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We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over positive definite
terms. An immediate consequence is a lower bound on its eigenvalue spectrum. The resulting
inequality constitutes a supergravity equivalent of the unitarity bounds in dual superconformal field
theories. The proof relies on a generalization of Kähler identities to the Sasaki-Einstein case.

I. INTRODUCTION

A textbook result in Kähler geometry relates the de
Rham with the Dolbeault Laplacian, ∆ = 2∆∂̄ . The
main result of this note is the derivation of a similar
identity in the case of Sasaki-Einstein manifolds:

∆ = 2∆∂̄B −£2
ξ − 2ı(n− d0)£ξ

+ 2LΛ + 2(n− d0)LηΛη + 2ı(Lη∂̄
∗
B − ∂̄BΛη).

(1)

The right hand side features the tangential Cauchy-
Riemann operator, the Lefschetz operator, the action of
the Reeb vector, as well as their adjoints. Full definitions
will be given shortly. ∆ = 2∆∂̄ can be derived from the
Kähler identities, commutators between the Dolbeault
and Lefschetz operators and their adjoints [1, 2]. Our
proof will follow a similar route by obtaining Kähler-like
identities that hold on Sasaki-Einstein manifolds. These
are summarized in appendix A.

Both equation (1) as well as the identities in appendix
A find application in the AdS/CFT correspondence.
Freund-Rubin compactification on Sasaki-Einstein man-
ifolds yields supergravity duals of superconformal field
theories ([3] and references therein). The AdS/CFT dic-
tionary links the conformal energy of SCFT operators to
the spectrum of ∆, their R-charge to that of the Lie-
derivative along the Reeb vector, £ξ. The conformal
energy, R-charge, and spin of any SCFT operator have
to satisfy the unitarity bounds [4, 5], which should be
reflected on the supergravity side in the spectrum of ∆.
We will argue in section III that equation (1) allows us
to re-derive the unitarity bounds from supergravity when
considered in conjunction with the calculations in [6, 7].

Furthermore, the Kähler-like identities allow for a
study of the eigenmodes of ∆. In the case where the
Sasaki-Einstein manifold has a coset structure, this has
been done using harmonic analysis [8]. [6, 7] obtained
the structure of the Kaluza-Klein spectrum of generic
Sasaki-Einstein manifolds using a construction similar to
that in [9], which can be nicely summarized in terms of
the identities in appendix A: Given any eigen k-form ω
of ∆, one diagonalizes the action of ∆ on the k+ 1-forms
{∂Bω, ∂̄Bω,Lηω,Lω, ∂B ∂̄Bω, . . . }. The resulting eigen-
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states fill out representations of the superconformal al-
gebra, the Kohn-Rossi cohomology groups correspond to
short multiplets. Whereas the original calculations were
based on a rather tiresome direct approach, the methods
developed in this note are expected to simplify that kind
of anlysis considerably.

A further application of (1) is the stability analysis of
Pilch-Warner solutions by Pilch and Yoo [10]. In the ab-
sence of general theorems concerning Laplace operators
on Sasaki-Einstien manifolds, the authors constructed ex-
plicitly (1, 1)-forms whose existence renders these solu-
tions perturbatively unstable.

The tangential Cauchy-Riemann operator ∂̄B and the
associated Kohn-Rossi cohomology groups Hp,q

∂̄B
(S) were

first introduced in [11, 12]. Given a complex mani-
fold with boundary, Lewy, Kohn, and Rossi considered
under what circumstances functions on the boundary
can be extended to holomorphic functions in the bulk.
Clearly they have to satisfy the projection of the Cauchy-
Riemann equations onto the boundary, hence the name
for ∂̄B . The Kohn-Rossi cohomology groups feature also
in the work by Yau and collaborators on the complex
plateau problem [13–15]. This problem concerns the
question when a real manifold is also the boundary of
a complex manifold.

Section II gives a full proof of (1) after setting the
stage by giving all necessary definitions. Since the proof
is based on the equivalent considerations in the Kähler
case, our discussion will follow [1, 2] very closely. We
will comment on further applications of both equation
(1) and the identities in section III.

II. KÄHLER-LIKE IDENTITIES

A. Exterior calculus on Sasaki-Einstein manifolds

Consider a d = 2n + 1 dimensional Sasaki-Einstein
manifold S. Given the Reeb vector ξ and the contact
form η, the tangent bundle splits as TS = D ⊕ Lξ.

1

Furthermore, there is a two-form J = 1
2dη with iξJ = 0.

1 Lξ is the line tangent to ξ. In what follows we will set Lξ = ξ
and L∗

ξ = η. See section 1 of [16] for a review of Sasaki-Einstein
geometry.
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J defines an endomorphism on TS which satisfies J2 =
−1 + ξ ⊗ η. Since η(D) = 0, one can decompose the
complexified tangent bundle as TCS = (C⊗D)1,0⊕ (C⊗
D)0,1 ⊕ (C ⊗ ξ). This in turn induces a corresponding
decomposition on the complexified cotangent bundle

T ∗CS = Ω1,0 ⊕ Ω0,1 ⊕ (C⊗ η), (2)

which also extends to the exterior algebra

Ω∗C =
⊕
p,q

Ωp,q ∧ (1⊕ η). (3)

Elements of Ω∗C that vanish under the action of iξ are
called horizontal, while those annihilated by η∧ are ver-
tical.

The decomposition (2) induces a decomposition of the
exterior derivative,

d = ∂B + ∂̄B + £ξη ∧ . (4)

∂B and ∂̄B are the tangential Cauchy-Riemann operators.
They satisfy {∂B , ∂̄B} = −2J ∧£ξ as well as ∂2

B = ∂̄2
B =

0. The sequence

. . .
∂̄B−−→ Ωp,q−1 ∂̄B−−→ Ωp,q

∂̄B−−→ Ωp,q+1 ∂̄B−−→ . . .

gives rise to the Kohn-Rossi cohomology groups Hp,q

∂̄B
(S).

Continuing with the theme of generalizing concepts from
Kähler geometry to Sasaki-Einstein manifolds, we define
the Lefschetz operator L : ΩkC → Ωk+2

C via α 7→ J ∧α and

the Reeb operator Lη : ΩkC → Ωk+1
C as α 7→ η ∧ α.

Introducing the Hodge star2

?ᾱ ∧ β =
1

p!
ᾱm1...mpβm1...mp

vol = 〈α, β〉 vol,

allows us to define adjoints for the above operators when
acting on ΩkC:

d∗ = (−1)k ? d?,

∂∗B = (−1)k ? ∂̄B?,

∂̄∗B = (−1)k ? ∂B?,

Λ = L∗ = ?L? = Jy,

Λη = L∗η = (−1)k+1 ? Lη? = iξ,

(Lη£ξ)
∗ = −Λη£ξ.

(5)

Recall that on odd-dimensional manifolds ? satisfies ?? =
1.

When restricted to D, the action of J becomes that
of an almost complex structure I which acts as I(α) =

2 In components

?αm1...mp =

√
g

p!
ε

n1...np
m1...md−p

αn1...np .

J n
m αndx

m and I(X) = XmJ n
m ∂n. Of course Ω1,0 =

{α ∈ Ω1|I(ω) = ıω}. We also define

I =
∑
p,q

ıp−qΠp,q,

which makes use of the projection Πp,q : Ω∗C → Ωp,q.
It will turn out useful to distinguish between the rank

of a form on Ω∗C and on
∧∗

D∗. Hence we define the
operator d0 on Ω∗C via

d0|∧kD∗∧(1⊕η) = k · id .

By definition, d0 commutes with Lη. A first example of
the uses of d0 is given by the notion of primitive forms.
α ∈ Ω∗C with d0 ≤ n is primitive if and only if Λα = 0.
Essentially the idea of primitivity on

∧∗
D∗ is the same

as on Kähler manifolds, the contact one-form just comes
along for the ride and there is in principle no difference
between horizontal and vertical forms. We define P k as
the set of primitive elements of

∧k
D∗.

Next we introduce an orthonormal frame ei on D∗.
Defining zi = e2i−1 + ıe2i and imposing I(zi) = ızi,
consistency requires that I(e2i−1) = −e2i and I(e2i) =
e2i−1. Then

J =

n∑
i

e2i−1 ∧ e2i =
ı

2

n∑
i

zi ∧ z̄i.

Defining e2n+1 = η, one finds vol = volD∗ ∧e2n+1 =
1
n!J

n ∧ η.
In what follows, we will make use of two results con-

cerning the Hodge star. To begin, assume that (V, 〈, 〉)
is a Euclidean vector space admiting a decomposition
V = W1 ⊕ W2 that is compatible with the metric 〈, 〉.
For simplicity we assume that dimRWi ∈ 2Z. The met-
rics 〈, 〉i induce Hodge star operators •i, i = 1, 2. Then∧∗

V ∗ =
∧
W ∗1 ⊗

∧
W ∗2 , and for αi ∈

∧ki W ∗i , the Hodge
dual on

∧∗
V ∗, •, threads as

• (α1 ⊗ α2) = (−1)k1k2 •1 α1 ⊗ •2α2, (6)

since (βi ∈Wi)

• (α1 ⊗ α2) ∧ (β1 ⊗ β2) = 〈α1, β1〉1〈α2, β2〉2 vol1 vol2

= (−1)k1k2 •1 α1 ∧ •2α2 ∧ β1 ∧ β2.

One can use identical considerations to decompose the
action of ? on Ω∗C into seperate operations on D∗ and η.
Introducing a hodge dual • on D∗, one finds

? |∧∗D∗ = Lη•, ?|∧∗D∗∧η = •(−1)d
0

Λη. (7)

B. Lefschetz decomposition

The starting point for our discussion of Lefschetz de-
composition is the commutator

[L,Λ] = (d0 − n). (8)
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The proof is via induction in n. Consider d = 3, n = 1.
Then Ω∗C is spanned by {1, η, µi, J, J ∧ η} where µi ∈
Ω1,0 ⊕ Ω0,1 and both µi are annihilated by L and Λ.
Then ΛJ = 1 and thus [L,Λ]|Ω0

C
= −1, [L,Λ]|η = −1,

[L,Λ]|D∗=0, [L,Λ]|Ω1,1 = 1, and [L,Λ]|Ω3
C

= 1. Hence

[L,Λ]|∧kD∗∧(1⊕η) = (k − 1), k = 0, 1, 2,

as claimed. The induction then proceeds as in [1]
(8) generalizes to

[Li,Λ]|∧kD∗∧(1⊕η) = ı(k − n+ i− 1)Li−1. (9)

Again the proof is a copy of that in [1].
To proceed we follow [2]. Restricting to

∧∗
D∗ one can

copy all results from proposition 6.20 to lemma 6.24. The
most important of these results is Lefschetz decomposi-

tion. Given α ∈
∧k

D∗, there is a unique decomposition

α =
∑
r

Lrαr, α ∈ P k−2r.

The decomposition is compatible with the bidigree de-
composition and with the decomposition into horizontal
and vertical components. Moreover,

Ln−k :

k∧
D∗ →

2n−k∧
D∗ (10)

is an isomorphism and the primitivity condition is equiv-
alent to Ln−k+1α = 0.

The Lefschetz decomposition becomes incredibly use-
ful when used together with the Bidigree decomposition,
equation (7) and the identity

∀α ∈ P k, •Ljα = F (n, j, k)Ln−k−jI(α),

F (n, j, k) = (−1)
k(k−1)

2
j!

(n− k − j)!
.

(11)

Since no differential operators are involved and α ∈∧k
D∗, one can copy the proof in [1] after adjusting for

conventions. Once the dust settles, the only difference is
in the k-dependent prefactor.

C. Calculating the identities

We are finally in a position to make use of the previ-
ous results and calculate the (anti-) commutators. The
results are in summarized in table I. A number of iden-
tities are fairly obvious:

0 = [∂B , L] = [∂̄B , L] = [∂∗B ,Λ] = [∂̄∗B ,Λ]

= [L,Lη] = [Λ,Λη] = [Lη,Λ].

One finds {Lη,Λη} = 1 by direct calculation using the
decomposition α = αH +LηαV . Finally, [d0, ∂B ] = ∂B +
LΛη.

The most involved calculation is that of the commuta-
tor

[Λ, ∂̄B ] = −∂∗B + ıLηΛ + (n− d0)Λη. (12)

Before we turn to the proof, let us try to interpret this re-
sult as a generalization of the Kähler case [Λ, ∂̄] = −ı∂∗.
The naive guess [Λ, ∂̄B ]

?
= −ı∂∗B cannot be correct since

the left hand side maps [Λ, ∂̄B ] :
∧∗

D∗ →
∧∗

D∗ while
∂∗B :

∧∗
D∗ →

∧∗
D∗ ∧ (1⊕ η). Similarly, the right hand

side annihilates η while the left hand side does not. One
can guess the correct result by considering the action of
both sides on J and η, adding suitable terms on the right
hand side to achieve equality.

The proof of (12) is once again an elaboration on the
proof for Kähler manifolds in [1]. Let us first consider
horizontal forms. Here, it is sufficient to explicitly eval-
uate the action of (12) Liα for α ∈ P k; the result will
generalize for generic elements of

∧∗
D∗ due to Lefschetz

decomposition. Furthermore one applies Lefschetz de-
composition to ∂̄Bα = α0 + Lα1 + L2α2 + . . . . We
have α ∈ P k and thus 0 =

∑
j L

n−k+1+jαj and finally

Ln−k+1+jαj = 0. Using equation (10) it follows that
most of the αj vanish and ∂̄Bα = α0 + Lα1.

Using (9) one finds

[Λ, ∂̄B ]Liα = −iLi−1α0 − (k + i− n− 1)Liα1.

Similarly, using ∂̄BI(α) = ıI(∂̄Bα) and I2(
∧k

D∗) =
(−1)k as well as (7) and (11)

?∂̄B ? L
iα = ı(−1)k

2

[Λ, ∂̄B ]Liα− (−1)kLη[Li,Λ]α.

Finally,

[Λ, ∂̄B ]|∧∗D∗ = −ı∂∗B + ıLηΛ.

To study vertical forms, we consider LηL
iα. Again

α ∈ P k and ∂̄Bα = α0 + Lα1. Then

[Λ, ∂̄B ]LηL
iα = iLηL

i−1α0 + (k + i− n− 1)LηL
iα1

+ [n− (2i+ k)]Liα.

Note that 2i+ k is the degree of Liα. Furthermore,

?∂̄B ? LηL
iα = (−1)k

2+1ı

× [iLηL
i−1α0 + (k + i− n− 1)LηL

iα1].

In total,

[Λ, ∂̄B ](LηL
iα) = {−ı∂∗B + [n− (2i+ k)]Λη}(LηLiα).

Since LηΛ(LηL
iα) = 0, we can add or subtract ıLηΛ.

Therefore it is consistent to combine the results on hori-
zontal and vertical forms into the overall result (12). An
identical calculation or complex conjugation give [Λ, ∂B ].
This completes the proof.

We can compute the computator of the adjoints (α ∈
ΩpC):

[L, ∂∗B ]α = (−1)p[−ı ? ∂∗B ?+ı ?LηΛ ?+ ? (n− d0)Λη?]αp.
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With ?(n− d0)? = (d0−n), ?∂∗B ? α = (−1)p+1∂̄Bα, and
?LηΛ ? α = (−1)p+1ΛηLα one finds

[L, ∂∗B ] = ı∂̄B − ıΛηL+ (d0 − n)Lη,

[L, ∂̄∗B ] = −ı∂B + ıΛηL+ (d0 − n)Lη.

The calculation of the anticommutator {Λη, ∂̄B} is
considerably simpler. Consider again α ∈ P k with
∂̄Bα = α0 +Lα1. Then Λη∂̄Bα = 0 and ∂̄BΛηα = 0. The
next step is only slightly more complicated: Λη∂̄BLηα =
−∂̄Bα, ∂̄BΛηLηα = ∂̄Bα and thus {Λη, ∂̄B} = 0. Simi-
larly {Λη, ∂B} = 0 as well as the extension to the adjoint
case.

This concludes the calculation of the identities. The
(anti-) commutators allow us to express ∆ = d∗d + dd∗

in terms of ∆∂̄B = ∂̄∗B ∂̄B + ∂̄B ∂̄
∗
B . The decomposition (4)

yields

∆ = ∆∂B + ∆∂̄B + {∂B , ∂̄∗B}+ {∂̄B , ∂∗B} −£2
ξ .

Then, using {∂B , ∂̄∗B} = {∂B , LηΛ} + ı∂BΛη one shows
that

∆∂B = ∆∂̄B−2ı(n−d0)£ξ+{∂B−∂̄B , LηΛ}−ı(∂B+∂̄B)Λη,

which leads to

∆ = 2∆∂̄B − 2ı(n− d0)£ξ −£2
ξ + 2{∂B , LηΛ} − 2ı∂̄BΛη.

Application of {∂B , LηΛ} = ıLη∂̄
∗
B + (n− d0)LηΛη +LΛ

completes the proof of (1).

III. DISCUSSION

We turn to the spectral problem for ∆. Consider a
k-form ω with £ξω = ıq, q ≥ 0, and d0 ≤ n. Clearly
all terms on the right hand side of (1) are positive defi-
nite except for the mixed term M = ı(Lη∂̄

∗
B − ∂̄BΛη) =

N + N∗. M is self-adjoint and its spectrum is real.
Moreover, N2 = 0 and N(

∧∗
D∗) ⊂

∧∗
D∗ ∧ η and

N(
∧∗

D∗∧η) = 0. That is, N maps horizontal to vertical
forms and annihilates the latter. N∗ behaves accordingly
and it follows that 〈ω,Mω〉 vanishes if ω is horizontal or
vertical. This is also the case if ω is neither horizontal
nor vertical yet holomorphic.3 As long as we restrict to
one of these cases, (1) takes the form of a bound on the
spectrum of ∆.

This was conjectured and partially shown in the con-
text of the calculations of the superconformal index in
[6, 7]. Here, the spectrum was constructed from primi-
tive elements of Ωp,q. For such forms, (1) clearly implies

∆ ≥ q2 + 2q(n− d0) (13)

3 In the remainder of this discussion, the term holomorphic is
meant in respect to the tangential Cauchy-Riemann operator ∂̄B .

with equality if and only if ∂̄Bω = ∂̄∗Bω = 0. In the
Kähler case, the latter of these is implied by transversal-
ity — d∗ω = 0. Here however, d∗ω = 0 leads only to the
vanishing of the horizontal component of ∂̄∗Bω. Indeed,

∂∗Bω = ıLηΛω, ∂̄∗Bω = −ıLηΛω,

which vanishes since ω was assumed to be primitive. As-
suming that every element of Hp,q

∂̄B
(S) has a represen-

tative closed under ∂̄∗B , the bound (13) is saturated on
the elements of Hp,q

∂̄B
(S). These are the forms that cor-

respond to the short multiplets in the SCFT, and (13)
together with the expressions for the derived eigenmodes
of ∆ given in [6, 7] allows to recover the unitarity bounds
from supergravity. Note that (13) and a precursor to (1)
were already conjectured in those references. Note that
the appendix of [7] contains an argument that every ele-
ment of Hp,q

∂̄B
(S) is either primitive, carrying zero charge,

or both. For the cases of interest in the context of that
paper it turned out that all elements are primitive.

Since we found Sasaki-Einstein equivalents of both
∆ = 2∆∂̄ and the Kähler identities, it is tempting to ask
how much more of Kähler geometry can be generalized.
For example, since ∆∂̄ is self-adjoint and elliptic, one can
show that ΩkC = Hk⊕∆∂̄(ΩkC) which implies Hodge’s the-
orem. Similarly, the relation between the de Rham and
Hodge Laplacians allows for an isomorphism between the
respective spaces of harmonic forms. However, it turns
out that ∆∂̄B is not elliptic. We will sketch the calcu-
lation leading to this result. Recall that ∆∂̄B is elliptic

if the symbol σ∆∂̄B
: Hom(ΩkC,Ω

k
C)⊗ S2(T ∗S) maps any

non-zero ω ∈ T ∗S to an automorphism on ΩkC. When
calculating the symbol one essentially keeps only those
terms of ∆∂̄B that are of highest order in derivatives. In
the context of the tangential Cauchy-Riemann operator,
this means that ∂B and ∂̄B can be taken to be anticom-
muting and that the overall result is essentially the same
as for the symbol of the Dolbeault Laplacian on a Kähler
manifold, provided one substitutes ∂zi 7→ ∂zi −η(∂zi)£ξ.
Therefore, σ∆∂̄B

(ξ) = 0 and ∆∂̄B is not elliptic.

An obvious problem of interest is the extension of the
results presented here beyond the Sasaki-Einstein case.
As long as there is a dual SCFT, there is a unitarity
bound meaning that there should be some equivalent of
(1) or at least (13). A starting point might be given
by partially complex geometry, see e.g. the lecture notes
[17].
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Lη Λη L Λ ∂∗
B ∂̄∗

B ∂̄B

∂B {∂B , Lη} = L {∂B ,Λη} = 0 [∂B , L] = 0 [∂B ,Λ] ∆∂B {∂B , ∂̄∗
B} {∂B , ∂̄B} = −2L£ξ

∂̄B {∂̄B , Lη} = L {∂̄B ,Λη} = 0 [∂̄B , L] = 0 [∂̄B ,Λ] {∂̄B , ∂∗
B} ∆∂̄B

∂̄∗
B {∂̄∗

B , Lη} = 0 {∂̄∗
B ,Λη} = Λ [∂̄∗

B , L] [∂̄∗
B ,Λ] = 0 {∂̄∗

B , ∂
∗
B} = 2Λ£ξ

∂∗
B {∂∗

B , Lη} = 0 {∂∗
B ,Λη} = Λ [∂∗

B , L] [∂∗
B ,Λ] = 0

Λ [Λ, Lη] = 0 [Λ,Λη] = 0 [Λ, L] = (n− d0)

L [L,Lη] = 0 [L,Λη] = 0

Λη {Λη, Lη} = 1

TABLE I. The Kähler-like identities

Appendix A: The identities

Table I lists the various (anti-) commutators. The
more involved ones that do not fit in the table are listed
in equation (A1).

[∂B ,Λ] = −ı∂̄∗B + ıLηΛ− (n− d0)Λη

[∂̄B ,Λ] = ı∂∗B − ıLηΛ− (n− d0)Λη,

[∂∗B , L] = −ı∂̄B + ıΛηL− (d0 − n)Lη,

[∂̄∗B , L] = ı∂B − ıΛηL− (d0 − n)Lη,

{∂B , ∂̄∗B} = ı(Lη∂̄
∗
B + ∂BΛη) + (n− d0)LηΛη + LΛ,

{∂̄B , ∂∗B} = −ı(Lη∂∗B + ∂̄BΛη) + (n− d0)LηΛη + LΛ.
(A1)
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