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Abstract

A 4d N = 1 SCFT lives on D3-branes probing a local del Pezzo Calabi-Yau

singularity. It is known that the Seiberg (or toric) duality of this SCFT arises

from the Picard-Lefshetz transformation of the affine EN 7-brane background that

is associated with the Calabi-Yau threefold. In this paper we study the duality

of the affine EN background itself and a 5-brane probing it. We then find that

many different Type IIB 5-brane webs describe the same SCFT in 5d. We check

this duality by comparing the Nekrasov partition functions of these 5-brane web

configurations.



1 Introduction

Developments in string theory have led to a great number of non-trivial interacting

conformal field theories, which are not apparent from the framework of perturbative

quantum field theory. Superconformal field theories (SCFTs) in five dimensions (5d)

are typical examples. In general, 5d gauge theory is non-renormalizable and trivial,

and such a theory cannot be a fundamental microscopic theory. However, by employing

superstring theory, Seiberg [1] provided evidences of the existence of many non-Gaussian

fixed point in 5d. The relevant deformation of such CFT flows to certain 5d N = 1

gauge theory, and actually this gauge theory is non-perturbatively well-defined in spite

of seeming non-renormalizability.

These 5d SCFTs, which are ultraviolet (UV) fixed point theories of 5d N = 1 gauge

theories, were studied from various viewpoints: Type I’/heterotic duality [1, 2], M-theory

on a Calabi-Yau singularity [3, 4] , type IIB 5-brane web configuration [5, 6, 7] and

Type IIB 7-brane background [8, 9, 10, 11]. In this paper, we employ the Calabi-Yau

compactification, 5-brane web and 7-brane realization in order to study 5d SCFTs, and

we then find that the branch cut move (the Picard-Lefshetz transformation) [12, 13, 14,

15, 16] of 7-brane configurations leads to non-trivial duality between stringy realizations,

namely Calabi-Yau manifolds, of the 5d SCFTs. This duality in 5d is deeply related to

the Seiberg duality between 4d quiver gauge theories which are realized as worldvolume

theories of D3-branes on Calabi-Yau singularities.

Let us consider two equivalent Calabi-Yau singularities that are related through 7-

brane move. It is known that two 4d gauge theories on D3-branes probing them are

Seiberg-dual to each other [17, 18, 19, 20, 21, 22, 23, 24, 25]. In this sense, our duality

between Calabi-Yau manifolds is a parent of this 4d Seiberg duality. As we will explain,

a generic dual pair of Calabi-Yau manifolds are not completely equivalent because these

compactifications lead to decoupled extra states [26, 27, 28, 29, 30]. In 5d duality, we have

to remove this extra contribution to formulate the duality, but the 4d Seiberg duality is

very simple since a D3-brane world-volume theory does not feel these extra degrees of

freedom.

In this paper we study the 5d field theories arising from M-theory compactified on the

local del Pezzo surfaces dP1,2,··· ,6. In general, a local del Pezzo surface is not toric, and

therefore we do not have efficient way to compute the corresponding partition function.
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If a Calabi-Yau is toric, we can utilize the topological vertex formalism [31, 32, 33, 34,

35, 36, 37, 38, 39, 40] to calculate exactly its partition function. For a local del Pezzo

surface, we find local pseudo del Pezzo surfaces PdP p=I,II,···
k which is toric and dual to

the local del Pezzo surface dPk. We then conjecture that the del Pezzo partition function

is given by the toric partition functions of the pseudo del Pezzo surfaces through the

simple relation

ZdPk
=

ZPdP p
k

Z
PdP p

k
extra

, p = I, II, · · · . (1.1)

The point is that the discrepancy between dPk and PdP p
k is only an overall factor Z

PdP p
k

extra

in all cases. This extra factor arises from the above-mentioned extra states in the 5d

spectrum which do not transform correctly the 5d Lorentz group. In this paper, we

check this nontrivial relation actually holds for dP1,2,··· ,6.

The structure is organized as follows. We give a brief review on superconformal field

theories associated with 5-brane web configurations in section 2. In section 3, we study

the relation between web configurations by employing 7-brane picture of local Calabi-

Yau compactification. We then conjecture new relation between the Nekrasov partition

functions of the Calabi-Yau manifolds associated with a del Pezzo surface. In section 4

we check this conjecture based on the instanton expansion. We conclude in section 5. In

appendix A and B, we set some conventions, deriving useful formulas.

2 Five-dimensional theories and 5-brane webs

5d N = 1 SU(2) gauge theories and their UV fixed point SCFTs are our main focus in

this paper. We have many stingy realizations of such SCFTs and corresponding gauge

theories. A well-known method is using the (p, q) 5-brane web configurations in Type

IIB [5, 6, 8].

By considering SL(2, Z) duality acting on a D5-brane, we can find there exists a (p, q)

5-brane with generic Ramond-Ramond and NS-NS charges. Let us consider the planar

web configurations of these 5-branes. We assume that x0,1,··· ,4-worldvolume are shared by

all branes, and they form a planar graph in the x5-x6 plane. A generic web is constructed

by gluing trivalent vertex of three (pi, qi) 5-branes. Because of the charge conservation,
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Figure 1: The left hand side is the 5-brane web dual to the local CP2 geometry. We

regularize an external leg by terminating it on a 7-brane. A colored circle is a 7-brane,

and a dashed lines is branch cut arising from it. Moving these three 7-branes inside the

5-brane loop yields the right hand side through the Hanany-Witten effect.

we have to impose

3∑
i=1

pi = 0 =
3∑

i=1

qi. (2.1)

To maintain a quarter of the original 32 supercharges, we have to impose the condition

that the slope of a 5-brane in a planar diagram is given by its charge vector (pi, qi)
1. We

then find 5d N = 1 field theories on their world-volumes.

M-theory compactified on a toric Calabi-Yau manifolds also gives 5d N = 1 the-

ory. The toric Calabi-Yau three-folds are specified by the web diagrams up to SL(2, Z)

symmetry of the toric datas. An important fact is that a 5-brane web and the toric

compactification specified by the same web diagram lead to the same stringy system

because of the string dualities. We can thus easily recast a 5-brane web system into the

corresponding toric Calabi-Yau compactification. We therefore consider a web system

without distinction between 5-brane configuration and toric Calabi-Yau geometry.

Let us consider an extension of these 5-brane systems. In Type IIB superstrings,

there exist 7-branes with generic (p, q) charges which originate from the SL(2, Z) trans-

formation of a D7-brane. We can terminate a 5-brane in a web on a 7-brane stretching to

x0,1,··· ,4,7,8,9 directions [8]. This modification does not break supersymmetry, and more-

over we can replace all external 5-brane legs with finite legs ending on 7-branes without

1In this convention, we consider the simple choice of the Type IIB coupling τIIB = i. The web

diagrams take warped shapes in generic coupling, but this is irrelevant to our analysis.
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changing the resulting 5d field theory2. This means that the 5d theory is independent

of the lengths of these finite legs. Figure 1 illustrates the 5-brane web of the local CP2

Calabi-Yau3 modified by three 7-branes. The dashed lines are branch cuts created by

7-branes. Since 7-branes can move along the corresponding 5-brane legs, we can move

all the 7-branes into the center of the web. When a 7-brane passes the 5-brane loop,

the anti-Hanani-Witten mechanism occurs and the external leg attached to this 7-brane

disappears. The resulting configuration is illustrated in the right hand side of Figure 1 .

This system is a 5-brane loop proving a 7-brane background configuration. This repre-

sentation as a 7-brane background configuration is not unique because a 7-brane changes

its (p, q) charges when it passes a branch cut of an another 7-brane. We can therefore

find a different 7-brane configuration by changing the ordering of these 7-branes. This

property of branch cut move plays a key role in our analysis. Some basic facts including

the rule of branch cut move are reviewed in Appendix.A.

3 Toric phases of local (pseudo) del Pezzo surface

In this paper, we study the 5-brane web configurations with single loop. Since Type IIB

superstring theory enjoys SL(2, Z) duality, we consider only the SL(2, Z)-inequivalent

configurations. The reflection is also irrelevant to our analysis, we consider the general

linear group duality transformation

GL(2, Z) =

{(
a b

c d

)∣∣∣∣∣ad − bc = ±1, a, b, c, d ∈ Z

}
. (3.1)

We can classify the GL(2, Z)-inequivalent webs by considering the dual grid diagrams

as Figure 2 . There are sixteen inequivalent convex lattice polygons with single internal

point, and this means that there are sixteen inequivalent physical systems in Type IIB.

These web configurations is illustrated in Figure 2 . The web with three external legs

corresponds to the local CP2 geometry and does not associated with 5d gauge theory.

We therefore consider the remaining webs.

2As we will see in this paper, the cases involving adjoining parallel legs are exceptions.
3Since a 5-brane web is dual to the toric Calabi-Yau for the same web diagram we call the 5-brane

web by the name of the Calabi-Yau.

4



Figure 2: All the GL(2, Z)-inequivalent convex lattice polygons with single internal point

and their dual web diagrams.
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Figure 3: Blowup in a toric web diagram. The local Calabi-Yau for the first del Pezzo B1

is the one point blowup of the local P2. The resulting three toric diagrams are equivalent

up to the SL(2, Z) symmetry transformation.

In the studies on 4d quiver gauge theories [17, 18, 19, 20, 21, 22, 23, 24, 25], it was

pointed out that some of these toric Calabi-Yau manifolds lead to Seiberg-dual pair of

4d theories. Recently, all the 4d N = 1 quiver gauge theories associated with these toric

manifolds were determined in [41]. In this paper, we re-examine the relation between

these toric manifolds from the recent perspective of 5d SCFTs and related string setups

and find new duality between Calabi-Yau compactifications of M-theory.

3.1 First del Pezzo surfaces dP1 and d̃P1

The first del Pezzo surfaces correspond to the 5-brane webs in Figure 2 with four exter-

nal legs. These configurations describe 5d theories whose flavor symmetry is rank-one.

There are three webs, however, there are only two known 5d SCFT with rank-one flavor

symmetry. In the following we explain the origin of this mismatch by showing two of

these three webs are actually dual to each other.

dP1: local B1 (or F1) surface

The first del Pezzo surface B1 is the one point blowup of CP1. Using the SL(3, C) sym-

metry on CP1, we can move three generic points to the three corners in the toric diagram.
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Figure 4: The two toric phases of the local geometry of the another first del Pezzo B̃1.

The local B1 Calabi-Yau threefold is given by the blowup of the toric web diagram of

the local CP1 as Figure 3 . The three choices of blowup point lead to three local del

Pezzo dP1. Since a toric diagram specifies the corresponding Calabi-Yau threefold up

to the action of SL(2, Z) symmetry transformation. The three webs in Figure 3 are

actually the same geometry, and so there is only the unique toric phase of the local first

del Pezzo surface. This toric geometry is also known as the local Hirzebruch surface F1.

The compactification of M-theory on this Calabi-Yau manifold yields the 5d Ê1 SCFT

[1, 3] whose flavor symmetry is U(1).

d̃P 1: local B̃1 (or F0) surface

There is the another class of the first del Pezzo surface B̃1 that coincides with the Hirze-

bruch surface F0 = CP1 × CP1. The symbol d̃P 1 in this paper denotes the local F0

geometry whose web diagram is illustrated in the left side of Figure 4 . The recent work

[26, 29] showed that other toric geometry P d̃P 1 that is the local geometry of F2 leads to

the same compactified string theory as that of d̃P 1 after removing certain extra contribu-

tion. This conjecture is stated as the following equivalence between their BPS Nekrasov

partition functions

Z
fdP 1

(QF , u; t, q) =
ZP fdP 1

(QF , u; t, q)

Z P fdP 1
extra (u; t, q)

. (3.2)

Z extra is the partition function of the extra contribution given in [29, 26]. QF = e2ia is

the fugacity associated with the Cartan of the SU(2) gauge group, that is the Coulomb

branch parameter, and t and q are the exponentiated Ω-background parameters. The
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Figure 5: The left hand side is the 5-brane loop probe of Ê1 7-brane configuration.

Since all the 7-branes are not collapsible, only a sub-algebra E1 is realized on the 5-brane.

The right hand side is the corresponding web diagram which is obtained by moving a

7-brane the outside of the loop along the associated geodesic.

charge associated with the instanton current J = ∗trF ∧ F is counted by the instanton

factor u. The Nekrasov partition function for a toric Calabi-Yau threefold is computed

by using the refined topological vertex formalism [37], and the algorithm to compute the

corresponding extra contribution Z extra for a given toric Calabi-Yau is given in [27, 28, 29].

We will review the check of the conjecture (3.2) in the next section.

This equivalence means that the 5d field theories arise from the two 5-brane web

configurations, namely d̃P 1 and P d̃P 1, are the same quantum field theory up to essentially

decoupled4 extra contributions. We can actually derive the following equivalence between

the superconformal indexes [42, 43] by using the conjectural relation (3.2)

I
fdP 1

=
IP fdP 1

I extra

. (3.3)

The web configurations therefore lead to the same 5d UV fixed point superconformal

field theory E1.

In the following, we will give a physical explanation of this non-trivial equivalence

between these different Calabi-Yau compactifications and the corresponding 5d effective

field theories. The key is the fact that a toric Calabi-Yau compactification of M-theory is

4Since the factorization (3.2) is satisfied by the Nekrasov partition function and superconformal index,

the extra contribution is decoupled from the main 5d theory as far as the BPS sector is concerned.
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Figure 6: The left hand side is the 5-brane loop probe of a reordered Ê1 7-brane

configuration. The right hand side is the corresponding web diagram which is obtained

by moving a 7-brane the outside of the loop. This is the web of P d̃P 1 modified by four

7-branes.

dual the IIB 5-brane web configuration, and we can introduce the 7-branes on the edges

of the external 5-branes to make infinitely long external line finite length [8]. In the case

of the local zeroth Hirzebruch d̃P 1, the regularized 5-brane configuration is illustrated in

the right side of Figure 5 . We introduce two types of 7-branes B and C to replacing

the two types of the infinitely-long 5-branes into two types of finite 5-branes. A 7-brane

creates a branch cut, and it is illustrated by the short dashed line in Figure 5 . In this

figure we ignore a non-trivial metric created by the 7-brane background because only the

asymptotic shape of web is important in our analysis.

The 5d field theory is independent of the length of the external legs. We can therefore

move these 7-branes to the inside of the 5-brane loop. By using Hanany-Witten effect

in an inverted way, we can see that the 5-brane prongs disappear when the 7-branes

cross the 5-brane loop. The resulting configuration is illustrated in the left hand side

of Figure 6 . This is the 5-brane loop probe of the 7-brane background BCBC. This

7-brane configuration is named as Ê1

Ê1 ≡ BCBC. (3.4)

By reordering the 7-branes in this configuration, we can explain why the two local Hirze-

bruch surfaces give the same BPS spectrum and 5d field theory. Since a 7-brane creates

the branch cut, reordering of 7-branes also transforms the [p, q]-charges of them. The
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Figure 7: If two X[2,−1] branes move away to infinity, two adjoining parallel legs appear

as illustrated in the right hand side. There exist extra states propagating along this

infinitely-long additional dimension, and this resulting system therefore contains surplus

spectrum.

basic properties and rules are collected in Appendix.A. Let us move the 7-branes by using

these rules. Starting with Ê1 configuration, we find

Ê1 ≡ BCBC = BCCX[3,1]
T−1

' X[2,−1]X[0,1]X[0,1]X[2,1]. (3.5)

In the last equality we use the SL(2, Z) dual transformtion

T =

(
1 0

1 1

)
. (3.6)

This new configuration is shown in the left hand side of Figure 6 . We can move the

7-branes outside of the loop, and we get the web diagram in the right hand side of

Figure 6 . This is precisely the (toric) web diagram for the local second Hirzebruch

P d̃P 1 up to the 7-brane regularization.

This geometry P d̃P 1 is not the genuine del Pezzo surface. We therefore call the base

of this local geometry the pseudo first del Pezzo surface. This local pseudo del Pezzo

surface P d̃P 1 is a different geometry from the local del Pezzo d̃P 1, however, these systems

will be identical once the 7-branes are introduced in the dual 5-brane web picture.

We can remove X[2,−1] and X[2,1] branes safely, however we can not do X[0,1] branes.

This is because the attached prongs form the stack of two parallel 5-branes, and so new

six-dimensional states appear once we move the 7-branes to infinity Figure 7 . In this

sense the two toric phases d̃P 1 and P d̃P 1 are not completely identical, but the fact

pointed out in [26, 27, 28, 29] is that the extra states are essentially decoupled from the
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Figure 8: Ê2 configuration in the left hand side is equivalent to BAX[0,1]BC. This

configuration gives the web of dP2 in the right hand side.

5d theory and we can eliminate the extra contribution as (3.2). By generalizing this

idea, we can find infinitely many dual toric phases which are related by the equivalence

relation like (3.2). The phases discussed in the following provide simplest examples of

such extension.

The trace of the monodormy matrix around X[0,1]X[0,1] is

TrK[0,1]K[0,1] = 2, (3.7)

and then X[0,1]X[0,1] pair is collapsible as Figure 7 . In this picture this stack of 7-

branes gives the enhanced SU(2) symmetry, and therefore 5d field theory should lose this

symmetry once these two branes are removed to obtain P d̃P 1 toric geometry. Actually,

the superconformal index IP fdP 1
does not enjoy SU(2) flavor symmetry, and we can

recover the index I
fdP 1

with SU(2) symmetry by removing the extra contribution. This

normalized index without 6d state contributions describes the middle configuration in

Figure 7 .

3.2 Second del Pezzo surface dP2

Toric del Pezzo phase dP2

Ê2 configuration is the one-point blowup of Ê1, and the blowup process is realized by

adding A-brane to the original 7-brane configuration. The resulting 7-brane configuration
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Figure 9: Ê2 configuration is also equivalent to BBX[0,1]X[−1,2]C, and thus PdP2 de-

scribes the same system as dP2 once one add 7-branes to their webs.

is converted by the action of the branch cut move of 7-branes to BAX[0,1]BC

Ê2 ≡ ABCBC = X[0,−1]ACBC = BX[0,−1]CBC = BCABC

= BAX[0,1]BC. (3.8)

Pulling these five 7-branes out of the 5-brane loop creates new 5-brane prongs on the

7-branes through the Hanany-Witten effect. The resulting configuration is illustrated

in Figure 8 . Moving along the geodesics of 7-branes, all the 7-branes can run away

to infinity without changing the 5d theory. The configuration then consists purely of

5-branes, and therefore it has dual toric Calabi-Yau geometry. This toric diagram, which

has completely the same shape as the 5-brane web, is precisely that of the local second

del Pezzo surface. Therefore, the Ê2 background and the dP2 Calabi-Yau lead to the

same 5d theory.

Pseudo del Pezzo phase I PdP2

We saw that the branch cut move of 7-branes converts Ê2 background to dP2 configura-

tion. Applying successive move, we can find another web representation of this configu-

ration. Let us consider the following branch cut move

Ê2 = BAX[0,1]BC = BABX[−1,2]C = BBX[0,1]X[−1,2]C. (3.9)
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Figure 10: dP3 and PdP I
3 are related through branch cut move. Notice that the overall

sign of the [p, q] charge is irrelevant and so X[p,q] = X[−p,−q]. In this paper we do not

replace X[−p,−q] to X[p,q] just for keeping track of the branch cut moves.

This configuration BBX[0,1]X[−1,2]C leads to the web diagram for the pseudo del Pezzo

phase I of the second del Pezzo surface as Figure 9 . Since the 7-brane configuration

Ê2 produces the webs of dP2 and PdP2, these two webs yield precisely the equivalent

5d theory. Notice that the web configuration PdP2 contains the stack of two parallel

external legs terminated on BB. As we discussed in the previous subsection on d̃P 1,

we can not move the 7-branes on the parallel stack to infinity without changing the 5d

theory. Therefore the Nekrasov partition function of PdP2, whose web configuration

is obtained by removing all the 7-branes, can not perfectly coincide with that of dP2

diagram. The discrepancy between them however takes very simple form as the cases

studied in [26, 27, 28, 29], and so this mismatch is not essential. We then expect the

following relation between the partition functions of these two phases

Z dP 2(QF , u, QE; t, q) =
ZPdP 2(QF , u, QE; t, q)

Z PdP 2
extra (u,QE; t, q)

. (3.10)

We will check this equivalence relation between the phases in the next section.

3.3 Third del Pezzo surface dP3 and PdP3

There are four phases of the third del Pezzo surface. The toric phase for the genuine

third del Pezzo surface dP3 is illustrated in the right hand side of Figure 11 . The web
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diagram next to dP3 in Figure 10 is that for the first phase of the pseudo del Pezzo

surface PdP I
3 . We will show they are identical once the 7-branes are introduced.

Toric dP3 and pseudo del Pezzo phase I PdP I
3

The third del Pezzo surface is the 5-brane loop probe of the Ê3 7-brane configuration.

By moving branch cuts we obtain

Ê3 ≡ A2BCBC

= ABAX[0,1]BC = BX[0,1]AX[0,1]BC = BAX[1,−1]X[0,1]BC = BAX[0,1]ABC

= BAX[0,1]X[0,−1]AC, (3.11)

and this 7-brane configuration gives the web of the pseudo del Pezzo PdP I
3 . Moving the

branch cut coming from the brane X[0,−1], we obtain

. (3.12)

This representation leads to the web of dP3 as Figure 10 . The two toric phases dP3 and

PdP I
3 are therefore same brane configuration, and the partition functions take the same

value once one factors the contribution from the stack of two parallel external branes out

Z dP3 =
ZPdP I

3

Z
PdP I

3
extra

, Z
PdP I

3
extra = Zparallel two 5-branes. (3.13)

As we will see soon, this Z dP3 partition function have different expressions based on

other pseudo del Pezzo phases.

Pseudo del Pezzo phases II,III PdP II,III
3

There are two remaining phases of the third del Pezzo. Figure 11 and Figure 12 are

the pseudo third del Pezzo surfaces PdP II,III
3 . These phases are also equivalent to the

local del Pezzo surface dP3. We can show this fact by using the 7-brane picture again.

Let us start with the phase II of the pseudo third del Pezzo PdP II
3 . Branch cut move

implies the relation

AX[0,1]X[0,−1]A = AX[0,1]BX[0,−1] = AX[0,1]X[−1,0]B = AX[−1,0]X[−1,1]B

= AX[−1,1]X[0,−1]B = X[0,1]AX[0,−1]B = BX[0,1]X[0,−1]B. (3.14)
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Figure 11: dP3 is equivalent to PdP II
3 that is associated with BAX[0,1]X[0,−1]BA.

We can therefore find the following expression of the Ê3 configuration

Ê3 = BAX[0,1]X[0,−1]AC = BBX[0,1]X[0,−1]BC. (3.15)

Since the right hand side gives the PdP II
3 configuration as Figure 11 , this phase is

equivalent to PdP I
3 , and dP3. There are two stacks of two parallel external branes, and

the non-full spin content contribution to the PdP II
3 partition function takes the form

Z
PdP II

3
extra = Zparallel two 5-branes × Z parallel two 5-branes. (3.16)

By factoring this extra contribution out, we obtain the dP3 partition function from the

PdP II
3 partition function

Z dP3 =
ZPdP II

3

Z
PdP II

3
extra

. (3.17)

We can also show the equivalence between dP3 and PdP III
3 . Branch cut move leads

to the relation

X[0,1]X[0,−1]B = X[0,1]BX[1,−2] = BX[−1,2]X[1,−2], (3.18)

and by applying it to (3.15), we obtain

Ê3 = BBX[0,1]X[0,−1]BC = BBBX[−1,2]X[1,−2]C. (3.19)
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Figure 12: dP3 is equivalent to PdP III
3 that is associated with BBBX[−1,2]X[1,−2]C.

The right hand side gives the PdP III
3 configuration as Figure 12 . This phase is therefore

equivalent to PdP II
3 , and dP3. There are a stack of two parallel 5-branes and a stack

of three parallel 5-branes, and so PdP III
3 partition function leads to the dP3 partition

function by factoring the following extra contribution Z
PdP III

3
extra out

Z dP3 =
ZPdP III

3

Z
PdP III

3
extra

, Z
PdP III

3
extra = Zparallel two 5-branes × Zparallel three 5-branes. (3.20)

This equivalence is very non-trivial because the calculation of the PdP III
3 partition func-

tion is very hard. Computing the instanton expansion of this partition function, this new

conjecture is checked in the next section.

3.4 Fourth del Pezzo surface dP4 and PdP4

The local fourth del Pezzo surface dP4 is non-toric and does not have any 5-brane web

description. We can however construct toric analogue of it by blowing up the toric de-

scriptions of the third pseudo del Pezzo surface dP3, and there are two resulting toric

phases PdP I,II
4 of the local pseudo del Pezzo surface. By introducing the 7-brane regu-

larization, we can show the equivalence between the pseudo del Pezzo surfaces PdP4 and

the genuine one dP4.
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Figure 13: Ê4 configuration is related to BAX[0,1]X[0,−1]X[0,−1]X[−1,0]C, and therefore

dP4 is equivalent to PdP I
4 .

Pseudo del Pezzo phase I PdP I
4

The local fourth del Pezzo surface is realized by the 5-brane probe of the Ê4 configuration.

By using (3.11), we get

Ê4 ≡ A3BCBC = ABAX[0,1]X[0,−1]AC = BX[0,1]AX[0,1]X[0,−1]AC

= BAX[−1,1]X[0,1]X[0,−1]AC = BAX[0,1]X[−1,0]X[0,−1]AC, (3.21)

and we find the following expression by moving the branch cut coming from X[0,−1]

upward

. (3.22)

The last expression immediately gives the pseudo del Pezzo PdP I
4 as illustrated in Fig-

ure 13 . Therefore this pseudo del Pezzo is equivalent to the genuine del Pezzo dP4 once

one introduces the 7-brane regularization to all the external legs. This pseudo del Pezzo

phase contains two stacks of two parallel 5-branes, and so we can obtain the dP4 partition
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Figure 14: dP4 is equivalent to PdP II
4 . This 5-brane web is associated with the 7-brane

configuration BAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C.

function by removing the following extra factor from the PdP I
4 partition function

Z dP 4(QF , u, QEf ; t, q) =
ZPdP I

4
(QF , u, QEf ; t, q)

Z
PdP I

4
extra (u,QEf ; t, q)

(3.23)

Z
PdP I

4
extra = Zparallel two 5-branes × Zparallel two 5-branes. (3.24)

This conjecture was checked at the level of the superconformal index [27, 28], and the

authors showed that the renormalized PdP I
4 partition function leads to the index with

the enhanced E4 symmetry which is expected from property of the del Pezzo surface dP4.

Pseudo del Pezzo phase II PdP II
4

For the fourth del Pezzo surface, there is the additional toric phase PdP II
4 illustrated

in Figure 14 . This pseudo del Pezzo surface is also equivalent to the del Pezzo dP4 as

follows. By using the relation (3.21), we find

Ê4 = BAX[0,1]X[−1,0]X[0,−1]AC = BAX[0,1]X[0,−1]X[−1,−1]AC

= BAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C. (3.25)

The last line is precisely the 7-brane configuration which leads to PdP II
4 as Figure 14 .

This pseudo del Pezzo surface contains a stack of two parallel 5-branes and a stack of

three parallel 5-branes, and so the dP4 partition function is the PdP II
4 partition function
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Figure 15: Moving branch cuts of Ê5 configuration, we obtain the configuration on the

left side. The pseudo del Pezzo surface illustrated on the right side is thus equivalent to

dP5.

divided by the following extra factor

Z dP 4(QF , u, QEf ; t, q) =
ZPdP II

4
(QF , u, QEf ; t, q)

Z
PdP II

4
extra (u,QEf ; t, q)

(3.26)

Z
PdP II

4
extra = Z parallel two 5-branes × Zparallel three 5-branes. (3.27)

This new conjecture is checked in the next section.

3.5 PdP5

The local fifth del Pezzo surface dP4 is not toric, and therefore it does not have 5-brane

web description. We can however construct pseudo del Pezzo surfaces as the previous

cases, and there are the three toric pseudo del Pezzo phases PdP I,II,II
5 . By introducing

the 7-brane regularization, we can show that these pseudo del Pezzo surfaces leads to the

same compactification of superstring as that on the non-toric del Pezzo dP5.

Pseudo del Pezzo phase I PdP I
5

Let us start with the pseudo del Pezzo surface PdP I
5 illustrated in Figure 15 . We

can regularize the corresponding 5-brane web by introducing two types of 7-branes A =
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X[−1,0] and X[0,1] = X[0,−1]. We can show that this configuration is equivalent to the local

fifth del Pezzo surface associated with Ê5 configuration.

Ê5 ≡ A4BCBC = ABAX[0,1]X[−1,0]X[0,−1]AC = X[0,−1]AAX[0,1]X[−1,0]X[0,−1]AC.

(3.28)

We use (3.21) to show the second equality. By moving the branch cut as (3.12), we obtain

, (3.29)

and this expression leads to the pseudo del Pezzo surface as Figure 15 . This toric phase

contains four stacks of four parallel 5-branes and the extra contribution from the non-full

spin content is

Z dP 5(QF , u, QEf ; t, q) =
ZPdP I

5
(QF , u, QEf ; t, q)

Z
PdP I

5
extra (u,QEf ; t, q)

(3.30)

Z
PdP I

5
extra = Zparallel two 5-branes × Zparallel two 5-branes

× Zparallel two 5-branes × Zparallel two 5-branes. (3.31)

By removing this contribution, we can obtain the Nekrasov partition function of the local

del Pezzo surface dP5 from the pseudo del Pezzo partition function. This conjecture was

checked in [27, 28] based on the explicit computation.

Pseudo del Pezzo phase II PdP II
5

There are another toric phase of the del Pezzo dP5. Figure 16 is the second phase

PdP II
5 . This phase is also equivalent to Ê5 because branch cut move implies

Ê5 = ABAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C = X[0,−1]AAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C.

(3.32)

To show the first equality we use the relation (3.25). The last 7-brane configuration

leads to the second toric phase as illustrated in Figure 16 . This web configuration

contains three stacks of infinitely-long external 5-branes once one remove the 7-brane

regularization. Therefore the PdP II
5 partition function coincides with the dP5 partition
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Figure 16: Ê5 configuration leads to the 7-brane configuration on the left side. PdP II
5

is therefore equivalent to dP5.

function once one remove the contribution from the stacks as

Z dP 5(QF , u, QEf ; t, q) =
ZPdP II

5
(QF , u,QEf ; t, q)

Z
PdP II

5
non-ful(u,QEf ; t, q)

(3.33)

Z
PdP II

5
extra = Z parallel three 5-branes × Z parallel two 5-branes × Zparallel two 5-branes. (3.34)

This new conjecture is checked in the next section.

Pseudo del Pezzo phase III PdP III
5

The third toric phase PdP III
5 is illustrated in Figure 17 . The following relation follows

from branch cut move

Ê5 = ABAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C = BX[0,1]AX[0,1]X[0,−1]X[0,−1]X[−1,−1]C

= BBX[0,1]X[0,1]X[0,−1]X[0,−1]X[−1,−1]C, (3.35)

and the last line leads to the PdP III
5 brane web configuration as Figure 17 . Therefore

this phase PdP III
5 is also equivalent to the genuine local del Pezzo surface in the presence

of the 7-brane regularization.

By removing the 7-branes, we obtain the 5-brane web and can compute the corre-

sponding partition function by using the refined topological vertex formalism. Once one

takes away the 7-brane regularization, the stacks of the parallel external 5-branes develop
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Figure 17: Ê5 configuration leads to the 7-brane configuration on the left side. PdP III
5

is therefore equivalent to dP5.

the extra contribution. The PdP III
5 partition function therefore coincides with the dP5

partition function after eliminating the extra contribution

Z dP 5(QF , u, QEf ; t, q) =
ZPdP III

5
(QF , u, QEf ; t, q)

Z
PdP II

5
extra (u,QEf ; t, q)

(3.36)

Z
PdP III

5
extra = Zparallel four 5-branes × Z parallel two 5-branes × Z parallel two 5-branes. (3.37)

This new conjecture is also checked in the next section.

3.6 PdP6

The non-toric local fifth del Pezzo surface dP5 does not have any 5-brane web description.

There are however the toric pseudo del Pezzo phase PdP6 illustrated in Figure 18 . We

can relate the pseudo del Pezzo phase PdP6 to the genuine del Pezzo dP6 by moving

branch cuts of the corresponding 7-brane background

Ê6 ≡ A5BCBC = AX[0,−1]AAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C

= X[−1,−1]AAAX[0,1]X[0,−1]X[0,−1]X[−1,−1]C. (3.38)

The last line leads to the web of PdP5 as Figure 18 .

Since the pseudo del Pezzo configuration contains three stacks of three parallel 5-

branes, the PdP6 partition function coincides with the dP6 partition function after re-
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Figure 18: Moving branch cuts of Ê6 configuration, we obtain the configuration on

the left side. The pseudo del Pezzo surface PdP6 illustrated on the right side is thus

equivalent to dP6.

moving the extra contribution from these stacks

Z dP 6(QF , u,QEf ; t, q) =
ZPdP6(QF , u,QEf ; t, q)

Z PdP6
extra (u,QEf ; t, q)

(3.39)

Z PdP6
extra = Z parallel three 5-branes × Z parallel three 5-branes × Zparallel three 5-branes. (3.40)

This relation was conjectures in [27, 28]. The authors checked it by computing the

corresponding superconformal index and confirming the enhancement of the E6 flavor

symmetry expected from the geometry of dP6. This SCFT with E6 flavor symmetry is

precisely the 5d uplift of Gaiotto’s T 3 theory [44, 45].

4 Nekrasov partition functions of del Pezzo suraces

In this section, we explicit check our conjecture that the Nekrasov partition functions of

the toric phases of a local del Pezzo surface lead to the same partition function which

describes the local del Pezzo surface once the non-full spin content part is removed

ZdPk
=

ZPdP p
k

Z
PdP p

k
extra

, p = I, II, III, · · · , (4.1)

where Z
PdP p

k
extra is the product of all the contributions from the stacks of parallel external

legs. p labels the toric phases associated with the local del Pezzo surface dPk. We can
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Figure 19: The extra contributions of the non-full spin content.

compute this extra part as follows. There are two types of stacks of parallel external

5-branes as illustrated in Figure 19 : one is the non-preferred external legs, and the

other is the preferred external legs. The topological string partition functions of the

geometries are precisely the contributions from the non-full spin content. Assuming the

slicing invariance, the refined topological vertex formalism gives the following explicit

expressions [27, 28]

Z preferred
parallel N − 1 5-branes(Q1, · · · , QN ; t, q) = M(Q1, · · · , QN ; t, q), (4.2)

Z non-preferred
parallel N − 1 and M − 1 5-branes(Q

u
1 , · · · , Qu

N , Qd
1, · · · , Qd

M ; t, q)

=
M(Qu

1 , · · · , Qu
N ; t, q) M(Qd

M , · · · , Qd
1; q, t)

M pert.(Qu
1 , · · · , Qu

N , Qd
1, · · · , Qd

M ; t, q)
, (4.3)

M(Q1, · · · , QN ; t, q) =
∞∏

i,j=1

∏
1≤`≤m≤N

1

1 − Q`Q`+1 · · ·Qm tiqj−1
, (4.4)

where M pert.(Qu
1 , · · · , Qu

N , Qd
1, · · · , Qd

M ; t, q) is the factors appearing in the numerator

that are shared with a perturbative partition function. This rule means that we do not

take the finite legs that form the web loop into consideration. We remove this factor

M pert. because it can be collected into the perturbative part of the vector multiplet

contribution that associated with the web loop.

Since these partition functions of the extra contributions are not invariant under the

replacement of t with q, the corresponding spectrum does not form any representation of

the little group of 5d Lorentz group SU(2)L×SU(2)R. This means that the full spectrum

contains extra states which do not form any full spin content of the Lorentz group.
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Figure 20: The two toric diagrams associated with the Ê1 configuration.

To obtain proper spectrum in 5d, we have to remove such pathological contribution

associated with a non-compact direction in the corresponding web configuration. This

is the practical reason why we need to factor the non-full spin part out of Nekrasov

partition function.

4.1 The two toric phases for E1 theory

Let us start with the simplest and non-trivial example. In the previous section, we

claimed that the two Calabi-Yau manifolds d̃P 1 and P d̃P 1 lead to the same E1 SCFT.

We can check this claim by comparing their Nekrasov partition functions.

These two geometry share the same perturbative partition function, we compare

their instanton partition functions. Using formulas in Appendix.B, we can compute the

partition function of d̃P 1

Z
fdP 1

(u, QF ; t, q) =
∑
R1,2

(−QB)|
~R| f−1

R1
(t, q) fR2(t, q)K

[1]
R1R2

(QF ; t, q)K
[1]

RT
2 RT

1
(QF ; q, t), (4.5)

where the instanton factor is u = QBQ−1
F . The instanton part is therefore

Z inst.
fdP 1

(u,QF ; t, q) =
∑
R1,2

(
u
q

t

)|~R|
Z vect.

~R
(QF ; t, q). (4.6)

This is the Nekrasov instanton partition function of 5d SU(2) pure Yang-Mills theory.
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We can also compute the partition function of P d̃P 1

ZP fdP 1
(u,QF ; t, q)

=
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2| f−3
R1

(t, q) f−1
R2

(t, q)K
[1]
R1R2

(QF ; t, q)K
[1]

RT
2 RT

1
(QF ; q, t), (4.7)

where the Kähler parameters associated with the base 2-cycle are

QB1 = uQ2
F , QB1 = u. (4.8)

The instanton partition function is then

Z inst.

P fdP 1
(u,QF ; t, q) =

∑
R1,2

(
u
q

t

)|~R|
Z CS,m=2

~R
(QF ; t, q) Z vect.

~R
(QF ; t, q). (4.9)

This is the Nekrasov instanton partition function of 5d SU(2) Yang-Mills theory with

the non-zero Cern-Simons level m = 2.

We can easily compute the one-instanton parts of these partition functions that are

the terms proportional to u1.

Z 1-inst.
fdP 1

(QF ; t, q) =
q

t

1 + q
t

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

,

Z 1-inst.

P fdP 1
(QF ; t, q) =

(q

t

)2 QF + 1 + 1
QF

− q
t

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

. (4.10)

They are obviously different rational functions. We however expect that the nontriv-

ial relation (3.2) holds for them and there is certain simple connection between them.

Remarkably, the QF -dependence disappears once one computes the difference between

them

Z 1-inst.
fdP 1

(QF ; t, q) − Z 1-inst.

P fdP 1
(QF ; t, q) = − q

(1 − q)(1 − t)
. (4.11)

This term precisely cancels the contribution from the non-full spin content because the

instanton expansion of the inversed extra contribution is

1

Z extra(u; q, t)
=

∞∏
i,j=1

(1 − u ti−1qj)

= 1 − u
q

(1 − q)(1 − t)
+ u2 q2(t + q)

(1 − q)2(1 − t)2(1 + q)(1 + t)
+ · · · . (4.12)
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Figure 21: The two toric diagrams associated with the Ê2 configuration.

This result confirms the one-instanton part of the conjectural relation (3.2)

Z inst.
fdP 1

(u,QF ; t, q) =
Z inst.

P fdP 1
(u,QF ; t, q)

Z extra(u; q, t)
. (4.13)

We can also prove it at the two-instanton level by showing the two-instanton part of the

relation (3.2)

Z 2-inst.
fdP 1

(QF ; t, q) − Z 2-inst.

P fdP 1
(QF ; t, q)

= − q

(1 − q)(1 − t)
Z 1-inst.

P fdP 1
(QF ; t, q) +

q2(t + q)

(1 − q)2(1 − t)2(1 + q)(1 + t)
. (4.14)

The QF -dependence in the denominator is cancelled out again, and this difference in the

two-instanton part can be collected into the expected extra factor (4.12). This test based

on instanton expansion tells us that some unknown mathematical structure simplifies

and factorizes the discrepancy between these two different partition functions.

4.2 The two toric phases for E2 theory

As we showed in the previous section, there are two toric descriptions of the local del

Pezzo dP2. Since dP2 is toric, we can compute its partition function directly by using

the refined topological vertex formalism. The web-diagram of dP2 is illustrated in the

left hand side of Figure 21 , and this phase dP2 was studied in [27, 28]. We review their
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result for readers convenience. Its partition function is

Z dP 2(u,QF , Qm; t, q) =
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2|

× f−1
R1

(t, q) K
[0,0]
R1R2

(QF , Qm; t, q)K
[1]

RT
2 RT

1
(QF ; q, t), (4.15)

where the Kähler parameters for the base direction are

QB1 = uQF , QB2 =
uQF

Qm

. (4.16)

The perturbative and instanton parts are therefore

Z pert.
dP 2

(u,QF , Qm; t, q) = Z vect.
pert.(QF ; t, q)Z matt.

pert. (QF , Qm; t, q), (4.17)

Z inst.
dP 2

(u,QF , Qm; t, q) =
∑
R1,2

(
u
q

t

)|~R|
Z vect.

~R
(QF ; t, q)Z matt.

~R
(QF , Qm; t, q). (4.18)

The full partition function is the product of these two functions. This is the Nekrasov

partition function of 5d SU(2) gauge theory with single fundamental matter multiplet.

Pseudo del Pezzo Phase: PdP2

We have the another description of the same system that is based on the pseudo del

Pezzo PdP2. The local pseudo del Pezzo surface PdP2 is illustrated in the right hand

side of Figure 21 , and its partition function is

ZPdP 2(u,QF , Qm;t, q) =
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2|

× fR1(t, q) f 2
RT

2
(t, q)K

[0,0]
R1R2

(QF , Qm; t, q)K
[1]

RT
2 RT

1
(QF ; q, t). (4.19)

The Kähler parameters QB1,2 are

QB1 = u, QB2 =
uQ2

F

Qm

. (4.20)

The instanton part of this partition function takes the form

Z inst.
PdP 2

(u,QF , Qm; t, q) =
∑
R1,2

(
u
q

t

)|~R|
Z CS,m=−2

~R
(QF ; t, q)

× Z vect.
~R

(QF ; t, q)Z matt.
~R

(QF , Qm; t, q). (4.21)
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This web configuration contains the extra contribution that is raised from single stack of

two parallel legs in Figure 21

Z PdP 2
extra (u; t, q) = M(u; t, q). (4.22)

This partition function (4.21) is different from that of dP2 (4.18) because this PdP2

theory has the non-vanishing Chern-Simons level m = 2 as the case of P d̃P 1.

Recall that branch cut move of the 7-brane configuration for Ê2 leads to the following

conjectural relation between these two descriptions

Z dP 2(u,QF , Qm; t, q) =
Z inst.

PdP 2
(u,QF , Qm; t, q)

Z PdP 2
extra (u; t, q)

. (4.23)

Let us check this conjecture. Since the perturbative partition function is the same for

these two phases, we need to check the instanton part of this relation. The one-instanton

partition functions, which are the first order of u-expansion, are

Z 1-inst.
dP 2

=
q

t

1 + q
t
− 1+QF

Qm

√
q
t

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

,

Z 1-inst.
PdP 2

=
q

t

QF + 1 + 1
QF

− t
q
− 1+QF

Qm

√
q
t

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

, (4.24)

and after computing the difference between them, dependence on QF and Qm disappears

Z 1-inst.
dP 2

− Z 1-inst.
PdP 2

= − t

(1 − q)(1 − t)
. (4.25)

This is precisely the one-instanton part of the inversed extra factor 1

Z
PdP2
extra

, and thus we can

confirm our conjectural relation (4.23). Higher instanton check is also straightforward.

We can check the two instanton part of the relation (4.23) for instance.

4.3 The four toric phases for E3 theory

Let us move on to the case of the third del Pezzo. In this case we have four toric phases,

where one of them is the toric local del Pezzo dP3, and we expect the following relation

ZdP3 =
ZPdP p

3

Z
PdP p

3
extra

, p = I, II, III. (4.26)
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Figure 22: The dP3 toric diagram.

The web diagram of dP3 is given in Figure 22 . The refined topological vertex formalism

gives to the following partition function of dP3

Z dP 3(u,QF , Qm1,2; t, q)

=
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2| K
[0,0]
R1R2

(QF , Qm2; t, q)K
[0,0]

RT
2 RT

1
(QF , Qm1; q, t), (4.27)

where the Kähler parameters for the base direction are

QB1 =
uQF

Qm1

, QB2 =
uQF

Qm2

. (4.28)

The perturbative and the instanton partition functions are therefore

Z dP 3(QF , Qm1,2; t, q) = Z pert.
dP 3

(QF , Qm1,2; t, q) Z inst.
dP 3

(QF , Qm1,2; t, q), (4.29)

Z pert.
dP 3

(QF , Qm1,2; t, q) = Z vect.
pert.(QF ; t, q)Z matt.

pert. (QF , Qm1; t, q)Z
matt.
pert. (QF , Qm2; t, q), (4.30)

Z inst.
dP 3

(u,QF , Qm1,2; t, q) =
∑
R1,2

(
u
q

t

)|~R|
Z vect.

~R
(QF ; t, q)

× Z ′matt.
~R (QF , Qm1; t, q)Z

matt.
~R

(QF , Qm2; t, q). (4.31)

Let us compare this partition function with those of pseudo del Pezzo surfaces. In addition

to the three phases of the pseudo del Pezzo surfaces PdP p
3 , we have double assignments of

the preferred direction in the cases p = I, II. There are thus five patterns of topological

string partition function, and we show that these partition functions lead to that of dP3

through the relation (4.26).
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Figure 23: The two choices of the preferred direction of the PdP I
3 toric diagram.

Pseudo del Pezzo Phase I: PdP I
3

The first phase PdP I
3 is illustrated in Figure 23 , and we can find two choices (a,b) of

the preferred direction that is denoted by red double lines. This simple case PdP I
3 was

already studied in [27, 28], but we review computation for readers convenience. These

two choices (a,b) lead to different partition functions, however they reduce to the same

dP3 partition function after removing the extra contributions arising from their non-full

spin contents. Let us star with the case (a). The refined topological vertex formalism

gives to the following partition function of PdP
I(a)
3

Z
PdP

I(a)
3

(u,QF , Qm1,2; t, q)

=
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2| K
[0,−1,0]
R1R2

(QF , Qm2, Qm1; t, q)K
[1]

RT
2 RT

1
(QF ; q, t), (4.32)

where the Kähler parameters QB1,2 are

QB1 =
uQF

Qm1

, QB2 =
uQF

Qm2

. (4.33)

Since the parallel external legs are horizontal, their contribution is independent of the

instanton factor u. This extra factor therefore makes an effect only on the perturbative

part, and the partition function is the product of the following perturbative and instanton
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contributions

Z pert.

PdP
I(a)
3

(QF , Qm1,2; t, q) = M

(
QF

Qm1Qm2

; t, q

)
Z pert.

dP 3
(QF , Qm1,2; t, q), (4.34)

Z inst.

PdP
I(a)
3

(u,QF , Qm1,2; t, q) = Z inst.
dP 3

(u,QF , Qm1,2; t, q). (4.35)

Because there is only single stack of parallel legs, the factor M(QF (Qm1Qm2)
−1; t, q)

precisely gives the full extra contribution Z
PdP

I(a)
3

extra coming from the non-full spin content.

We therefore can prove the relation (4.26) for this case at all order in the instanton

expansion.

The next case (b) comes with difficulty of proof of the relation because the extra factor

involves u-dependence and it affects instanton expansion drastically. We will provide one-

instanton check of the relation in the following. The partition function of (b) is

Z
PdP

I(b)
3

(u,QF , Qm1,2; t, q) =
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2| fRT
1
(q, t) fRT

2
(q, t)

× K
[0,0]
R1R2

(QF , Qm1; t, q) K
[0,0]

RT
2 RT

1
(QF ,

QF

Qm2

; q, t), (4.36)

where the Kähler parameters QB1,2 are

QB1 = uQF , QB2 =
uQF

Qm1Qm2

. (4.37)

The perturbative partition function coincides with that of dP3, but the instanton part

takes the different form

Z pert.

PdP
I(b)
3

(QF , Qm1,2; t, q) = Z pert.
dP 3

(QF , Qm1,2; t, q) (4.38)

Z inst.

PdP
I(b)
3

(u,QF , Qm1,2; t, q)

=
∑
R1,2

(
u
q

t

)|~R|
Z vect.

~R
(QF ; t, q)Z matt.

~R
(QF , Qm1; t, q)Z

matt.
~R

(QF , Qm2; t, q). (4.39)

Since the extra contribution arises from the downward parallel two legs in Figure 23 ,

its contribution is

Z
PdP

I(b)
3

extra = M(QB2; q, t), (4.40)

and this function depends on u through QB2.
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Figure 24: The two choices of the preferred direction of the PdP II
3 toric diagram.

It is straightforward to compute the one-instanton partition functions of PdP
I(a,b)
3 by

using above results

Z 1-inst.
dP 3

(QF , Qm1,2; t, q) = Z 1-inst.

PdP
I(a)
3

(QF , Qm1,2; t, q)

=
q

t

(
1 + q

t

) (
1 + QF

Qm1Qm2

)
−
(

1
Qm1

+ 1
Qm2

)
(1 + QF )

√
q
t

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

, (4.41)

Z 1-inst.

PdP
I(b)
3

(QF , Qm1,2; t, q)

=
q

t

1 + q
t
−
(

1
Qm1

+ 1
Qm2

)
(1 + QF )

√
q
t
+ 1

Qm1Qm2
(Q2

F + QF + 1) q
t
− QF

Qm1Qm2

(
q
t

)2
(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1

F t−1q)
.

(4.42)

The difference between these partition functions is the following simple function

Z 1-inst.
dP 3

− Z 1-inst.

PdP
I(b)
3

= − QF

Qm1Qm2

q

(1 − q)(1 − t)
. (4.43)

This is precisely the one-instanton part of our conjecture

Z dP 3 =
Z

PdP
I(b)
3

M
(

uQF

Qm1Qm2
; q, t

) . (4.44)

33



Pseudo del Pezzo Phase II: PdP II
3

The second phase of PdP3 has two choices of preferred direction, and these two cases are

illustrated in Figure 24 . Since the diagrams (a) and (b) are related though SL(2, Z)

transformation and flop transition5, these two setups describe the same toric manifold.

We start with the case (a). The refined topological vertex formalism yields the following

expression

Z
PdP

II(a)
3

(u,QF , Qm1,2; t, q) =
∑
R1,2

(−QB1)
|R1| (−QB2)

|R2| f−1
R1

(q, t) f−1
R2

(q, t)

× K
[1]
R1R2

(QF ; t, q)K
[0,−1,0]

RT
2 RT

1

(
QF ,

QF

Qm2

, Qm1; q, t

)
. (4.45)

The parameters QB1,2 are given by u as

QB1 = uQF , QB2 =
uQF

Qm1Qm2

, (4.46)

and then the partition function coming from two stacks takes the following form

Z
PdP

II(a)
3

=M

(
Qm2

Qm1

; q, t

)
Z vect

pert(QF ) Z matter
pert (Qm1) Z matter

pert (Qm2)

×
∑
R1,2

(
u
q

t

)|~R|
Z vect.

~R
(QF ) Z matt.

~R
(Qm1) Z matt.

~R
(Qm2). (4.47)

Notice that the instanton part of this result is equal to (4.39). The extra contribution is

given by

Z
PdP

II(a)
3

extra = M

(
Qm2

Qm1

; q, t

)
M

(
uQF

Qm1Qm2

; q, t

)
, (4.48)

and then we can show that this partition function is equivalent to that of PdP
I(b)
3 after

removing the extra contributions as follows

Z
PdP

I(b)
3

Z
PdP

I(b)
3

extra

=
Z

PdP
II(a)
3

Z
PdP

II(a)
3

extra

. (4.49)

We therefore reduce the conjecture (4.26) in this case to that for the PdP I
3 phase (4.44).

Let us move on to the second choice of the preferred direction of PdP II
3 diagram that is

illustrated in (b) of Figure 24 . This case is very non-trivial because the corresponding

5We employ the flop transition [46, 40] to avoid using the new vertex function [40].
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Figure 25: The partition function of T 2 geometry with two non-empty Young diagrams

on two adjoining external legs.

topological string partition function is given by gluing a strip geometry [35] and the

T 2 geometry which is a typical off-strip geometry Figure 25 . We therefore need to

compute the topological string partition function of T 2 with two parallel external legs

with non-empty Young diagrams. Unfortunately, it is very hard to compute exactly a

partition function of such an off-strip geometry. This is because in this computation

we confront certain summation over the Young diagrams that we can not evaluate by

any combinatorial formula in existence. We hence compute this partition function up to

certain order as a power series in a exponentiated Kähler parameter Q3.

A noteworthy exception is the case with empty Young diagrams R1 = R2 = ∅ in

Figure 25 , and we can find the following closed expression. The partition function in

this case was recently computed in [27]6

ZT 2(Q1, Q2, Q3, t, q) =
∞∏

i,j=1

(
1 − Q1Q2Q3t

i− 1
2 qj− 1

2

)∏3
`=1

(
1 − Q`t

i− 1
2 qj− 1

2

)
(1 − Q1Q2ti−1qj) (1 − Q2Q3ti−1qj) (1 − Q1Q3tiqj−1)

. (4.50)

This closed expression was first observed in [47].

The topological string partition function with generic assignment of Young diagrams

Figure 25 is far more complicated. The topological vertex formalism yields

K T 2

~R
(Q1, Q2, Q3, t, q)

=
∑
Y1,2,3

3∏
`=1

(−Q`)
|Y`| CY T

1 ∅RT
1
(q, t) C∅Y T

2 RT
2
(q, t) C∅∅Y T

3
(q, t) CY1Y2Y3(t, q). (4.51)

6The unrefined version of T 2 partition function was computed in [48].
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In contrast to the cases of strip geometries, there is no formulas to calculate all three

summations over the Young diagrams Y1,2,3. Using the Cauchy formulas reduces it to the

following expression with a remaining summation over Y3

K T 2

~R
= K

[1]
~R

(Q1Q2, t, q)
∑
Y3

(−Q3)
|Y3| t

‖Y T
3 ‖2

2 q
‖Y3‖

2

2 Z̃Y3(t, q) Z̃Y T
3

(q, t)

×
∞∏

i,j=1

(
1 − Q1t

−RT
1j+i− 1

2 q−Y3i+j− 1
2

)(
1 − Q1t

−Y T
3j+i− 1

2 q−R2i+j− 1
2

)
. (4.52)

The extra contribution coming from non-full spin content on T 2 local geometry is in-

cluded in the expression (4.50) as M(Q2Q3; q, t)M(Q1Q3; t, q), and thus we normalized

the partition function by this function ZT 2 . The topological string partition function is

then

K T 2

~R
(Q1, Q2, Q3, t, q)

=
ZT 2(Q1, Q2, Q3, t, q)

M(Q1Q2; q, t)
K

[1]
~R

(Q1Q2, t, q)P ~R(Q1, Q2, Q3, t, q). (4.53)

The remarkable characteristics of this function is that P ~R(Q1, Q2, Q3, t, q) is a polynomial

in Q3 even though this function is defined as a ratio of two infinite power series in Q3 as

was first observed in [28, 27]. Let us consider simplest case ~R = ([1], ∅)

P([1],∅)(Q1, Q2, Q3, t, q)

=
(1 − Q2Q3t

i−1qj) (1 − Q1Q3t
iqj−1)(

1 − Q1Q2Q3t
i− 1

2 qj− 1
2

)(
1 − Q3t

i− 1
2 qj− 1

2

)∑
Y

(−Q3)
|Y | t

‖Y T ‖2
2 q

‖Y ‖2
2 Z̃Y (t, q) Z̃Y T (q, t)

×
∏
s∈Y

(
1 − Q1t

−`[1]− 1
2 q−aY − 1

2

)(
1 − Q2t

`∅+ 1
2 qaY + 1

2

) ∏
s=(1,1)

(
1 − Q1t

`Y + 1
2 qa[1]+

1
2

)
. (4.54)

Computing this summation up to few order in Q3, we can confirm that this function

is actually the following simple linear function of Q3 because of certain cancellation

mechanism

P([1],∅)(Q1, Q2, Q3, t, q) = 1 − (Q1 + Q1Q2Q3)

√
q

t
+ Q1Q3. (4.55)

Using this result on T 2 partition function, we can compute the partition function of

PdP
II(b)
3 . The refined topological vertex gives

Z
PdP

II(b)
3

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|f−1
R1

(t, q)

× K T 2

(R1,R2)(Q1, Q2, Q3, t, q) K
[1]

(RT
2 ,RT

1 )
(QF , q, t). (4.56)
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Figure 26: The PdP III
3 toric diagram.

We introduce the following parametrization

QF = Q1Q2, Q2 = Qm1, Q3 =
1

Qm2

. (4.57)

The partition function then takes the following form

Z
PdP

II(b)
3

= M(Q2Q3; q, t) M(Q1Q3; t, q) Z vect
pert(QF ) Z matter

pert (Qm1) Z matter
pert (Qm2)

×
∑
R1,2

(
u
q

t

)|~R|
Z vect

~R
(QF )(Qm1)

−|R2| f−1
R2

(t, q) P ~R(Q1,2,3; t, q). (4.58)

Using (4.55) gives the following one-instanton partition function

Z 1-inst.

PdP
II(b)
3

=
q

t

(
1 + q

t

) (
1 + QF

Qm1Qm2

)
−
(

1
Qm1

+ 1
Qm2

)
(1 + QF )

√
q
t

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

= Z 1-inst.
dP 3

. (4.59)

We can expect this equality are valid to all order in the instanton expansion Z inst.

PdP
II(b)
3

=

Z inst.
dP 3

. Moreover the extra contribution M(Q2Q3; q, t) M(Q1Q3; t, q) does not make an

effect on the instanton part. Therefore this result provides one-instanton check of the

relation

Z dP 3 =
Z

PdP
II(b)
3

Z
PdP

II(b)
3

extra

. (4.60)

Pseudo del Pezzo Phase III: PdP III
3

The third phase is also nontrivial since it involves T 2 geometry as a toric sub-diagram.

The web diagram and the assignment of the preferred direction are illustrated in Fig-

ure 26 . We can decompose the web into T 2 and a strip geometry in the right hand
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side. Gluing the topological string partition functions of the T 2 and strip sub-geometries

yields the the partition function of PdP III
3

ZPdP III
3

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|fR1(t, q) (fR2(t, q))
2

× K T 2

(R1,R2)(QF , Q1, Q2, Q3, t, q) K
[1]

(RT
2 ,RT

1 )
(Q1Q2, q, t). (4.61)

The instanton factor u is given by

QB1 = u, QB2 = uQ1(Q2)
2. (4.62)

The partition function then takes the following form

ZPdP III
3

= M(Q2Q3; q, t) M(Q1Q3; t, q) Z vect
pert(Q1Q2) Z matter

pert (Q2) Z matter
pert (Q−1

3 )

×
∑
R1,2

(
u
q

t

)|~R|
Z vect

~R
(Q1Q2)(Q1Q2)

−|R1| (Q2)
|R2| f 2

R1
(t, q) fR2(t, q) P ~R(Q1,2,3; t, q). (4.63)

Let us compare this result with the del Pezzo partition function. To ensure the coinci-

dence between perturbative partition functions, the Coulomb branch and mass parame-

ters in the Nekrasov partition function are introduced as

QF = Q1Q2, Q2 = Qm1, Q3 =
1

Qm2

. (4.64)

Then the one instanton part is given by

Z 1-inst.
PdP III

3
=

q

t

(
1 + QF

Qm1Qm2

)(
− t

q
+ QF + 1 + 1

QF

)
−
√

q
t

(
1

Qm1
+ 1

Qm2

)
(1 + QF )

(1 − q)(1 − t−1)(1 − Q−1
F t−1q)(1 − QF t−1q)

(4.65)

It is easy to see that the difference between the following partition functions takes simple

form

Z 1-inst.
dP3

− Z 1-inst.
PdP III

3
= −

(
1 +

QF

Qm1Qm2

)
t

(1 − q)(1 − t)
. (4.66)

This provides the one instanton confirmation of the expected relation

Z inst.
dP3

=
Z inst.

PdP III
3

M(u; t, q) M
(

uQF

Qm1Qm2
; t, q

) . (4.67)
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Figure 27: The PdP I
4 toric diagram.

Meanwhile it is easy to show that the perturbative part satisfies

Z pert.
dP3

=
Z pert.

PdP III
3

M
(

QF

Qm1Qm2
; t, q

)
M
(

Qm1

Qm2
; q, t

) . (4.68)

These result is consistent with our conjecture on the extra factor in the partition function

Z
PdP III

3
extra = M

(
Qm1

Qm2

; q, t

)
M

(
QF

Qm1Qm2

; t, q

)
M(u; t, q) M

(
uQF

Qm1Qm2

; t, q

)
. (4.69)

The relation (3.20) is thus satisfied in one-instanton level.

4.4 The toric phases for E4 theory

Since the local del Pezzo surface dP4 is non-toric, we can not compute its partition

function directly by using the refined topological vertex formalism. However we have two

pseudo del Pezzo descriptions of dP4, and we can expect that the dP4 partition function

coincides with those of toric PdP4s after removing extra contribution.

Pseudo del Pezzo Phase I: PdP I
4

The first phase PdP I
4 of dP4 is illustrated in Figure 27 . This simple case was already

studied in [27, 28], but we review computation for readers convenience. The gauge theory

parameters are given by

QB1 =
uQF

Qm3

, QB2 =
uQF

Qm1Qm2

. (4.70)
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Using the refined topological vertex formalism gives the following expression of the PdP I
4

partition function

ZPdP I
4

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2| (fR2(t, q))
−1

× K
[0,−1]
(R1,R2)(QF , Qm1; t, q) K

[0,−1,0]

(RT
2 ,RT

1 )
(QF , Qm3, Qm2; q, t) = Z pert.

PdP I
4
Z inst.

PdP I
4
, (4.71)

where the perturbative and instanton parts are

Z pert.

PdP I
4

= M

(
QF

Qm2Qm3

; q, t

)
Z vect

pert(QF )
3∏

f=1

Z matter
pert (Qmf ), (4.72)

Z inst.
PdP I

4
=
∑
R1,2

(
u
q

t

)|~R|
Z vect

~R
(QF ) Zmatt.

~R
(Qm1) Z matt.

~R
(Qm2) Z ′matt.

~R (Qm3). (4.73)

The web of the toric geometry PdP I
4 has two stacks of two parallel external legs. The

extra contribution is then

Z
PdP I

4
extra = M

(
uQF

Qm1Qm2

; q, t

)
M

(
QF

Qm2Qm3

; q, t

)
. (4.74)

Since the factor M (QF /Qm2Qm3; t, q) appears in the overall coefficient and does not

depend on the instanton factor u, we can recast our conjecture in terms of the instanton

part of the partition function

Z inst.
dP4

=
Z inst.

PdP I
4

M
(

uQF

Qm1Qm2
; q, t

) . (4.75)

This relation was checked in [27, 28] by comparing it with the Nekrasov partition func-

tion and the superconformal index of the corresponding Sp(1) gauge theory [42] . In

this article we employ an another point of view. This is not the unique topological

string expression of the dP4 partition function because there are some toric phases. We

will therefore compare the above partition function with those of another phases in the

following. This provides an another check of our conjecture.

Pseudo del Pezzo Phase II: PdP II
4

There are two choices of the preferred direction of the web-diagram of PdP II
4 as illustrated

in Figure 28 . Let us start with the case of (a). In this case the instanton factor given
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Figure 28: The two choices of the preferred direction of the PdP II
4 toric diagram.

by

QB1 =
uQF

Qm3

, QB2 =
uQF

Qm1Qm2

. (4.76)

Applying the refined topological vergec formalism to this choice of the preferred direction

yields the following expression

Z
PdP

II(a)
4

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|f−1
R1

(t, q)

× K
[0,−1,−1,0]
(R1,R2) (QF , Qm1, Qm2, Qm3; t, q) K

[1]

(RT
2 ,RT

1 )
(QF ; q, t) = Z pert.

PdP
II(a)
4

Z inst.

PdP
II(a)
4

, (4.77)

and we can easily show

Z pert.

PdP
II(a)
4

= M

(
QF

Qm2Qm3

,
QF

Qm1Qm3

; t, q

)
Z vect

pert(QF )
3∏

f=1

Z matter
pert (Qmf ), (4.78)

Z inst.

PdP
II(a)
4

= Z inst.
PdP I

4
. (4.79)

Since the stacks of parallel external legs lead to the extra contribution

Z
PdP

II(a)
4

extra = M

(
QF

Qm2Qm3

,
QF

Qm1Qm3

; t, q

)
M

(
uQF

Qm1Qm2

; t, q

)
, (4.80)

we obtain the following relation

ZPdP I
4

Z
PdP I

4
extra

=
Z

PdP
II(a)
4

Z
PdP

II(a)
4

extra

. (4.81)
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Assuming the relation (4.75), we can thus prove our conjecture for PdP
II(a)
4 in all order

in the instanton expansion.

The second case (b) in Figure 28 is subtle because it involves the T 2 geometry. The

instanton factor u given by

QB1 = uQF , QB2 =
uQF

Qm1Qm2

, (4.82)

and the topological string partition function is

Z
PdP

II(b)
4

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|f−1
R1

(t, q) f−1
R2

(t, q)

× K
[0,−1]
(R1,R2)(QF , Qm1; t, q) K T 2

(RT
2 ,RT

1 )(QF , Qm2, QF Q−1
m2, Q

−1
m3; q, t) = Z pert.

PdP
II(b)
4

Z inst.

PdP
II(b)
4

,

(4.83)

and we can show

Z pert.

PdP
II(b)
4

M
(

QF

Qm2Qm3
; t, q

)
M
(

Qm2

Qm3
; q, t

) =
Z pert.

PdP I
4

M
(

QF

Qm2Qm3
; q, t

) , (4.84)

Z inst.

PdP
II(b)
4

=
∑
R1,2

(
u
q

t

)|~R|
(Qm2)

|R2| f−1
R2

(t, q) Z vect
~R

(QF ) Zmatt.
~R

(Qm1)

× P (RT
2 ,RT

1 )(Qm2, QF Q−1
m2, Q

−1
m3; q, t). (4.85)

Our conjecture is therefore the following relation between two instanton partition func-

tions

Z inst.
dP4

=
Z inst.

PdP
II(b)
4

M
(

uQF

Qm1Qm2
; q, t

)
M
(

uQF

Qm1Qm3
; q, t

) . (4.86)

In the next subsection we verify an extended version of this equation in one-instanton

order.

4.5 The toric phases for E5 theory

Since the local del Pezzo surface dP5 is also non-toric, we can not apply the refined

topological vertex formalism directly to compute its partition function. However, we

found three toric descriptions as pseudo del Pezzo surfaces. In this subsection, we verify

our conjecture that all these pseudo del Pezzo surfaces PdP4 lead to the unique dP4

partition function after removing extra contribution.
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Figure 29: The PdP I
5 toric diagram.

Pseudo del Pezzo Phase I: PdP I
5

We start with the simplest phase PdP I
5 . This case was already studied in [27, 28], and

we review computation for readers convenience.

Using the refined topological vertex gives the PdP I
5 partition function

ZPdP I
5

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|fR1(t, q) f−1
R2

(t, q)K
[0,−1,0]
(R1,R2) (QF , Qm1, Qm2; t, q)

× K
[0,−1,0]

(RT
2 ,RT

1 )
(QF , Qm4, Qm3; q, t) = Z pert.

PdP I
5
Z inst.

PdP I
5
, (4.87)

where the instanton factor is given by

QB1 =
uQF

Qm2Qm4

, QB2 =
uQF

Qm1Qm3

. (4.88)

The perturbative and instanton partition functions are then given by

Z pert.

PdP I
5

= M

(
QF

Qm1Qm2

; t, q

)
M

(
QF

Qm3Qm4

; q, t

)
Z vect

pert(QF )
4∏

f=1

Z matter
pert (Qmf ) (4.89)

Z inst.
PdP I

5

=
∑
R1,2

(
u
q

t

)|~R|
Z vect

~R
(QF ) Zmatt.

~R
(Qm1) Z matt.

~R
(Qm3) Z ′matt.

~R (Qm2) Z ′matt.
~R (Qm4). (4.90)

We can see that this instanton partition function is an asymmetric function of the mass

parameters Qm1,··· ,4. Therefore, this partition function can not be that of dP5 because dP5
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should have the symmetry with respect to the permutations of mass parameters associ-

ated with the E5 symmetry. This asymmetry is actually caused by the extra contribution

coming from four stacks in PdP I
5 geometry

Z
PdP I

5
extra. =

M

(
QF

Qm1Qm2

; t, q

)
M

(
QF

Qm3Qm4

; q, t

)
M

(
uQF

Qm2Qm4

; t, q

)
M

(
uQF

Qm1Qm3

; q, t

)
, (4.91)

and then we can expect that after the following renormalization of the instanton partition

function it becomes a symmetric function of the mass parameters if our conjecture is valid

Z inst.
dP 5

=
Z inst.

PdP I
5

M
(

uQF

Qm2Qm4
; t, q

)
M
(

uQF

Qm1Qm3
; q, t

) . (4.92)

In fact we cn show that the one-instanton part of this renormalized partition function is

Z 1-inst.
dP 5

=

q

t

(
1 + q

t

) (
1 +

∑
f1 6=f2

QF

Qmf1
Qmf2

+
Q2

F

Qm1Qm2Qm3Qm4

)
+
√

q
t

∑4
f=1

(
1

Qmf
+

Qmf QF
Q4

g=1 Qmg

)
(1 + QF )

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

,

(4.93)

and it is manifestly symmetric. This enhancement of symmetry is a non-trivial evidence

of our conjecture (4.92).

Pseudo del Pezzo Phase II: PdP II
5

There are two choices of the preferred direction of the web-diagram of PdP II
5 as illustrated

in Figure 30 . It is easy to compute the partition function of the case (a)

Z
PdP

II(a)
5

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|fR1(t, q) f−1
R2

(t, q) K
[0,−1,−1,0]
(R1,R2) (QF , Qm1, Qm3, Qm2; t, q)

× K
[0,0]

(RT
2 ,RT

1 )
(QF , QF Q−1

m4; q, t) = Z pert.

PdP I
5
Z inst.

PdP I
5
. (4.94)

The instanton factor u is given by the equations (4.88). The partition function then takes

the following form

Z pert.

PdP
II(a)
5

= M

(
QF

Qm2Qm3

,
Qm3

Qm1

; t, q

)
Z vect

pert(QF )
4∏

f=1

Z matter
pert (Qmf ), (4.95)

Z inst.

PdP
II(a)
5

= Z inst.
PdP I

5
, (4.96)
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Figure 30: The two choices of the preferred direction of the PdP II
5 toric diagram.

and our factorization conjecture (3.33) actually holds for the extra contribution

Z
PdP

II(a)
5

extra. = M

(
QF

Qm2Qm3

,
Qm3

Qm1

; t, q

)
M

(
uQF

Qm2Qm4

; t, q

)
M

(
uQF

Qm1Qm3

; q, t

)
. (4.97)

This extra factor is actually associated with the three stacks of external legs in the PdP II
5

web-diagram.

The partition function in the second case (b) contains the T 2 sub-diagram and its

computation is more complicated. Using the refined topological vertex gives

Z
PdP

II(b)
5

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2| f−1
R2

(t, q)K
[0,−1,0]
R1,R2

(QF , Qm1, Qm2; t, q)

× K T 2

RT
2 ,RT

1
(QF , Qm3, QF Q−1

m3, Q
−1
m4, q, t), (4.98)

where the Kähler parameters of the base 2-cycles are given by the instanton factor as

QB1 =
uQF

Qm2

, QB2 =
uQF

Qm1Qm3

. (4.99)

We then find the following expression

Z pert.

PdP
II(b)
5

= M

(
Qm3

Qm4

; q, t

)
Z pert.

PdP I
5
, (4.100)

Z inst.

PdP
II(b)
5

=
∑
R1,2

(
u
q

t

)|~R|
(Qm3)

|R2| f−1
R2

(t, q) Z vect
~R

(QF ) Zmatt.
~R

(Qm1) Z ′matt.
~R (Qm2)

× PRT
2 ,RT

1
(Qm3, QF Q−1

m3, Q
−1
m4, q, t). (4.101)
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Using (4.55), we obtain the one instanton part of this partition function

Z 1-inst.

PdP
II(b)
5

=
q

t

N(QF , Qm1,2,3,4; t, q)

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

, (4.102)

where the numerator is

N(QF , Qm1,2,3,4; t, q) =
(
1 +

q

t

)(
1 +

QF

Qm1Qm2

+
QF

Qm3Qm4

+
Q2

F

Qm1Qm2Qm3Qm4

)
+

(
1

Qm3

+
1

Qm4

)(
q

t

QF

Qm1

(
−q

t
+ QF + 1 +

1

QF

)
+
(
1 +

q

t

) QF

Qm2

)
−
√

q

t

4∑
f=1

(
1

Qmf

+
QmfQF∏4
g=1 Qmg

)
(1 + QF ) . (4.103)

This partition function is not symmetric function of Qm1,2,3,4, and it does not coincide

with the dP5 partition function (4.93). The discrepancy in the one-instanton however

takes the following form

Z 1-inst.
dP 5

− Z 1-inst.

PdP
II(b)
5

= −
q
(

QF

Qm1Qm3
+ QF

Qm1Qm4

)
(1 − q)(1 − t)

. (4.104)

This precisely corresponds to the one-instanton part of the extra contribution

Z
PdP

II(b)
5

extra. = M

(
QF

Qm1Qm2

; t, q

)
M

(
QF

Qm3Qm4

; t, q

)
M

(
Qm3

Qm4

; q, t

)
× M

(
uQF

Qm1Qm3

; q, t

)
M

(
uQF

Qm1Qm4

; q, t

)
. (4.105)

This computation is therefore the one-instanton check of our conjecture (3.33).

Pseudo del Pezzo Phase III: PdP III
5

The web-diagram of PdP II
5 also has two choices of the preferred direction as illustrated

in Figure 31 . It is easy to compute the partition function of the first case (a)

Z
PdP

III(a)
5

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|fR1(t, q) f−1
R2

(t, q)

× K
[0,−1,−1,−1,0]
(R1,R2) (QF , Qm1, Qm3, Qm4, Qm2; t, q) K

[1]

(RT
2 ,RT

1 )
(QF ; q, t). (4.106)

Using (4.92) and some formulas in Appendix.B, we can easily show

Z inst.
dP 5

=
Z inst.

PdP
III(a)
5

M
(

uQF

Qm2Qm4
; t, q

)
M
(

uQF

Qm1Qm3
; q, t

) , (4.107)
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Figure 31: The two choices of the preferred direction of the PdP III
5 toric diagram.

and this partition function actually satisfies the relation (3.36). The extra contribution

in this phase is given by

Z
PdP

III(a)
5

extra.

= M

(
Qm4

Qm2

,
QF

Qm3Qm4

,
Qm3

Qm1

; t, q

)
M

(
uQF

Qm2Qm4

; t, q

)
M

(
uQF

Qm1Qm3

; q, t

)
. (4.108)

This extra factor is actually associated with the three stacks of external legs in the PdP III
5

web-diagram.

The second case (b) of the third phase is the most non-trivial case in the pseudo

fifth del Pezzo surfaces. This toric geometry is decomposed into two T 2 geometries as

Figure 31 . The topological string partition function is

ZPdP III
5

=
∑
R1,2

(−QB1)
|R1|(−QB2)

|R2|f−1
R1

(t, q) f−1
R2

(t, q)

× K T 2

(R1,R2)(QF , Q1, Q2, Q3, t, q) K T 2

(RT
2 ,RT

1 )(QF , Q′
1, Q

′
2, Q

′
3, q, t), (4.109)

where the gauge theory parameters are introduced by

QB1 = uQF , QB2 =
uQF

Q2Q′
1

, QF = Q1Q2 = Q′
1Q

′
2, (4.110)

Q2 = Qm1, Q3 =
1

Qm2

, Q′
1 = Qm3, Q′

3 =
1

Qm4

. (4.111)
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Using (5.35) gives the following expression

Z
PdP

III(b)
5

= M(Q2Q3; q, t) M(Q1Q3; t, q) M(Q′
2Q

′
3; q, t) M(Q′

1Q
′
3; t, q)

× Z vect
pert(Q1Q2)

4∏
f=1

Z matter
pert (Qmf )

∑
R1,2

(
u
q

t

)|~R|
Z vect

~R
(Q1Q2) (Q2Q

′
1)

−|R2|

× f−2
R2

(t, q) PR1,R2(Q1, Q2, Q3; t, q)PRT
2 ,RT

1
(Q′

1, Q
′
2, Q

′
3; q, t). (4.112)

The first line M(Q2Q3; q, t) M(Q1Q3; t, q) M(Q′
2Q

′
3; q, t) M(Q′

1Q
′
3; t, q) ≡ Z

PdP III
5

extra, pert. of

this equation is the extra factors that does not depend on the instanton factor u. The

remaining part of the extra contribution Z
PdP

III(b)
5

extra = Z
PdP

III(b)
5

extra, pert.Z
PdP

III(b)
5

extra, inst. is the following

function

Z
PdP

III(b)
5

extra, inst.

≡ M

(
uQF

Qm1Qm3

; q, t

)
M

(
uQF

Qm2Qm3

; q, t

)
M

(
uQF

Qm1Qm4

; q, t

)
M

(
uQF

Qm2Qm4

; q, t

)
.

(4.113)

To check our conjecture (3.36), let us compute the one-instanton part of the Z
PdP

III(b)
5

partition function. Using (4.55), we obtain

Z 1-inst.

PdP
III(b)
5

=
q

t

N(QF , Qm1,2,3,4; t, q)

(1 − q)(1 − t−1)(1 − QF t−1q)(1 − Q−1
F t−1q)

, (4.114)

where the numerator is

N(QF , Qm1,2,3,4; t, q) =
(
1 +

q

t

)(
1 +

QF

Qm1Qm2

+
QF

Qm3Qm4

+
Q2

F

Qm1Qm2Qm3Qm4

)
+

q

t

(
−q

t
+ QF + 1 +

1

QF

)(
QF

Qm1Qm3

+
QF

Qm2Qm3

+
QF

Qm1Qm4

+
QF

Qm2Qm4

)
−
√

q

t

4∑
f=1

(
1

Qmf

+
QmfQF∏4
g=1 Qmg

)
(1 + QF ) . (4.115)

This partition function is not symmetric function of Qm1,2,3,4. We can show that the

difference between this partition function and the symmetric one (4.93) of dP5 takes the

following simple form

Z 1-inst.
dP 5

− Z 1-inst.

PdP
III(b)
5

= −q

t

QF

Qm1Qm3
+ QF

Qm2Qm3
+ QF

Qm1Qm4
+ QF

Qm2Qm4

(1 − q)(1 − t)
. (4.116)
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This is precisely equal to the one-instanton part of the extra factor (4.113). The relation

(3.36) in the one-instanton level is thus satisfied through nontrivial cancellation between

two rational functions Z 1-inst.

dP 5,PdP
III(b)
5

. We expect such cancellation mechanism holds for

all k-instanton partition functions.

5 Conclusion

In this paper, by extending the findings in [27, 28, 29], we have found duality between

(p, q)-web configurations that lead to 5d field theories. This duality enable us to compute

the topological string partition function of a non-tric local del Pezzo surface by employing

a corresponding pseudo del Pezzo surface. In general, some pseudo del Pezzo surfaces

are associated with a single del Pezzo surface.

There are sixteen inequivalent convex lattice polygons with single internal point,

and this means that there are sixteen equivalent 5-brane web configurations with single

5-brane loop. There are seemingly sixteen theories in 5d that arise from these configu-

rations, however, we showed that some of these 5d theories are dual and there are only

eight 5d theories. These eight theories are precisely associated with eight 5d SCFT that

have one dimensional Coulomb branch and flavor symmetry whose rank is less than 7.

They were precisely the well-studied theories discovered by Seiberg in [1]. This means

that no new theory appears because of the non-tivial duality between the corresponding

Calabi-Yau singularities. This result provide the classification of the 5d SCFT with one

dimensional Coulomb branch that are associated with 5-brane web configurations. We

can extend our discussion to web configurations with multiple 5-brane loops and classify

the 5d SCFT with higher dimensional Coulomb branch.

Our conjecture implies new mathematical relation between 5d SU(2) Nekrasov par-

tition functions. At first glance, two partition functions of different phases take very

different combinatorial forms. Our conjecture however claims that the discrepancy be-

tween them can be collected into a simple prefactor. In this paper we check this statement

based on instanton expansion. It should be possible to verify our conjectural relations

rigorously by employing and developing the mathematical theory of the Macdonald func-

tions.

The 4d Seiberg duality observed in [17, 18, 19, 20, 21, 22, 23, 24, 25, 41] is deeply
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related to our duality. In these papers, the authors considered quiver gauge theories

that were the world-volume theories on D3-branes proving local del Pezzo singularities.

Picking up some examples, they discussed that two theories are Seilerg-dual to each other

if the corresponding toric singularities are related by 7-brane move in the corresponding

7-brane configurations. They considered the duality on the world-volume of prove D3-

branes, but we can also consider the duality between the background singularities. This

relation between toric singularities leads to our duality between 5d field theories. It

would be interesting to study further relation between the 4d Seiberg-duality and our 5d

analogous duality.

It would be also interesting if we can fine clear relation to the attempt at a non-toric

extension [57, 58] and the study on the E-string partition functions [59, 60].

Another unexplored line of research is the relation to the AGT conjecture [49, 50, 51,

52, 53]. The 5d version of the AGT conjecture [54, 55, 56, 27] recasts the 5d Nekrasov

partition functions into the conformal blocks of the 2d q-deformed Toda field theories.

Our relation between the topological string partition functions of the dual toric phases

suggests that there some 2d descriptions are associated to a single 5d theory. It would

be interesting if we can find the role of the extra factors in the 2d side.
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Appendix A : 7-branes and En symmetry

Recall that the SL(2, Z) transformation of a D5-brane leads to the (p, q) 5-brane with

generic NS-NS and Ramond-Ramond charges. Similarly, we can define the [p, q] 7-brane

as the SL(2, Z) transformation of a D7-brane. The (p, q) 5-brane then can terminate on

the [p, q] 7-brane. The symbol X[p,q] denotes the [p, q] 7-brane. Notice that X[−p,−q] is

equivalent to X[p,q].

We introduce the following three types of 7-branes for convenience sake

A-brane : X[1,0] = A, B-brane : X[1,−1] = B, C-brane : X[1,1] = C. (5.1)
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Figure 32: The branch cut move of two adjoining 7-branes Xz1,2. By moving Xz2 across

the branch cut of Xz1, the 7-brane charge z2 changes into z′2 = z2 + (z1 ∧ z2)z1. Moving

Xz1 yields the 7-brane with charge z′
1 = z1 + (z1 ∧ z2)z2 on the right side.

We also define the symplectic inner product between [p, q] charges

zi ≡ [pi, qi], zi ∧ zj ≡ det

(
pi pj

qi qj

)
. (5.2)

A 7-brane X[p,q] creates a branch cut in the transversal plane, and the monodromy matrix

around it is given by

K[p,q] =

(
1 + pq −p2

q2 1 − pq

)
= 1 + zzT S. (5.3)

A.1 SL(2, Z) transformation

SL(2, Z) is generated by the two generators S and U , which are defined by

S =

(
0 −1

1 0

)
, T =

(
1 0

1 1

)
, U = ST = (5.4)

Type IIB superstring enjoys the SL(2, Z) S-duality. The action of the duality change

the dilaton and the axion as

SL(2, Z) 3

(
a b

c d

)
: τ 7−→ aτ + b

cτ + d
. (5.5)

This also acts on the (p, q)-charges and the 7-brane monodormies as

SL(2, Z) 3 g :

(
p

q

)
7−→ g

(
p

q

)
, K[p,q] 7−→ gK[p,q]g

−1. (5.6)

51



A.2 7-brane move

Let us consider a 7-brane configuration Xz1Xz2 . In our convention, the branch cuts go

downward. We can consider two basic reordering procedure Figure 32 . When a 7-brane

passes a branch cut, its charge chances with obeying the following rule

Xz1Xz2 = Xz2+(z1∧z2)z1Xz1 = Xz2Xz1+(z1∧z2)z2 . (5.7)

A.3 The collapsible 7-branes

The total monodromy K = Kzn · · ·Kz2Kz1 around a collapsible 7-brane configuration

satisfies the following condition

TrK = −2,−1, 0, 1, 2. (5.8)

Appendix B : Nekrasov partition functions

B.1 The refined topological vertex

In this section, we collect definitions and conventions of the refined topological vertex

formalism. The vertex function is

= CR1R2R3(t, q)

= (−1)|R2| fRT
2
(t, q) q

‖R3‖
2

2 Z̃R2(t, q)
∑
Y

SRT
1 /Y (t−ρqRT

3 )SR2/Y (q−ρtR3). (5.9)

The leg marked with the red double line is the preferred direction. The framing factor is

defined by

fR(t, q) = (−1)|R| t
‖RT ‖2

2 q−
‖R‖2

2 , fR(t, q) =

(
t

q

) |R|
2

fR(t, q). (5.10)

Z̃R is the following specialized Macdonald function [61]

Z̃R(t, q) =

d(R)∏
i=1

Ri∏
j=1

(1 − qRi−jtR
t
j−i+1)−1. (5.11)
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See [27] for the basic rules of the refined topological vertex formalism.

To compute topological string partition functions, we need to calculate summations

of symmetric functions over the Young diagrams. The Cauchy formulas play a key role

in this calculation∑
R

SR/Y1(x) SR/Y2(y) =
∏
i,j

(1 − xiyj)
−1
∑

R

SY1/R(y) SY2/R(x), (5.12)

∑
R

SRT /Y1
(x) SR/Y2(y) =

∏
i,j

(1 + xiyj)
∑

R

SY T
1 /R(y) SY T

2 /RT (x). (5.13)

B.2 SU(2) Nekrasov partition functions

Let us introduce the following combinatorial factor

NRαRβ
(Q; t, q) =

∏
s∈Rα

(
1 − Qt`Rβ

(s)qaRα (s)+1
) ∏

t∈Yβ

(
1 − Qt−(`Rα (t)+1)q−aRβ

(t)
)

=
∞∏

i,j=1

1 − Qt−Rt
α,j+i−1q−Rβ,i+j

1 − Qti−1qj
. (5.14)

The SU(2) vector multiplet contribution to the instanton part of the Nekrasov partition

functions is

Z vect.
~R

(Q21; t, q) =
(q

t

)|~R| 1∏
α,β=1,2 NRαRβ

(Qβα; t, q)
, (5.15)

where Qαβ = QαQ−1
β , Qα = e−Raα and a1 = −a2. The contribution of the Chern-Simons

term with the effective level m takes the following form [62]

Z CS,m
~R

(Q21; t, q) =
∏
α

Q−m|Rα|
α t−m

‖RT
α‖2
2 qm

‖Rα‖2
2 . (5.16)

The (anti)fundamental matter contribution is

Z matt.
~R

(Q21, Qm; t, q) =
∏

(i,j)∈R1

(
1 − Q21

Qm

t−i+ 1
2 qj− 1

2

) ∏
(i,j)∈R2

(
1 − 1

Qm

t−i+ 1
2 qj− 1

2

)
,

(5.17)

Z ′matt.
~R (Q21, Qm; t, q) =

∏
(i,j)∈R1

(
1 − 1

Qm

ti−
1
2 q−j+ 1

2

) ∏
(i,j)∈R2

(
1 − Q21

Qm

ti−
1
2 q−j+ 1

2

)
.

(5.18)
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Notice that they satisfy

Z matt.
RT

2 RT
1
(Q21, Qm; q, t) = Z ′matt.

R1R2
(Q21, Qm; t, q). (5.19)

We can also write down the perturbative contributions to the Nekrasov partition

function. The vector multiplet contribution is

Z vect.
pert.(Q21; t, q) =

∞∏
i,j=1

1

(1 − Q21ti−1qj)(1 − Q21tiqj−1)
, (5.20)

and the (anti)fundamental matter contribution is

Z vect.
pert.(Q21, Qm; t, q) =

∞∏
i,j=1

(
1 − Qmti−

1
2 qj− 1

2

)(
1 − Q21

Qm

ti−
1
2 qj− 1

2

)
. (5.21)

The full Nekrasov partition function is then

Z(Q21, u,Qm; t, q)

= Z vect.
pert (Q21; t, q)

∏
matters

Z matt.
pert (Q21, Qm; t, q)

×
∑

~R

(
u
q

t

)|~R|
Z CS,m

~R
(Q21; t, q)Z

vect.
~R

(Q21; t, q)
∏

matters

Z matt.
~R

(Q21, Qm; t, q), (5.22)

where m is the Chern-Simons level of this theory. The third line of this equation is the

instanton partition function Z inst. of this theory, and we introduce the following instanton

expansion

Z(Q21, u,Qm; t, q) = 1 +
∞∑

k=1

uk Z k-inst.(Q21, Qm; t, q), (5.23)

and Z k-inst. is the k-instanton partition function. In this paper, we use the following

symbol to parametrize the Coulomb branch parameter

QF = Q21. (5.24)

B.3 Building blocks of Nekrasov partition functions

In this subsection, we compute building blocks of the topological string partition func-

tions for the toric phases of the local del Pezzo surfaces dP1,2,··· ,6. Figure 33 is the
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Figure 33: A sub-diagram for SU(2) geometry. We label this diagram by the framing

number of the two-cycle QF as [1].

half geometry which gives the d̃P 1 web diagram. The refined topological vertex on the

geometry Figure 33 gives the following partition function

K
[1]
R1R2

(QF ; t, q) =
∑
Y

(−QF )|Y | f̃Y (q, t) C∅Y RT
1
(q, t) CY T ∅RT

2
(q, t)

=
∏

α=1,2

(
t
‖RT

a ‖
2 Z̃RT

a
(q, t)

)
Z

vect.(L)
pert. (QF ; t, q)

NR1R2(QF , t, q)
, (5.25)

where the perturbative part is defined by

Z
vect.(L)
pert (QF ; t, q) =

∞∏
i,j=1

(1 − QF ti−1qj)−1. (5.26)

The perturbative partition function of the vector multiplet is given by

Z vect.
pert.(QF ; t, q) = Z

vect.(L)
pert. (QF ; t, q) Z

vect.(L)
pert. (QF ; q, t). (5.27)

We can show the following identity

K
[1]
R1R2

(QF ; t, q)K
[1]

RT
2 RT

1
(QF ; q, t)

= Z vect.
pert (QF ; t, q)

(
− 1

QF

q

t

)|~R|

fR1(t, q) f−1
R2

(t, q)
∏

α,β=1,2

1

NRαRβ
(Qβα; t, q)

, (5.28)

which gives the SU(2) vector multiplet contribution to the Nekrasov partition function.

In our convention, the Coulomb branch parameter is given by Q21 = QF .
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Figure 34: A sub-diagram for SU(2) geometry. We label this diagram by the framing

numbers of the two-cycles as [0,0].

The sub-diagram Figure 34 is used to construct the dP2 geometry for instance.

Using the refined topological vertex formalism gives

K
[0,0]
R1R2

(Q1Q2, Q1; t, q) =
∑
Y1,2

(−Q1)
|Y1| (−Q2)

|Y2| CY T
1 ∅RT

1
(q, t) CY1Y T

2 ∅(t, q) C∅Y2RT
2
(q, t)

= K
[1]
R1R2

(Q1Q2; t, q)Z
matt.
pert. (Q1Q2, Q1; t, q) Q

|R1|
1 f−1

R1
(t, q)Z ′matt.

~R (Q1Q2, Q1; t, q)

= K
[1]
R1R2

(Q1Q2; t, q)Z
matt.
pert. (Q1Q2, Q2; t, q) Q

|R1|
2 fR2(t, q)Z

matt.
~R

(Q1Q2, Q2; t, q). (5.29)

This local structure thus creates single matter multiplet whose mass is given by Q2.

Figure 35: The sub-diagram for SU(2) geometry whose framing numbers of the two-

cycles are [0,−1,0].

We come upon the geometry Figure 35 in the computation of PdP3 partition func-
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tion. The refined topological vertex formalism leads to the following expression

K
[0,−1,0]
R1R2

(QF , Q3, Q1; t, q)

=
∑
Y1,2,3

(−Q1)
|Y1| (−Q2)

|Y2| (−Q3)
|Y3| f̃Y2(t, q)

× CY T
1 ∅RT

1
(q, t) CY1Y T

2 ∅(t, q) CY2Y T
3 ∅(t, q) C∅Y3RT

2
(q, t)

= M(Q2; t, q)K
[1]
R1R2

(QF ; t, q) Z matt.
pert. (QF , Q1; t, q) Z matt.

pert. (QF , Q3; t, q)

× Q
|R1|
1 Q

|R2|
3 f−1

R1
(t, q)fR2(t, q)Z

′matt.
~R (QF , Q1; t, q)Z

matt.
~R

(QF , Q3; t, q), (5.30)

where we introduce QF = Q1Q2Q3. We can see that this local structure gives two matter

multiplets.

Figure 36: A sub-diagram for SU(2) geometry whose framing numbers of the two-cycles

are [0, −1,−1,0].

The geometry Figure 36 is used to compute PdP4 partition function. By using the

topological vertex, we obtain

K
[0,−1,−1,0]
R1R2

(QF , Q5, Q4Q5, Q1, Q1Q2; t, q)

=
∑

Y1,2,3,4

(−Q1)
|Y1| (−Q2)

|Y2| (−Q3)
|Y3| (−Q4)

|Y4| f̃Y2(t, q)f̃Y3(t, q)

× CY T
1 ∅RT

1
(q, t) CY1Y T

2 ∅(t, q) CY2Y T
3 ∅(t, q) CY3Y T

4 ∅(t, q) C∅Y4RT
2
(q, t). (5.31)
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Figure 37: A sub-diagram for SU(2) geometry whose framing numbers of the two-cycles

are [0, −1,−1,−1,0].

With some algebra, we find the following expression

K
[0,−1,−1,0]
R1R2

(QF , Q5, Q4Q5, Q1, Q1Q2; t, q) = M(Q2, Q3; t, q)
∏

Qm=Q1,4,Q3Q4

Z matt.
pert. (QF , Qm; t, q)

× Q
|R1|
1 (Q3Q

2
4)

|R2|f−1
R1

(t, q)f2
R2

(t, q) K
[1]
R1R2

(QF ; t, q)

× Z ′matt.
~R (QF , Q1; t, q)Z

matt.
~R

(QF , Q3Q4; t, q)Z
matt.
~R

(QF , Q4; t, q), (5.32)

where we introduce QF = Q1Q2Q3Q4. Three matter multiplets are associated with this

local structure.

The PdP III
5 diagram involves the sub-diagram Figure 37 . The refined topological

vertex gives

K
[0,−1,−1,−1,0]
R1R2

(QF , Q4, Q4Q3, Q1, Q1Q2; t, q)

=
∑

Y1,2,3,4,5

(−Q1)
|Y1| (−Q2)

|Y2| (−Q3)
|Y3| (−Q4)

|Y4| (−Q5)
|Y5| f̃Y2(t, q)f̃Y3(t, q)f̃Y4(t, q)

× CY T
1 ∅RT

1
(q, t) CY1Y T

2 ∅(t, q) CY2Y T
3 ∅(t, q) CY3Y T

4 ∅(t, q) CY4Y T
5 ∅(t, q) C∅Y5RT

2
(q, t). (5.33)
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Using the Cauchy formulas, we obtain the following expression

K
[0,−1,−1,−1,0]
R1R2

= M(Q2, Q3, Q4; t, q)
∏

Qm=Q1,5,Q1Q2,Q4Q5

Z matt.
pert. (QF , Qm; t, q)

× (Q2
1Q2)

|R1|(Q4Q
2
5)

|R2|f−2
R1

(t, q)f 2
R2

(t, q)K
[1]
R1R2

(QF ; t, q) Z ′matt.
~R (QF , Q1; t, q)

× Z ′matt.
~R (QF , Q1Q2; t, q)Z

matt.
~R

(QF , Q4Q5; t, q)Z
matt.
~R

(QF , Q5; t, q), (5.34)

where we introduce QF = Q1Q2Q3Q4Q5.

In contrast, we can not give a closed expression of the T 2 sub-diagram Figure 25 .

This is because the above cases are strip geometries [35, 38] whose partition functions

are given by recursive applications of the Cauchy formulas. Using the topological vertex

formalism yields the expression

K T 2

~R
(Q1, Q2, Q3, t, q)

=
ZT 2(Q1, Q2, Q3, t, q)

M(Q1Q2; q, t)
K

[1]
~R

(Q1Q2, t, q)P ~R(Q1, Q2, Q3, t, q), (5.35)

where

P ~R(Q1, Q2, Q3, t, q)

=
(1 − Q2Q3t

i−1qj) (1 − Q1Q3t
iqj−1)(

1 − Q1Q2Q3t
i− 1

2 qj− 1
2

)(
1 − Q3t

i− 1
2 qj− 1

2

)∑
Y

(−Q3)
|Y | t

‖Y T ‖2
2 q

‖Y ‖2
2 Z̃Y (t, q) Z̃Y T (q, t)

×
∏
s∈Y

(
1 − Q1t

−`R1
− 1

2 q−aY − 1
2

)(
1 − Q2t

`R2
+ 1

2 qaY + 1
2

)
×
∏
s∈R1

(
1 − Q1t

`Y + 1
2 qaR1

+ 1
2

) ∏
s∈R2

(
1 − Q2t

−`Y − 1
2 q−aR2

− 1
2

)
. (5.36)

We can observe that this function is a polynomial in Q3 despite its appearances. It would

be interesting to prove this observation. Notice that this function satisfies

PR1,R2(Q1, Q2, Q3, t, q) = PR2,R1(Q2, Q1, Q3, t
−1, q−1). (5.37)
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