS).18–20) In the code, the formula is

used for systematic evaluations of σR, which in turn deter-

mine how often the incident particles collide with nuclei in

a material. The application area of this code is very broad,

which ranges from the fields of accelerator technology, parti-

cle therapy, and space radiation to many other fields that are

related to particle and heavy-ion transport phenomena.

In this paper, we revisit a complicated A and Tp depen-

dence of the proton-nucleus total reaction cross sections. In

doing so, we will put emphasis on the fact that the BS ra-

dius is the length scale that simultaneously accounts for the

observed σR of proton-nucleus reaction and diffraction peak

in the proton elastic differential cross section. After summa-

rizing the successive works on our systematic analyses based

on the BS approximation of nuclei, we examine the Tp and A

dependence of σR carefully. A part of the results have been

already reported in refs.13–15, 17)
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This paper is organized as follows: In Sec. 2, we overview

our BS approximation of nuclei. In Sec. 3, we summarize how

data look like from the viewpoint of the BS approximation. In

Sec. 4, we briefly review the BS cross-section formula, which

was developed in ref.,15) and analytically examine its A de-

pendence. Detailed derivation of the formula can be found in

Sec. 3 of ref.21) We extend this framework to such probes as

antiprotons in Sec. 5. Finally we give a summary in Sec. 6.

In collecting the empirical data, we have made access to

Experimental Nuclear Reaction Data File (EXFOR).22) As for

the criterion to adopt the data for σR, we have accepted the

data which are to within 15 % from the systematic behavior

of various data sets. We use units in which ~ = c = 1.

2. Black-Sphere (BS) Approximation

In this section, we introduce the BS approximation of nu-

clei,13, 14) which can be regarded as a “contemporary” BS

model as compared with the original one1) (hereafter referred

to as “classical”). We regard the former as contemporary, be-

cause it is based on the quantitative reproducibility of avail-

able σR data, while the classical one aims at qualitatively de-

scribing a global behavior of the elastic diffraction patterns.

The formal definition of the contemporary BS approximation

will be given below via Eq. (2.7).

For convenience, we restrict ourselves to the case of pro-

ton projectiles, but the concept can be easily extended to such

hadronic probes as neutrons, antiprotons, pions, and kaons.

The case of antiprotons will be described in Sec. 5. Possible

extension of this framework to proton inelastic scattering has

been discussed recently,23) but will not be discussed here.

We here emphasize that our contemporary BS model is not

the eikonal approximation with the rectangular density distri-

bution although the connection with it can be clearly shown

as in Sec. 2 of ref.21) Since, for stable nuclei, the accuracy of

σR ≃ σBS of proton-nucleus (A ≥ 3) and nucleus-nucleus re-

actions (AP, AT . 50), where AP(T ) is the mass number of a

projectile (target), has been confirmed within a few %,14, 15)

the indication by Alkhazov et al.24, 25) that the results of our

BS model are not accurate enough particularly for light nuclei

is not appropriate in the context of σR.

Blair et al. developed the celebrated “sharp cutoff” model

for low energy alpha-particle elastic scattering off nuclei sev-

eral decades ago,26, 27) which is a strong absorption model that

can be obtained from wave optics by cutting off the interaction

range or the partial-wave (impact parameter) window. This

model reproduces a global behavior of the alpha-nucleus scat-

tering fairly well.26, 27) In fact, the BS approximation is similar

in concept and structure to the “sharp cutoff” model, but how

to relate between them is not obvious partly because the geo-

metrical size of alpha particles is treated differently and partly

because the definition of the “sharp cutoff” radius is based on

the behavior of partial waves rather than the nuclear density

distribution.

2.1 Applicability

We begin by regarding a target nucleus for proton elastic

scattering as a black sphere of radius a. This picture holds

when the target nucleus is strongly absorptive to the incident

proton and hence acts like a black sphere. It is important to

notice that the interaction between the incident proton and

the target nucleus is strong but not infinitely strong; otherwise

the incident proton could be sensitive to an exponentially low

density region, and hence any place would be black.

For incident kinetic energy Tp above ∼ 800 MeV, the opti-

cal potential for this reaction is in fact strongly absorptive. It

can be essentially viewed as a superposition of the nucleon-

nucleon scattering amplitudes. Since the imaginary part of the

amplitude is dominant over the real part in this energy range,

the BS picture is applicable to a first approximation.

Another requirement for the BS picture is that the proton

wave length is considerably shorter than the nuclear size. For

proton incident energies higher than about 800 MeV, both

requirements are basically satisfied. This approximation was

originally used by Placzek and Bethe1) in describing the elas-

tic scattering of fast neutrons.

Since one can regard the proton beam as a plane wave of

momentum pLab in the laboratory frame,

pLab =

√

(Tp + mp)2 − m2
p (2.1)

with the proton mass, mp, the BS approximation can be de-

scribed in terms of wave optics. This picture reduces to a

diffraction of the wave by a circular black disk of radius a

if the corresponding wave optics is close to the limit of geo-

metrical optics, i.e.,

a

λLab

≫ 1, (2.2)

where λLab = 2π/pLab is the wave length. We will consider

in the next section the range of Tp in which a/λLab ≫ 1 is

satisfied. According to Babinet’s principle, this diffraction is

in turn equivalent to the Fraunhofer diffraction by a hole of

the same shape as the disk embedded in a screen.28)

The scattering amplitude for this diffraction in the center-

of-mass (c.m.) frame of the proton and the nucleus reads

f (q) = ipaJ1(qa)/q, (2.3)

where q is the momentum transfer, p is the proton momentum

in the c.m. frame, and Jn(x) is the n-th order Bessel function.

With this amplitude, we obtain the differential cross section

of proton-nucleus elastic scattering as

dσ

dΩ
= | f (q)|2. (2.4)

The relation of the BS approximation to the conventional scat-

tering theory can be found in Sec. 2 of ref.21)

We note that the BS picture is fairly successful in describ-

ing the elastic scattering of low energy α particles.7, 26, 27) It

was also used for analyses of the scattering of intermediate-

energy pions and low-energy antiprotons.7)

2.2 How to Determine “a”

The scale “a” is the only undetermined parameter in the

scattering amplitude of Eq. (2.3). We determine it using the

empirical differential cross sections of proton-nucleus elastic

scattering.

The c.m. scattering angle for proton elastic scattering is

generally given by

θc.m. = 2 sin−1(q/2p). (2.5)

For the proton diffraction by a circular black disk of radius

a, we can calculate the value of θc.m. at the first peak as a

function of a. (Here we define the zeroth peak as that whose
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angle corresponds to θc.m. = 0.) We determine a in such a way

that this value of θc.m. agrees with the first peak angle for the

measured diffraction in proton-nucleus elastic scattering, θM .

The radius, a, and the angle, θM , are then related by

2pa sin(θM/2) = 5.1356 · · · . (2.6)

This is obtained by requiring that the derivative of the cross

section with respect to the scattering angle be zero. To be ex-

plicit, we write

a =
5.1356 · · ·

2p sin(θM/2)
. (2.7)

We call this the BS radius formula. As was discussed analyt-

ically in the eikonal approximation,29) the oscillation period

in the diffraction pattern is determined by the nuclear radius,

which is closely related with the concept underlying Eq. (2.7).

The determination of a from the first peak angle, rather than

the first dip angle, is the key to the success of the present

quantitatively sound approach.

2.3 Definition of σBS and rBS

Within the present BS approximation, we calculate the

proton-nucleus total reaction cross section, σR, from a. This

approximation regards it as the geometrical cross section,

σBS ≡ πa2. (2.8)

Here we assume that the incident protons are point parti-

cles, leading to vanishing contribution from the proton size

to σBS.14) This is reasonable because the measured proton-

proton reaction cross section (σreaction
pp ≡ σtotal

pp −σelastic
pp ) is rel-

atively small at Tp less than ∼ 1000 MeV, whereσtotal
pp (σelastic

pp )

is the proton-proton total (elastic) cross section. Once one ac-

cepts the scattering amplitude of the Fraunhofer scattering for

describing the reactions,13) one naturally obtains expression

(2.8) (see Sec. 2 of ref.21)). By substituting the values of a

determined by Eq. (2.7) into Eq. (2.8), we evaluate σBS for

various nuclei at various proton energies.

The BS approximation is also applicable for analyzing nu-

clear matter radii. For simplicity, we assume that the density

distribution of the black sphere is uniform, i.e., a rectangular

nucleon distribution. Then we can naturally write the root-

mean-square (rms) BS radius, rBS, as

rBS ≡
√

3/5a. (2.9)

The factor
√

3/5 comes from the second moment of the rect-

angular density distribution. The values of rBS are to be com-

pared with the empirically deduced values of the rms matter

radius, rm, and in fact will turn out to be in good agreement

with rm at Tp & 800 MeV and A & 50.

3. How Do the Data Look Like?

In this section, we overview proton scattering data and an-

alyze them within the framework of the BS approximation.

3.1 Resolution

For validity of the BS approximation, the scattering should

be close to the limit of the geometrical optics, as mentioned

in the previous section. This condition is fairly well satisfied

at least for Tp & 800 MeV, since a/λLab is well above unity

even for 4He. The existence of the first diffraction peak is a

good measure to check the validity of the present approxima-

Fig. 1. Comparison of the BS radius, a, at Tp ≃ 800 MeV with the c.m.

de Broglie wave length of an incident proton of kinetic energy Tp in the

laboratory frame for the target of 4He (58Ni). We draw the dashed (solid)

curve for the de Broglie wave length for 4He (58Ni). The dotted lines show

the BS radius a of 4He and 58Ni at about 800 MeV. On top of those lines, we

plot the circles (crosses) in the case in which the first peak of the diffraction

appears (disappears). The square with cross at 438 MeV for 4He implies that

the first peak is not clear due to the quality of the data.

tion as a function of energy. In fact, it is indispensable in our

formulation to determine the value of a from the empirical

diffraction peak angle of proton-nucleus elastic scattering.

In order to examine the correspondence between the peak

existence and the ratio of the BS radius a at Tp & 800 MeV to

the proton de Broglie wave length, λc.m. = 2π/p, in the c.m.

frame, we plot in Fig. 1 the “won-and-lost records” which dis-

tinguish between the presence and absence of the diffraction

peak. Note that the Tp dependence of the BS radius is much

weaker than that of λc.m. as we shall see.

For 4He, we adopt the data of Tp = 72 MeV,30) Tp = 85

MeV,31) Tp = 200, 350, 500 MeV,32) Tp = 297 MeV,33)

Tp = 300 MeV,34) Tp = 438, 648, 1036 MeV,35) Tp =

350, 650, 1050, 1150 MeV,36) Tp = 561, 800, 1029 MeV,37)

Tp = 580, 720 MeV,38) Tp = 587 MeV,39) Tp = 600 MeV,40)

and Tp = 788 MeV.41) For Tp & 800 MeV, the references are

listed in ref.14)

For 58Ni, we adopt the data of Tp = 61.4 MeV,42) Tp = 65

MeV,43, 44) Tp = 100.4 MeV,45) Tp = 160 MeV,46) Tp = 178

MeV,47) and Tp = 192, 295, 400 MeV.11) For Tp & 800 MeV,

the references are listed in ref.13)

As the incident energy decreases, the oscillation becomes

broader and more blurred, and eventually the first peak disap-

pears around λc.m./a ≃ 1, as shown in Fig. 1. It is clearly

shown in Fig. 2(a) of ref.44) how the measured diffraction

peaks disappear at Tp = 65 MeV for 16O–40Ca. At this en-

ergy, the de Broglie wave length is around 4 fm, which is of

order the values of a at 800 MeV for such targets as 20Ne and
24Mg. Thus, the presence of the diffraction peaks is closely

related to the nuclear size. As will be mentioned in the next

subsection, the value of a at Tp ≃ 800 MeV, multiplied by√
3/5, is surprisingly close to rm for A & 50.

3.2 Tp & 800 MeV

In refs.,13, 14) we clarified two salient features from the data

of incident energies higher than ∼ 800 MeV. First, the absorp-

tion cross section σBS, Eq. (2.8), agrees with the empirical
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total reaction cross section within error bars, i.e.,

σR ≃ σBS, (3.1)

although the comparison is possible only for stable nuclei

such as C, Sn, and Pb.14) We will show later that this fea-

ture is persistent down to Tp ∼ 100 MeV. We thus see the role

played by σBS in predicting σR. This is useful for nuclides

for which elastic scattering data are available but no data for

σR are available. Second, rBS, Eq. (2.9), almost completely

agrees with the empirically deduced values of rm for A & 50,

while it systematically deviates from the deduced values for

A . 50.

Let us examine the case of A . 50 in more details. For light

nuclei, the oscillation period in the elastic diffraction becomes

broader as A decreases.29) Equation (2.7) implies that when a

becomes smaller, the value of θM becomes larger for fixed Tp.

Since the value of θM itself is relatively large, the values of

σBS and rBS can be well determined despite the uncertainty in

θM as compared to heavy nuclei. Therefore, better determina-

tion of σBS and rBS would be possible for light nuclei than for

heavy nuclei.

In contrast to the good agreement between rBS and rm for

A & 50, however, the values of rBS are found to be system-

atically smaller than those of rm for A . 50. A possible rea-

son for this discrepancy is the change in the ratio between

the surface and the bulk portions toward lighter nuclei. This

change may induce a difference in the expansion series with

respect to A1/3 between rBS and rm, as discussed in Sec. 1.2 of

Ref .21) We remark that the induced difference is appreciable

even for A & 50, while the good agreement between rBS and

rm suggests a counteracting effect due to developing neutron-

skin thickness on the beta stability line48) (see also Sec. 4 of

ref. 21)).

From the observation of the global A dependence of the BS

radius, a, we found that, for stable nuclei, the BS radius a

scales as14)

a ≃ 1.2135A1/3 fm, (3.2)

which will be hereafter referred to as the black-sphere scaling

(BS scaling). Equivalently, from Eq. (2.9), we obtain14)

rBS ≃ 0.9400A1/3 fm, (3.3)

and, from Eq. (2.8),

σBS ≃ 46.263A2/3 mb. (3.4)

As one can see from Fig. 2, the agreement of the BS scaling

with both the empirical values of
√
σR/π and

√
σBS/π is fairly

good.

For systematic evaluations of σR that can be applied for

practical use, we have to aim at a better agreement with the

empirical values beyond expression (3.4). For this purpose,

we propose a couple of other parametrizations à la Carlson,

which fit (σR/π)
1/2 in terms of a linear function in A1/3:49)

The first one, denoted by BS-fit1, is given by

a = 1.2671A1/3 − 0.152 fm. (3.5)

We obtain this by χ2-fitting of the linear function in A1/3 to the

values of (σBS/π)
1/2. The standard deviation is around 0.096

fm. Note that this expression inevitably puts its emphasis on

the region of A < 50, because most of the data points dis-

tribute in this region. By putting slightly more emphasis on

Fig. 2. (Color online) Comparison of the three fitting lines with the effec-

tive radius
√
σBS/π (crosses) for the absorption cross section of protons of

Tp & 800 MeV by a target nucleus of mass number A. The solid line denotes

the BS scaling, Eq. (3.2), the dashed line the BS-fit1, Eq. (3.5), and the dot-

ted line the BS-fit2, Eq. (3.6). We also plot the effective radius
√
σR/π (dots)

for the empirical data for 9Be, 27Al, C, Cu, Sn, and Pb. For the latter four

elements the value of σR is the average over the natural isotopic abundance

in a target. For these data, we set A as the mass number of the most abundant

isotope and assign the uncertainty in A due to the natural abundance, as in

Fig. 3 of ref.14)

Fig. 3. (Color online) Energy dependence of σBS (squares with cross) for

the reaction of protons on 27Al. The values of σBS are obtained from the

measured peak angle of the first diffraction maximum of the proton elastic

scattering. The empirical data for σR (×) are taken from in ref.49)

the data points in the region of A > 50, we obtain the second

one, BS-fit2, which is given by

a = 1.33A1/3 − 0.35 fm. (3.6)

Note that in Fig. 2 the BS-fit1 intervenes between the BS scal-

ing and the BS-fit2, which differ only by of order 0.1 fm.

3.3 Down to Tp ≃ 50 MeV

Let us consider how the data look like when we decrease

Tp from 800 MeV. As we have mentioned in Sec. 3.1 for a

target of fixed A, the diffraction patterns become blurred as

Tp decreases. At a certain value of Tp, the first diffraction

peak tends to disappear. We find, however, that, as long as

the peak exists, the relation (3.1) holds within the empirical

uncertainties.

As an example, in Fig. 3, we plot the values of σBS for

proton-27Al reactions as a function of Tp. To obtain the val-
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Fig. 4. (Color online) Comparison of the effective cross section

σBS/(πA
2/3) with σR/(πA

2/3) as a function of the kinetic energy of an in-

cident proton. The empirical data for σR are taken from the compilation by

Carlson (◦)49) and the measurements by Auce et al. (×).52) The values of

σBS (≡ πa2), which are represented by squares with crosses, are obtained

from the measured peak angle of the first diffraction maximum of the proton

elastic scattering. They are consistent with the measured σR.

ues of a, we adopt the first peak angle of the empirical data for

the differential cross sections of proton-27Al elastic scattering

at Tp = 61.4 MeV,42) 340 MeV,50) and 424 MeV.51) Other

examples will be shown later. From Fig. 3, we find that σR

agrees with σBS within error bars, which ensures Eq. (3.1).

This relation suggests that the radius a can be regarded as a

“reaction radius,” inside which the reaction with incident pro-

tons occurs. The above tendency holds for other stable nuclei,

as shown in Fig. 4.

Note that the condition for Eq. (3.1) to hold is slightly dif-

ferent for the case of nucleus-nucleus reactions. As we have

already shown in refs.,15, 17) the BS approximation can be ex-

tended to nucleus-nucleus reactions by using π(aP + aT )2,

where aP (aT ) is the BS radius of a projectile (target). Interest-

ingly, the empirical values of the total reaction cross section

σR(A + A) agree well with π(aP + aT )2 for incident energies

per nucleon down to 100 MeV, not only in the presence of the

first diffraction peaks of proton elastic scattering that lead to

aP and aT , but also in their absence in which case aP and aT

are evaluated from Eq. (3.1) as (σR/π)
1/2.

4. Black-sphere (BS) Cross-Section Formula

In this section, we briefly review the BS cross-section for-

mula, which was originally developed in ref.15) for describing

the proton-nucleus total reaction cross section σR, and analyt-

ically analyze the A dependence of the formula. The detailed

derivation of the formula can be found in Sec. 3 of ref.21)

The BS cross-section formula is constructed as a function

of the mass and neutron excess of the target nucleus and Tp in

a way free from any adjustable Tp-dependent parameter. The

geometry of the reaction is assumed as can be seen in Fig. 5.

We deduce the dependence of σR on Tp from a simple argu-

ment involving the nuclear “optical” depth for absorption of

incident protons within the framework of the BS approxima-

tion of nuclei. This formula can be easily extended to nucleus-

nucleus reactions.15, 17)

R

D

a
a

proton

r

ρ0

0

ncL’

target

Fig. 5. Model for the density distribution of a target nucleus and the critical

proton trajectory inside which the reaction with the target nucleus occurs.

This is the same as Fig. 1 in ref.15)

4.1 Energy Dependence

In setting the Tp dependence of the formula, we retain the

expression for σBS given by Eq. (2.8), leading to

σ̃BS(Tp) = πa(Tp)2

= πa2
0

(

1 +
∆a

a0

)2

, (4.1)

where ∆a ≡ a(Tp) − a0, and a0 denotes the value of a deter-

mined at 800 MeV for each nucleus. While Eqs. (3.2), (3.5),

and (3.6) introduced in Sec. 3.2 are helpful for estimating a0,

∆a is responsible for the energy dependence of σBS. We in-

troduce the effective nuclear optical depth τ defined by

τ = σ̄total
pN ncL′, (4.2)

with

σ̄total
pN = (Z/A)σtotal

pp + (1 − Z/A)σtotal
pn , (4.3)

where σtotal
pp(pn)

is the proton-proton (neutron) total cross sec-

tion, nc is the critical nucleon density at the distance of r = a

from the nuclear center, and L′ is the length of the part of the

critical trajectory in which the total nucleon density is lower

than nc while being above zero (see Fig. 5).

By assuming that τ = 0.9 independently of Tp, we express

the Tp dependence of ∆a/a0 as that driven solely by σ̄total
pN

.

The Tp-independent part of ∆a/a0 is described by several pa-

rameters that characterize the density distribution of the target

nucleus assumed to be trapezoidal, which makes the expres-

sion for ∆a analytically tractable. The choice of the value of

0.9 for τ is reasonable since this is consistent with the values

of a0 and nc for 12C, 58Ni, 124Sn, and 208Pb listed in Table 1

of ref.21) The detailed description of the formula is given in

the original paper15) and in Sec. 3 of ref.21) in which minor

corrections to the Tp-independent part of ∆a/a0 described in

ref.15) will be added.

The comparison with the empirical data is shown in Fig. 6.

We find that, for stable nuclei, this formula remarkably well

reproduces the empirical Tp dependence of σR at Tp = 100–

1000 MeV, where the deviation of σ̄total
pN

from its empirical
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Fig. 6. (Color online) Comparison of the BS cross-section formula (solid

curve) with the empirical values for σR(p + natu.C) (upper) and σR(p +
natu./208Pb) (lower) as a function of the kinetic energy of an incident pro-

ton. We adopt the BS radius, a0, at 800 MeV as 2.70±0.05 fm for carbon and

7.40 ± 0.05 fm for lead. The uncertainties, whose assignment is the same as

in ref.,13) are shown by the dotted curves. We also plot the empirical data for

σR from the compilation by Carlson (◦)49) and the measurements by Auce

et al. (×).52) Note that the data of 220 MeV ≤ Tp ≤ 570 MeV53) turn out

to be systematically large. The values of σBS (≡ πa2), which are represented

by squares with crosses, are obtained from the measured peak angle of the

first diffraction maximum of the proton elastic scattering. They are consistent

with the measured σR.

value at Tp = 800 MeV is small enough to validate the present

formulation. We remark in passing that the contribution from

the Coulomb interaction, which is not included in this frame-

work, can be safely neglected in this energy region.15)

We also plot the values of σBS in the figure. For obtain-

ing these values, we adopt the empirical data for the differ-

ential cross sections of proton-C elastic scattering at Tp =

494.0 MeV in ref.54) For Tp & 800 MeV, the references

of the data are listed in ref.14) For elastic scattering data of
208Pb, we adopt the empirical values at Tp = 65 MeV,44)

Tp = 80, 121, 160, 182 MeV,55) Tp = 160 MeV,46) Tp =

185 MeV,56) Tp = 200 MeV,57, 58) Tp = 200, 300, 400, 500

MeV,59) Tp = 295 MeV,12) Tp = 500 MeV,60) and Tp = 650

MeV.61) We do not adopt the data at Tp = 100.4 MeV,45) be-

cause the measured diffraction pattern does not include the

first peak. For Tp & 800 MeV, the references are listed for

p+208Pb in ref.13)

For comparison, we plot the present BS cross-section for-

mula together with other empirical formulas in Fig. 7. We

choose those constructed only for nucleon-nucleus reactions,

which are summarized in Sec. 6 of ref.21) The present for-

mula alone reproduces the Tp dependence in a manner that is

Fig. 7. (Color online) Comparison of various empirical formulas for

σR(p + C) with the empirical values as a function of Tp. The values of Carl-

son’s formula obtained by using the parameters listed in Table A of ref.49)

are plotted by the squares with dotted line. The values of the same formula

but using the parametrization of Machner et al.62) are drawn by the dashed

curve. The values of Letaw’s formula63) are drawn by the dot-dashed curve.

The values of the BS cross-section formula with a0 = 2.70 fm are drawn by

the solid curve. The empirical values and the values of σBS are the same as

in Fig. 6.

consistent with the latest empirical data,52) which are system-

atically more reliable.

4.2 Mass-Number (A) Dependence

This section provides a main part of the present paper. Here,

we examine the A dependence of the BS cross-section for-

mula,

σ̃BS(Tp) = πa2
0















1 +

(

ρ0a0

Dnc0

− a0

L′
0

dL′

da

∣

∣

∣

∣

∣

0

)−1 ∆σ̄total
pN

σ̄total
pN0















2

.

(4.4)

The definition of each term in this formula can be found in

Sec. 3 of ref.,21) together with the derivation of Eq. (4.4) (or,

equivalently, Eq. (3.12) of ref.21)).

First, we examine the A dependence of the key terms in the

above expression. Hereafter, just like a0, we will affix “0” to

the Tp dependent quantities whenever we mean the values at

Tp = 800 MeV. Following the definition of L′, Eq. (3.4) of

ref.,21) the A dependence of the path length, L′, can be ex-

pressed as

L′ = 2
√

R2 − a2

= 2
√

(R + a)(R − a)

∝ A1/6D1/2, (4.5)

where D(= 2.2fm) is a constant as given in Eq. (3.10) of ref.21)

Another key term is ρ0a0/(Dnc0) in the coefficient of σ̄pN

found in expression (4.4). Since a0 ∝ A1/3 and nc0 ∝ L′−1 ∝
A−1/6D−1/2, we may write

ρ0a0

Dnc0

∝ D−1/2A1/2, (4.6)

where ρ0 = 0.16 fm−3.

We next examine the coefficient of ∆σ̄total
pN
/σ̄total

pN0
, i.e.,

(

ρ0a0

Dnc0

− a0

L′
0

dL′

da

∣

∣

∣

∣

∣

0

)−1

, (4.7)
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in Eq. (4.4). To examine the A dependence of the second term

in the parenthesis of Eq. (4.7), we look into the term dL′/da|0
(see Eq. (3.19) of ref.21)). We obtain

ρ0a0

Dnc0

− a0

L′
0

dL′

da

∣

∣

∣

∣

∣

0

=
ρ0a0

Dnc0















1 + 4
Dnc0

ρ0a0

(

a0

L′
0

)2














. (4.8)

Since the first term in the left side is much larger than the

second term, we expand it as follows:

(

ρ0a0

Dnc0

− a0

L′
0

dL′

da

∣

∣

∣

∣

∣

0

)−1

=
Dnc0

ρ0a0

− 4

(

Dnc0

ρ0a0

)2 (

a0

L′
0

)2

+ · · · . (4.9)

This expansion becomes better as A increases. Thus, the first

term gives the leading correction to πa2
0

in the BS cross-

section formula.

Finally, we obtain the following expression:

σ̃BS(Tp)

≃ πa2
0 + 2π















Dnc0

ρ0a0

a2
0 + O















(

Dnc0a0

ρ0L′
0

)2




























∆σ̄total
pN

σ̄total
pN0

+O



















(

Dnc0

ρ0

)2














∆σ̄total
pN

σ̄total
pN0















2
















. (4.10)

Since, from Eq. (4.6), Dnc0/(ρ0a0) ∝ D1/2A−1/2 and a2
0
∝ A2/3,

we find that in the subleading term, Dnc0/(ρ0a0)a2
0

is propor-

tional to D1/2A1/6. In this way, we analytically find that, in

contrast to other formulas, our formula includes the O(A1/6)

term in addition to the leading O(A2/3) term in σ̃BS(Tp). The

presence of the O(A1/6) term, which comes from the nuclear

optical depth, is one of the salient features of the present for-

mula.

In order to illustrate the contribution from the O(A1/6)

term, in Fig. 8, we compare the values of the BS cross-

section formula (solid curve) with the values obtained by us-

ing the square-well potential within the eikonal approxima-

tion (dashed curve) for the cases of natu.C and Pb. The ex-

pression for σR in the eikonal approximation can be obtained

from the square-well potential as Eq. (B·2) in Appendix B. In

this expression, for simplicity, we do not distinguish between

protons and neutrons in the target. As a result of expansion,

the leading term is proportional to A2/3, while the sublead-

ing term is proportional to A1/3 multiplied by an A dependent

exponential suppression factor as can be found in Eq. (B·8),

which causes a different Tp dependence from the solid curve

in each panel of Fig. 8.

By comparing the solid curves in the upper and lower pan-

els of Fig. 8, one can see the relatively weaker Tp dependence

for the case of Pb. The cross section itself grows proportional

to ∼ A2/3, while the Tp-dependent term is proportional to

∼ A1/6, leading to O(A−1/2) corrections to the O(A2/3) term.

Thus, the relative change in the cross section by Tp is sup-

pressed. This is the reason why the slope toward a lower Tp

becomes steeper for the case of C than that of Pb. The latest

empirical values of σR
52) apparently support the presence of

Fig. 8. (Color online) Comparison of the BS cross-section formula (solid

curve) with the eikonal approximation based on the square-well potential

(dashed curve) for σR(p + natu.C) (upper) and σR(p +natu./208 Pb) (lower) as

a function of the kinetic energy of an incident proton. We adopt both the BS

radius at 800 MeV and the square-well radius as 2.70 fm for carbon and 7.40

fm for lead. The empirical data for σR and the values of σBS are the same as

in Fig. 6.

the Tp-dependent O(A−1/2) corrections.

Furthermore, both for C and Pb, the BS cross-section for-

mula shows a stronger Tp dependence at Tp . 200 MeV than

the case of the square-well potential. This is because of the

different dependence of the subleading term on σtotal
pN

. The for-

mer is the positive power law, while the latter is the negative

power law multiplied by an exponential suppression factor as

in Eq. (B·2). This exponential factor drastically reduces the

Tp dependence of expression (B·2), which is at odds with a

power-law σtotal
pN

dependence of the reaction cross section that

is empirically suggested.64)

In such conventional multiple-scattering theory as the

Glauber approximation, even if one adopts a realistic density

distribution as an input, a similarly weak Tp dependence of

the calculated σR is suggested as shown in Fig. 2 of ref.65)

The influence of the surface diffuseness is secondary in this

context. Therefore, a simplified comparison with our formula

using the rectangular density distribution in the eikonal ap-

proximation makes sense for the purpose of clarifying the es-

sential difference between the two approaches.

4.3 Overestimation by the BS Cross-Section Formula at Low

Energy

At Tp . 100 MeV, the values of the BS cross-section for-

mula overestimate the measured values of σR. We discuss this

fact briefly in this subsection.
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Fig. 9. The empirical values of σtotal
pN

as a function of nucleon incident en-

ergies lower than 1.5 GeV. The upper panel shows σtotal
pp and the lower panel

σtotal
pn . These values are obtained from the compilation by the Particle Data

Group.66) What the solid and dashed curves stand for can be found in Ap-

pendix A.

In constructing the formula, we assume that |σtotal
pN
− σtotal

pN0
|

is sufficiently small to validate |∆a| ≪ a0, which is well sat-

isfied for Tp & 100 MeV. In this sense, the overestimation by

the formula simply suggests that the approximation that we

adopted becomes invalid.

Let us look at which energy the value of σtotal
pN

is equal to

that of Tp ≃ 800 MeV, which we denote by σtotal
pN0

in Sec.

3 of ref.21) From Fig. 9, which plots σtotal
pN

as a function of

the kinetic energy of an incident nucleon, one can observe

that σtotal
pp ≃ σtotal

pp0
at Tp ≃ 50 MeV and σtotal

pn ≃ σtotal
pn0

at

Tp ≃ 200 MeV. Since we adopt the averaged value in the

formula as shown in Eq. (4.3), the relevant quantity is σtotal
pN

,

and σtotal
pN
≃ σtotal

pN0
at Tp ≃ 120 MeV for N = Z. Consequently,

the value of the BS cross-section formula for p + A around

Tp = 110 MeV becomes the same as that of Tp = 800 MeV.

At Tp ∼ 110 MeV, the formula starts to deviate from the em-

pirical values, and the deviation increases drastically as Tp de-

creases, because |σtotal
pN
−σtotal

pN0
| becomes too large for |∆a| ≪ a0

to be satisfied.

5. Other Probes

It is natural to attempt to extend the BS approximation of

nuclei to the processes of other hadronic probes such as an-

tiprotons, pions, and kaons. Although the BS approximation

is originally expected to provide a decent description of the

reaction cross sections for any kind of incident particle that

tends to be attenuated in nuclear interiors, whether this exten-

Fig. 10. (Color online) Comparison of σBS (squares with cross) with the

empirical σR (circles) for antiproton-nucleus reactions as a function of inci-

dent kinetic energy T p̄ of antiprotons. For calculating the values of σBS, we

adopt the empirical values of the angular distributions for elastic scattering

from 12C at 46.8 MeV69) and 179.7 MeV.70) For comparison, we plot the

empirical values of σR for a C target at the incident momenta of 466-879

MeV/c (T p̄ = 109.3, 145.3, 187.4, 239.0, 281.2, and 347.4 MeV) ,72) 485

and 597 MeV/c (T p̄ = 117.9 and 173.8 MeV),76) and 1.6-1.8 GeV/c (T p̄ =

916.6, 959.9, 1003.5, 1047.4, and 1091.6 MeV).77) The above empirical val-

ues at T p̄ = 117.9 and 173.8 MeV are plotted with the uncertainties of around

several percent in T p̄.

sion works or not is not obvious.

As a first step, in this section, we systematically analyze

empirical data for antiproton elastic scattering and total reac-

tion cross sections off stable nuclei at the incident energies

of antiprotons of lower than about 1000 MeV .67, 68) We here

focus on the case of antiprotons on C, because only in this

case the empirical values of both the differential cross sec-

tions of elastic scattering and of σR are available. As in the

same way as the case of proton projectiles, the values of σBS

are obtained from the first peak position of the elastic scatter-

ing data. Note that we regard the empirical values of absorp-

tion cross sections as those of σR.

As for empirical data for the elastic differential cross sec-

tions, Garreta et al. measured the angular distributions for

elastic scattering of antiprotons from 12C at the incident ki-

netic energy, T p̄ = 46.8 MeV,69) and from 12C, 40Ca, and
208Pb at T p̄ = 179.7 MeV .70) We analyze the data of 12C

and obtain the values of σBS, which are plotted in Fig. 10. We

remark in passing that in the case of proton projectiles, there

are no first peaks that appear in the measured elastic differen-

tial cross sections at the same incident energies. This reflects

how strongly antiprotons are attenuated in the target nucleus

compared with protons.

Ashford et al. measured the antiproton differential cross

sections on Al, Cu, and Pb for two incident momenta, 514

and 633 MeV/c, but the separation of the elastic from inelas-

tic contributions is incomplete.71) Therefore, we do not adopt

these data for the present analyses. Incidentally, a similar type

of measurements was performed by Nakamura et al. for the

differential cross sections of elastic scattering of antiprotons

on C, Al, and Cu at six beam momenta between 470 and 880

MeV/c.72)

For completeness, we mention other empirical differential

cross sections of antiprotons. Bruge et al. comparatively stud-

ied the elastic scattering from 16O and 18O isotopes at 178.4

MeV,73) and from deuterium at 179.3 MeV.74) Lemaire et al.
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measured the inelastic contribution from 12C and 18O at 50

and 180 MeV.75)

For comparison with σBS, we plot in Fig. 10 the empiri-

cal values of σR, which are taken from the absorption cross

section data.72, 76, 77) From this figure, we find that even in the

reactions involving antiprotons, the values of σBS are consis-

tent with the empirical values of σR within the uncertainties

although the values of σR are rather scattered in the region of

low incident energies. These results support the relevance of

the BS picture for antiprotons, while the analyses of the data

for other hadronic probes are in progress.

We remark that at much higher energies, there exist various

data for σR; for example, Denisov et al. measured the absorp-

tion cross sections for pions, kaons, protons, and antiprotons

on Li, Be, C, Al, Cu, Sn, Pb, and U in the 6 to 60 GeV/c

momentum range,78) while Carrol et al. measured the absorp-

tion cross sections for pions, kaons, protons, and antiprotons

on targets of Li, C, Al, Cu, Sn, and Pb at 60, 200, and 280

GeV/c.79) These data could be of some use, but are beyond

the scope of the present work.

In the energy region of interest here, the total antiproton-

proton cross sections are about five times larger than σtotal
pp ,

which implies a shorter mean-free path of an antiproton in

the nuclear medium than that of a proton at the same kinetic

energy. According to the results of ref.,15) the BS radii for pro-

tons are located in the nuclear surface. Note also that the val-

ues of σR in Fig. 10 are four or five times larger than those of

σR(p+ natu.C) as one can see from Figs. 6 and 8. Then, we can

expect that the BS radii for antiprotons are located in a signif-

icantly outer surface region. This will open up a possibility of

studying the nuclear surface structure, which would control

diffractive reactions in a different way for various hadronic

probes.

6. Summary and Conclusion

In this article, we have found that a novel A1/6 dependence

plays a crucial role in systematically describing the energy de-

pendence of σR(p+A) (Sec. 4.2). This finding, which is based

on the BS cross-section formula constructed from a simple

optical depth argument (Sec. 4.2), exhibits a clear contrast

with the eikonal approximation with the square-well poten-

tial (Appendix B).

The BS approximation of nuclei can be straightforwardly

extended to other hadronic probes such as neutrons, antipro-

tons, pions, and kaons. We have shown that the case of an-

tiprotons works well (Sec. 5). We can expect that an antipro-

ton is sensitive to the outer surface of nuclei than a proton, be-

cause the antiproton-nucleon total cross section is relatively

large.67) It is interesting to note the possibility that various

hadronic probes of various incident energies could have the

corresponding BS radii cover the whole surface region.

We can also extend the present framework to the case of

nucleus-nucleus reactions.15, 17) This is essential for the analy-

ses of experimental data of neutron-rich unstable nuclei mea-

sured or to be measured at radioactive ion beam facilities

such as the RI Beam Factory of RIKEN Nishina Center.80, 81)

We expect that the neutron-excess dependence of empirical

σR(A + A) would play an important role in deducing the den-

sity dependence of nuclear symmetry energy.2) For descrip-

tion of the reactions between heavy nuclei, however, it would

be essential to allow for the contribution from the Coulomb

dissociation, which would require additional treatment be-

yond the BS approximation. Studies in such new directions

are now in progress.

Recently, Horiuchi et al. examined the sensitivity of σR to

the neutron-skin thickness for O, Ne, Mg, Si, S, Ca, and Ni

isotopes including neutron-rich unstable nuclei by performing

numerical “experiments” that adopt the Glauber approxima-

tion with the density distributions obtained from the Skyrme-

Hartree-Fock method.82) They discussed such a sensitivity in

terms of the reaction radius, aR =
√
σR/π. For the case of

reactions with protons, aR is essentially the same as the BS

radius a introduced in Sec. 2. They found expressions for aR

that linearly relate aR to the point matter radius and the skin

thickness with energy dependent coefficients. Their elaborate

study will offer us a great insight when we consider extension

of our study toward a further neutron-rich regime.
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Appendix A: Parametrizations of Proton-Nucleon Total

Cross Sections

For the values of σtotal
pN

in Eq. (4.4), we adopt the

parametrization proposed by Bertulani and De Conti, Eqs. (1)

and (2) of ref.83) For completeness, we simply summarize

their expressions in the unit of mb as follows:

σtotal
pp =































































































19.6 + 4253/Tp − 375/
√

Tp + 3.86 × 10−2Tp

(for Tp < 280 MeV)

32.7 − 5.52 × 10−2Tp + 3.53 × 10−7T 3
p

−2.97 × 10−10T 4
p

(for 280 MeV ≤ Tp < 840 MeV)

50.9 − 3.8 × 10−3Tp + 2.78 × 10−7T 2
p

+1.92 × 10−15T 4
p

(for 840 MeV ≤ Tp ≤ 5 GeV)
(A·1)

for proton-proton collisions, and

σtotal
np =































































































89.4 − 2025/
√

Tp + 19108/Tp − 43535/T 2
p

(for Tp < 300 MeV)

14.2 + 5436/Tp + 3.72 × 10−5T 2
p

−7.55 × 10−9T 3
p

(for 300 MeV ≤ Tp < 700 MeV)

33.9 + 6.1 × 10−3Tp − 1.55 × 10−6T 2
p

+1.3 × 10−10T 3
p

(for 700 MeV ≤ Tp ≤ 5 GeV)
(A·2)
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for proton-neutron collisions. Here, Tp is the kinetic energy

of the projectiles in the laboratory frame in the unit of MeV.

These expressions, which are constructed by χ2 fitting in such

a way as to reproduce the energy dependence of the empirical

σtotal
pN

, are valid up to 5 GeV (see Fig. 1 in ref.83) for details).

For comparison, we estimateσtotal
pN

using the SAID program

of the version ”SP07”.84, 85) The SAID program gives several

estimations of the observables based on the partial-wave anal-

yses of the latest compilation of nucleon-nucleon scattering

data.

In Fig. 9 in Sec. 4.3, we compare the two parametrizations

for σtotal
pN

with the empirical values as a function of nucleon

incident energies lower than 1.5 GeV. The solid curves show

the fitting by Bertulani and De Conti,83) and the dashed curves

are obtained by the SAID program.

As shown in Fig. 9, the parametrization given by Eqs. (A·1)

and (A·2) very well reproduces the empirical values for Tp

up to ≃ 1.5 GeV, except for the proton-proton scattering for

the energies lower than 300 MeV in which case its deviation

from the SAID parametrization is appreciable due partly to

uncertainties in the empirical data. Both parametrizaitons give

an almost indistinguishable prediction of the proton-nucleus

total reaction cross sections via Eq. (4.4), but in this work we

adopt a simpler one, namely, Eqs. (A·1) and (A·2). We remark

in passing that the values of the SAID program start to rapidly

deviate from the data in the downward direction beyond 1.5

GeV.

Another parametrization was proposed by Charagi and

Gupta.86) This works well for proton incident energies lower

than around 300 MeV in the laboratory frame. For σtotal
pp , how-

ever, the parametrization underestimates the experimental val-

ues for the energies higher than around 700 MeV up to 1000

MeV and significantly overestimates them for the energies

higher than around 1000 MeV. Also for σtotal
pn , the agreement

with the empirical values is not good for the energies higher

than 400 MeV. Therefore, we do not adopt the parametriza-

tion for the present work.

Appendix B: Scattering with a Square-Well Potential of

Finite Strength

In this Appendix, we derive several expressions that char-

acterize the scattering with a square-well potential of finite

strength using various expressions that appear in Sec. 2 of

ref.21) We apply the expressions derived here to discussion

of the A dependence of σR(p + A) in the main text. For ad-

ditional expressions for scattering amplitudes and absorption

cross sections that arise from the above potential, see Sec. 5

of ref.21)

B.1 Simple Case

Let us consider the case of a complex-valued potential of

finite strength

Vopt(r) = (V0 − iW0)θ(ā − r), (B·1)

where V0 and W0(> 0) are real constants, and ā is given by

A = ρ0(4π/3)ā3, which is generally different from the BS

radius a as in Eq. (2.7) (see also Eq. (2.9) of ref.21)). Here,

for simplicity, we assume the same potential cutoff scale ā

for neutrons and protons. Through the phase-shift function,

χ(b), defined by Eq. (2.2) of ref.,21) we write σabs, Eq. (2.8)

of ref.,21) as

σabs = 2π

∫ ∞

0

bdb {1 − | exp[iχ(b)]|2}

= πā2C(α) (< πā2), (B·2)

where

C(α) = 1 − 2

α2
[1 − (α + 1) exp(−α)], (B·3)

with α = 4W0ā/v (see Eq. (2.81) in ref.87)). In the limit of

complete absorption (α → ∞), Eq. (B·2) reduces to the cor-

rect form πā2. An extension to the case of the different po-

tential cutoff scales between protons and neutrons will be de-

scribed in Sec. 5.2 of ref.21)

If we apply the tρ approximation to the optical potential,

we obtain

W0 =
1

2
σ̄total

pN ρ0v, (B·4)

which leads to

α = 2σ̄total
pN ρ0ā, (B·5)

where σ̄total
pN

is given by Eq. (4.3).

B.2 A Dependence

Here we examine the target mass-number dependence of

the expression for σabs given by Eq. (B·2). Since

ā = ǫA1/3 ∝ A1/3, (B·6)

with ǫ = [3/(4πρ0)]1/3, and

α = γσ̄total
pN A1/3 ∝ A1/3, (B·7)

with γ = 2ǫρ0, we obtain

σabs = πā2C(α)

= πǫ2A2/3C
(

γσ̄total
pN A1/3

)

= πǫ2A2/3 +
2πǫ2

γσ̄total
pN

A1/3 exp
(

−γσ̄total
pN A1/3

)

− 2πǫ2

γ2(σ̄total
pN

)2

[

1 − exp
(

−γσ̄total
pN A1/3

)]

.

(B·8)

Each term is ordered in powers of A1/3 except exponential

factors. The term proportional to A2/3 is independent of en-

ergy in contrast to Carlson’s formula,49) which will be briefly

summarized in Sec. 6 of ref.21)
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