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1. Introduction

The twisted compactification of the six-dimensional N = (2, 0) theory on a punctured

Riemann surface Cg,n gives rise to a large class of N = 2 superconformal field theories

(SCFT) in four dimensions [1, 2], called class S. The gauge couplings of these theories

– 1 –



are exactly marginal and the space of the gauge coupling is identified with the moduli

space Mg,n of the complex structure of Cg,n, on which the S-duality group acts. There

is another class of SCFT’s which is isolated in the sense that they do not allow marginal

deformations. This class of theories was originally found as a nontrivial IR fixed point

on the Coulomb branch of asymptotically free gauge theories and called Argyres-Douglas

type [3, 4, 5]. The characteristic feature of these theories is that mutually non-local BPS

particles get massless at the superconformal point. Recently, it was shown that this class of

SCFT’s can also be constructed by the compactification of the six-dimensional N = (2, 0)

theory on a sphere with an irregular puncture [6, 7].

From the six-dimensional viewpoint a remarkable correspondence has been uncovered

[8, 9]: the instanton partition function [10] of the four-dimensional N = 2 gauge theory of

class S is exactly equal to the conformal block on Cg,n of W algebra in two dimensions,

with a suitable identification of the parameters. Then, an extension of the correspondence

to isolated SCFT’s has been proposed in [11, 12] by finding that the two-dimensional CFT

counterpart of the irregular puncture is an irregular state which is a simultaneous eigenstate

of the higher Virasoro generators. In [12] the irregular state has been constructed by a

collision (or confluence) of several Virasoro vertex operators corresponding to the regular

punctures. Similar construction was given by using the matrix model in [13, 14]. In this

article we explore this proposal for the irregular states of W3 algebra and isolated SCFT’s

with an SU(3) flavor symmetry.

To the compactification on Cg,n of N = (2, 0) theory of AN type, one can associate

the Hitchin system on Cg,n with gauge group SU(N + 1) [2, 15, 16]. The Seiberg-Witten

curve of the four-dimensional theory is identified with the spectral curve of the Hitchin

system. At a regular puncture the sl(N + 1) valued holomorphic one-form1 ϕ(z) of the

Hitchin system has a simple pole and the residue is associated with mass parameters. If

ϕ(z) has a pole of higher order, the puncture is called irregular. The coefficients of the

spectral curve: det (x − ϕ(z)) = xN+1 + φ2(z)x
N−1 + · · · + φN (z)x + φN+1(z) = 0 gives

a j-th differential φj(z). The parameter x in the spectral curve is a fiber coordinate of

the cotangent bundle T ∗Cg,n and the Seiberg-Witten differential is the pull-back of the

canonical one-form λ = xdz on T ∗Cg,n to the spectral curve.

The AGT correspondence [8, 9] tells us that the “expectation value” 〈W (j)(z)〉 of the
spin j current in the WN+1 algebra gives the j-th differential φj(z). Now at an irregular

puncture the j-th differential φj(z) has a pole of the order higher than j. Since the spin

j current is expanded as W (j)(z) =
∑
n∈Z

W (j)
n (z − a)−j−n around a puncture z = a, this

implies that some of the positive modes W
(j)
n do not annihilate the state associated with

the irregular puncture. Namely it is not a primary state any more. By using such irregular

1Due to the twisted compactification the field ϕ(z) becomes a one-form on Cg,n.
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states, to any Riemann surface with irregular punctures we can construct the irregular

conformal block, as is the case with regular punctures. We note that the irregular conformal

block also appears in connection with the so-called confluent KZ equations [17, 18, 19].

The isolated SCFT in four dimensions has several (off-critical) deformation parame-

ters from the superconformal fixed point on the Coulomb branch: the VEV’s of relevant

deformation operators vi paired with the corresponding couplings ci, and mass parameters.

The parameters vi can be considered as the Coulomb moduli of the isolated SCFT. We

can incorporate the relevant parameters in the Seiberg-Witten curve as the coefficients of

the Laurent expansion of the j-th differential φj(z) around the pole of higher degree. This

is the reason why we need irregular singularities for the Seiberg-Witten geometry of the

isolated SCFT.

This, however, indicates also that irregular singularities do not necessarily lead to

the isolated SCFT. Namely, it is easy to see that when the singularity of the differential

is too mild, there is no room to include the above-mentioned deformation parameters.

This case simply corresponds to an asymptotically-free gauge theory with a Lagrangian

description, e.g., SU(N + 1) pure super Yang-Mills (SYM) theory. In the context of the

AGT correspondence, these milder irregular states were defined as a coherent (Whittaker)

state in the Verma module [20, 21]. This has been generalized to several cases: we can find

the defining conditions for such states in the Verma module of the chiral algebra of the

corresponding CFT [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

In this paper, we consider the wilder irregular states of W3 algebra which correspond

to the isolated SCFT’s with an SU(3) flavor symmetry, extending the SU(2) case discussed

in previous literatures. After reviewing the SU(2) case in section 2, we introduce in section

3 an irregular state |In〉 of W3 algebra by taking an appropriate limit of colliding (n + 1)

punctures. For SU(3) we have two types of regular punctures; puncture of simple type and

of full type. In this paper we only consider the case where n simple punctures are colliding

with a single puncture of full type, leaving other possibilities for future investigation. The

W3 algebra consists of the energy momentum tensor T (z) =
∑
n∈Z

Lnz
−2−n and the spin-3

current W (z) =
∑
n∈Z

Wnz
−3−n. Using W3 Ward identities for the primary states associated

with the regular punctures, we derive the characterizing conditions for the irregular state

|In〉. It turns out that |In〉 is a simultaneous eigenstate of Ln, . . . , L2n and W2n, . . . ,W3n

and annihilated by higher modes Lk>2n and W`>3n.

The gauge theory counterpart will be analyzed in section 5, after considering the

simpler SU(2) case in section 4. The two-dimensional CFT analysis implies that if we put

the irregular state |In〉 at z = 0, the corresponding Seiberg-Witten curve of SU(3) gauge

theory is x3 + φ2(z)x + φ3(z) = 0 where the quadratic differential φ2(z) and the cubic
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differential φ3(z) have a pole of order 2n + 2 and 3n + 3, respectively. We show that an

isolated SCFT with such singularity arises in a scaling limit of SU(3) linear quiver gauge

theory which is obtained by the compactification of N = (2, 0) theory on the Riemann

sphere with regular punctures. By the scaling limit we make the punctures other than at

infinity colliding at the origin. We conclude with several discussions in section 6.

The conventions of W3 algebra and the A2 Toda theory are fixed in Appendix A.

In Appendix B, we will see that depending on the convention of the basis of the Verma

module, it is possible to derive two different conditions for the irregular state. In Appendix

C, we summarize the fact that the irregular state for the U(1) current algebra is a familiar

coherent state in the Fock space of free boson.

2. Irregular states of Virasoro algebra

The six-dimensional N = (2, 0) theory of type AN on a Riemann surface Cg,n, allowing only

regular punctures, with a suitable twist gives a class of N = 2 superconformal field theories

in four dimensions. Let us denote this N = 2 theory by S(AN , Cg,n). The regular puncture

comes from the codimension-two defect of the six-dimensional theory and is classified by

a Young diagram with N + 1 boxes [1] including the information of a flavor symmetry. In

this paper we only consider N = 1 and 2 cases.

The AGT correspondence [8] (and generalization to higher rank case [9, 33]) relates the

Nekrasov instanton partition function of S[AN , Cg,n] on the Omega background (ε1, ε2) with

the conformal block of WN algebra on Cg,n. We should note that in this correspondence we

need to specify a marking of Cg,n. On the gauge theory side this leads to a particular weak

coupling description, while on the CFT side this is necessary to compute the conformal

block. A simple example of the correspondence is the case with N = 1 and C0,4. In this

case S[A1, C0,4] is an SU(2) gauge theory with four fundamental hypermultiplets and the

AGT correspondence relates the Nekrasov partition function ZS[A1,C0,4] with the conformal

block B[C0,4] of the Virasoro algebra on four-punctured sphere;

ZS[A1,C0,4] = B[C0,4]. (2.1)

The N = 2 theory S[A1, C0,4] has vanishing beta function leading to the superconformal

invariance at the origin of the Coulomb moduli space and vanishing hypermultiplet mass

parameters. This is simply due to the fact that there only appear the regular punctures.

In this paper we will investigate the AGT correspondence for asymptotically free gauge

theories, especially for the isolated SCFT’s appearing as a nontrivial IR fixed point on the

Coulomb moduli space of N = 2 quiver gauge theory. This extension requires an insertion

of irregular punctures on the Riemann surface so that the Seiberg-Witten differential has

higher singularities. We explain how these irregular punctures appear on the both sides of
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the correspondence. In this section, we provide a brief introduction to such extensions in

the N = 1 case, namely Virasoro algebra and SU(2) gauge theory.

2.1 Irregular states and asymptotically free gauge theories

Let us denote the Riemann surface of genus g with n regular punctures and ` irregular

punctures by Cg,n,{di} where i = 1, . . . , ` and d` are degrees of irregular punctures. There

is only one type of regular punctures in the A1 case and each puncture is associated with an

SU(2) flavor symmetry. To this Riemann surface we have a four-dimensional gauge theory

W(A1, Cg,n,{di}). When ` = 0 we denote the Riemann surface as Cg,n,{di}=∅ ≡ Cg,n, which

reduces the theory to the class S of SCFT’s. The presence of irregular punctures changes

the theory into asymptotically free. The matter content of the theory is determined by the

degree of the irregular punctures.

The simplest example with irregular singularities is the pure SU(2) super Yang-Mills

(SYM) theory which is associated with C0,0,{ 3
2
, 3
2
}, namely a sphere with two irregular

punctures of degree 3/2. Indeed, the Seiberg-Witten curve of SU(2) SYM theory with the

Coulomb moduli u and the dynamical scale Λ is written as

x2 = φ2(t) =
Λ2

t3
+

u

t2
+

Λ2

t
, (2.2)

where the Seiberg-Witten differential is λSW = xdt [2, 20]. Counting the degrees of punc-

tures with respect to the differential λSW, we see that the theory is associated with C0,0,{ 3
2
, 3
2
}

whose punctures are at t = 0,∞. To add one hypermultiplet changes the degree of one of

the irregular punctures as follows:

φ2 =
Λ2

4t4
+

Λm

t3
+

u

t2
+

Λ2

t
, (2.3)

where m is the mass parameter of the hypermultiplet. The irregular puncture at t = 0 now

has degree 2 and the theory is associated with C0,0,{2, 3
2
}.

The decoupling of the SU(2) gauge group in the above examples leads to a sphere with

one irregular and one regular puncture; C0,1,{ 3
2
} or C0,1,{2}. In other words, W(A1, C0,1,{ 3

2
})

and W(A1, C0,1,{2}) are the theory of “no hypermultiplet” and of two free hypermultiplets

respectively. These two types of two-punctured sphere indeed exhaust possible choices to

have an asymptotically free SU(2) gauge theory with a Lagrangian description. The other

types of two-punctured sphere where the degree of the irregular puncture is higher than 2

lead to isolated SCFT’s which do not have Lagrangians.

For the above two cases which allow a Lagrangian description, the corresponding states

on the two-dimensional CFT side were found in [20]. We demonstrate the idea by reducing

the number of flavors by one out of the original AGT correspondence (2.1). The starting

point on the CFT side is the conformal block B[C0,4]. Let us introduce the following state
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made from two primaries:

V∆2(z)|∆1〉|∆ ∝
∑
Y,Y ′

|∆, Y 〉Q (∆)−1
Y,Y ′ 〈∆, Y ′|V∆1(z)|∆1〉

〈∆|V∆1(z)|∆1〉
=: |R̃(∆2,∆1; z)〉, (2.4)

where |∆ is the projection onto the Verma module V∆. The corresponding projector is

1∆ =
∑

Y,Y ′ |∆, Y 〉Q (∆)−1
Y,Y ′ 〈∆, Y ′|, where the summation is over two Young diagrams

(partitions) Y and Y ′. The descendants |∆, Y 〉 = L−Y |∆〉 span the Verma module and

QY,Y ′ = 〈∆, Y |∆, Y ′〉 is the Kac-Shapovalov matrix which is assumed to be non-degenerate.

The state on the right hand side is of course a regular vector |R̃〉 ∈ V∆ in the module and

the leading term of the level expansion is |R̃〉 = |∆〉 + · · · in this normalization. The

spherical four-point conformal block is then B[C0,4] = 〈R̃(∆4,∆3; 1)|R̃(∆1,∆2; z)〉. Two

fundamental hypermultiplets therefore are associated with the regular state |R̃〉. The mass

parameters of these matters are related with the Liouville momenta αi of the corresponding

primary states with conformal dimension ∆i = αi(Q− αi) by
2

m1 = α1 − α2 −
Q

2
, m2 = α1 + α2 −

Q

2
,

m̃1 = α3 − α4 −
Q

2
, m̃2 = α3 + α4 −

Q

2
, (2.5)

where Q is related to the central charge by c = 1− 6Q2.

To describe a state corresponding to a single hypermultiplet, let us decouple the matter

with mass parameter m1 by sending m1 → ∞. In addition, we have to fix the low-energy

dynamical scale finite in order to keep low-energy gauge theory dynamics. Since the AGT

dictionary for the UV gauge coupling constant τUV translates the moduli into z = e2πiτUV ,

the dynamical scale below the energy scale m1 is the dimensional transmutation parameter

zm1 ≡ Λ. We therefore have to send z to zero with this dynamical scale fixed. We can

translate this limit in the language of two-dimensional CFT as

α1 − α2 → ∞, z → 0, c0 = α1 + α2, c1 = (α1 − α2) z (2.6)

for certain fixed values c 0,1. This decoupling procedure makes the two primary fields V 1,2

colliding and their momenta infinitely massive.

This collision limit simplifies the regular state |R̃〉 and the resulting conformal block

〈R̃|R̃〉. Indeed the limit leads to the following state in the Verma module [21]:

|R̃〉 → |I1(m2,Λ)〉 =
∑
Y,n,p

(2m2 +Q)n−2p

(
Λ

2

)n

Q (∆)−1
[1n−2p·2p],Y |∆, Y 〉. (2.7)

2Here we adopt the standard convention of the Liouville momentum. In the next subsection we will

change the definition with ∆i = αi(αi −Q) for convenience.
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This state |INf=1〉 describes a puncture associated with one hypermultiplet. For instance,

the scalar product 〈R̃(∆4,∆3)|INf=1〉 gives the Nekrasov partition function for SU(2)

SQCD with 2 + 1 flavors W(A1, C0,2,{2}), and 〈INf=1|INf=1〉 provides that with 1 + 1

flavors W(A1, C0,0,{2,2}).

The irregular state with no hypermultiplet |INf=0〉 can also be obtained by a similar

decoupling limit. By using these states we can formulate the correspondence for SU(2)

gauge theory with Nf (≤ 3) hypermultiplets. This is an extended version of the AGT

correspondence to asymptotically free gauge theories, and has been proven in [34] for the

Nf = 0, 1, 2 cases.

In spite of the complexity of the expression (2.7), the following simple conditions

characterize the state |I1(m,Λ)〉:

L1 |I1(m,Λ)〉 =
(
m+

Q

2

)
Λ |I1(m,Λ)〉, L2 |I1(m,Λ)〉 = Λ2 |I1(m,Λ)〉. (2.8)

Actually we can show that (2.7) is the unique solution to the conditions (2.8) up to an

overall factor. To check the relation with the gauge theory quickly, one can see that the

insertion of the energy-momentum tensor T (z) into the conformal block is identical to the

φ2 in the ε1,2 → 0 limit [8]. Let us define the insertion of T (z) into the irregular conformal

block which we are considering as

φCFT
2 (z) = lim

ε1,2→0
〈T (z)〉 , (2.9)

up to an irrelevant coefficient. The above conditions (2.8) for |INf=1〉 agree with the

behavior of the irregular puncture of degree 2 (2.3). We can also check the agreement of

the coherent state condition on the irregular state |INf=0〉 with the puncture of degree 3/2.

2.2 Irregular states from the collision of primaries

In this subsection we review the approach by Gaiotto-Teschner [12] to obtain the irregular

states from the collision of primaries. Let us consider the state that is obtained by acting

n primaries (vertex operators) V∆i(zi) on the primary state;

|Rn〉 :=
n∏

i=1

V∆i(zi)|∆n+1〉. (2.10)

By acting the Virasoro generators on this state, we obtain

T+(y)|Rn〉 =

[
n∑

i=1

∆i

(y − zi)2
+

∆n+1

y2
+

n∑
i=1

zi
y(y − zi)

∂

∂zi
+

L−1

y

]
|Rn〉. (2.11)

We study the behavior of this equation in the collision limit in order to show a characteristic

of the collision-induced irregular vector.
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We will take a singular behavior of the state from the above expression and evaluate

the limit-value of it. For this purpose, we introduce

∂yφsing :=

n∑
i=1

αi

y − zi
+

αn+1

y
, (2.12)

and

Tsing(y) := (∂yφsing)
2 +Q ∂2

yφsing, (2.13)

following [12]. Here we employ the convention ∆i = αi(αi − Q) of [33]. A redefinition of

the state by

|Rn〉 =
n∏

i=1

z
2αiαn+1

i

∏
1≤i<j≤n

(zi − zj)
2αiαj |R̃n〉, (2.14)

simplifies the action of the “positive” part of the energy momentum tensor T+(y) =
∑
k≥−1

y−2−kLk:

T+(y)|R̃n〉 =

[
Tsing(y) +

n∑
i=1

zi
y(y − zi)

∂

∂zi
+

L−1

y

]
|R̃n〉. (2.15)

Now we have

∂yφsing =
Pn(y)

y
∏n

i=1(y − zi)
, (2.16)

where Pn(y) := c0 y
n+c1y

n−1+· · ·+cn is a polynomial of n-th order in y and the coefficients

are given by

c0 = α1 + · · ·+ αn + αn+1,

ck = (−1)k
∑

1≤i1<···<ik≤n

zi1 · · · zik

 ∑
j /∈{i1,...,ik}

αj

 , (1 ≤ k ≤ n). (2.17)

Note that ck is k-th order in zi’s and linear in αj ’s. We will take the limit zi → 0 and

αj → ∞, while keeping c0, c1, . . . , cn finite. Thus all the primaries are colliding at the

origin and all the “momenta” becomes large, keeping the total momentum finite. Let us

look at the Virasoro conditions on the limit state |R̃n〉 → |In(α, ci)〉. The limit of Tsing is

simply

Tsing(y) →
1

y2

(
cn
yn

+ · · ·+ c1
y

+ c0

)2

− Q

y2

(
(n+ 1)cn

yn
+ · · ·+ 2c1

y
+ c0

)
. (2.18)

The limit of the derivative terms is more involved. We use

zi
y(y − zi)

∂

∂zi
=

n∑
j=1

zi
y(y − zi)

∂cj
∂zi

∂

∂cj
. (2.19)
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By evaluating the Euler derivative of cj which is at most the first order in each zi, we find

n∑
i=1

zi
y(y − zi)

∂cj
∂zi

∂

∂cj
=

n∑
i=1

c
(i)
j

y(y − zi)

∂

∂cj
, (2.20)

where c
(i)
j is the part of cj that contains zi, or more explicitly

c
(i)
j = (−1)jzi

∑
ik 6=i,1≤i1<···<ij−1≤n

zi1 · · · zij−1

 ∑
`/∈{i,i1,...,ij−1}

α`

 . (2.21)

Since cj is of order j in zi’s, the Euler derivatives give the overall factor j. When we reduce

(2.20), the common denominator is y(y− z1) · · · (y− zn) and it is easy see that the leading

term is jcj/y
2. The remaining terms also produce the higher ck, k > j by discarding some

of αj ’s, which vanish in the limit. Note that it has an additional power of y whose degree

is determined by the discrepancy of the order in zi’s between ck and cj . Thus we see

n∑
i=1

c
(i)
j

y(y − zi)
→ j

y2
(
cj + · · ·+ yj−ncn

)
. (2.22)

In summary the limiting state satisfies

T+(y)|In〉 =

[
1

y2

(
cn
yn

+ · · ·+ c1
y

+ c0

)2

− Q

y2

(
(n+ 1)cn

yn
+ · · ·+ 2c1

y
+ c0

)

+

n∑
j=1

j

y2

(
cj + · · ·+ cn

yn−j

)
∂

∂cj
+

L−1

y

 |In〉. (2.23)

Looking at the coefficient of y−2−k we obtain the action of Lk on |In〉 as follows;

L0|In〉 =

c0(c0 −Q) +

n∑
j=1

jcj
∂

∂cj

 |In〉,

Lk|In〉 =

[
ck(2c0 − (k + 1)Q) +

k−1∑
`=1

c`ck−` +

n−k∑
`=1

`c`+k
∂

∂c`

]
|In〉, (1 ≤ k ≤ n− 1)

Ln|In〉 =

[
cn(2c0 − (n+ 1)Q) +

n−1∑
`=1

c`cn−`

]
|In〉,

Ln+k|In〉 =

[
n∑

`=k

c`cn+k−`

]
|In〉, (1 ≤ k ≤ n) (2.24)

and Lk|In〉 = 0 for k > 2n. We obtain an irregular state of order n introduced by [12]. We

see that |In〉 is an eigenstate of Ln, . . . , L2n, but not for L0, . . . , Ln−1.
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As we summarized in Appendix C, the irregular state of the U(1) current algebra is

nothing but a familiar coherent state in the Fock space of free boson. Hence, if we employ

a free field realization of the Virasoro algebra

Ln :=
∑
k∈Z

: akan−k : −Q(n+ 1)an, (2.25)

in terms of the U(1) current J(z) =
∑
n∈Z

anz
−n−1, we find a solution to the conditions (2.24)

as a coherent state

ak|In〉F = ci|In〉F (1 ≤ k ≤ n), a`|In〉F = 0 (` ≥ n), (2.26)

in the Fock space. Here we identify some of the creation operators a−k with the differential

operator k ∂
∂ck

, which affects the prescription of the normal ordering. To make use of such a

free field solution to the irregular state for the construction of the irregular conformal block,

we have to understand the role of the screening operators [12]. For Virasoro regular states

the treatment of the screening operators in the matrix model was worked out in [35, 36, 37],

and one can recast a Virasoro conformal block into a Dotsenko-Fateev integral. This idea

should work also for irregular blocks in the collision limit [13]. In the W3 case, however, a

similar handling of the screening operators is an open problem at the moment.

Note that |I1〉 is nothing but the irregular state
∣∣INf=1

〉
discussed in section 2.1. In

fact |I1〉 satisfies

L0|I1〉 =

[
c0(c0 −Q) + c1

∂

∂c1

]
|I1〉,

L1|I1〉 = 2(c0 −Q)c1|I1〉, L2|I1〉 = c21|I1〉. (2.27)

The last two conditions should be compared with the condition (2.8). We recover the

famous dictionary m ∼ c0, Q ∼ ε+/2. Moreover we find c1 ∼ Λ. The identification c1 ∼ Λ

implies the first relation for L0 can be regarded as the Matone’s relation [38] in Seiberg-

Witten theory.

The higher irregular states |In〉 (n ≥ 2) are argued to correspond to isolated SCFT’s

W(A1, C0,1,{n+1}). Indeed if we put this irregular state at z = 0, φCFT
2 behaves locally

lim
ε1,2→0

〈T (z)〉 = φCFT
2 (z) =

const

z2n+2
+ · · · , (2.28)

and this agrees with the behavior of φ2 of W(A1, C0,1,{n+1}) theory, as we will see in section

4. The simplest state corresponding to the SCFT is |I2〉, whose conditions are explicitly
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given by

L0|I2〉 =

[
c0(c0 −Q) + c1

∂

∂c1
+ 2c2

∂

∂c2

]
|I1〉,

L1|I2〉 =

[
2c1(c0 −Q) + c2

∂

∂c1

]
|I1〉,

L2|I2〉 = (c2(2c0 − 3Q) + c21)|I1〉,

L3|I2〉 = 2c1c2|I2〉, L4|I2〉 = c22|I2〉. (2.29)

Note that the eigenvalues of L3,4 follow from the commutation relations [L2, L1] ∼ L3 and

[L3, L1] ∼ 2L4.

In [11] the explicit expressions like (2.7) for the higher irregular states have been found.

These expressions satisfy a set of similar conditions described above. (The conditions

derived in [11] are slightly different from those here because of a difference of conventions,

as we will explain in Appendix B.) In fact the irregular states in [11] are slightly different

from those constructed by the collision limit here. This can be seen from the fact that the

coefficient of the primary state in the expansion of the irregular state |In〉 is a nontrivial

function of the parameters ci. On the other hand, in [11], this was normalized to be 1. We

will discuss this point more in section 6. The states in Virasoro module satisfying these

conditions have also considered in [39].

3. Irregular states of W3 algebra

In this section we generalize the story for the Virasoro algebra to irregular states in W3

algebra and SU(3) gauge theories. In this case there are two types of regular punctures [1].

The first one is of simple type and associated with a U(1) flavor symmetry (or carries a

single mass parameter). The other is of full type and has an SU(3) flavor symmetry with

two mass parameters. We are going to consider the collision of one full puncture with n

simple punctures, as depicted in fig. 1.

Based on the W3 Ward identities for the primary states, we first show that the irregular

state obtained by a collision of a full puncture and a simple puncture is nothing but the

generalized Whittaker state introduced in [32]. It is known that due to the special condition

on the A2 Toda momentum for the simple puncture [9], the primary state of the simple

puncture has a level one null state, which allows us to express the action of the modeW−1 in

terms of the differential operator in the coordinates of the punctures. Then we consider the

case where n simple punctures are colliding with a full puncture and derive the conditions

which should be satisfied by the irregular states. For the Virasoro part the condition

is the same as the SU(2) case described above, since the corresponding Ward identities

remain the same. For the W3 part, the condition involves the generators up to W3n. The

irregular state is an eigenstate for W2n, . . . ,W3n and the actions of Wn, . . . ,W2n−1 are

– 11 –



Figure 1: The collision of vertex operators V1(z1), · · ·, Vn+1(zn+1).

given by the first order differential operators in c0, c1, . . . , cn. Unfortunately it seems that

we cannot write the actions of the lower non-negative modes W0,W1, . . . ,Wn−1 in a simple

way. We will see that the irregular W3 states considered in this section correspond to the

W(A2, C0,1,{n+1}) theory in section 5.

3.1 Collision of two punctures: n = 1

Let us start with the simplest example: the collision of two primary operators. The state

associated with two primary fields is

|R1〉 := V~α1
(z)|V~α2

(0)〉. (3.1)

Since we will compute the scaling limit of the state with keeping application to irregular

conformal blocks in mind, we work with chiral vertex operators V~α(z), instead of full pri-

mary fields. To apply the AGT correspondence of SU(3) gauge theories with fundamental

hypermultiplets [9], we choose the operator V1 semi-degenerate, i.e.

∆ ~αi
= α2

i + β2
i −Q2, w ~αi

=
√
καi(α

2
i − 3β2

i ), ~α1 =

(
α1,−

Q

2

)
, (3.2)

where κ is given by the central charge c = 2− 24Q2 as

κ =
32

22 + 5c
. (3.3)

The free field computation Q = 0 therefore means κ = 1.

Our collision limit is the same as the one in section 2:

α1 → ∞, z → 0, c0 := α1 + α2, c1 := α1z. (3.4)

This limit for W-algebra is actually the same as the decoupling limit of one flavor which

was studied in [32]. Let us check it explicitly. The parameter identification of the AGT

correspondence for SU(3) SQCD is

m1 = − 1√
3
α1 +

Q

2
+

2√
3
α2, (3.5)

m2 = − 1√
3
α1 +

Q

2
− 1√

3
α2 − β2, (3.6)

m3 = − 1√
3
α1 +

Q

2
− 1√

3
α2 + β2, (3.7)
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where m1,2,3 are three mass parameters for the fundamental hypermultiplets of the gauge

theory. With these, we can translate our collision limit in terms of the gauge theory

parameters:

m1 ∼ −
√
3α1 → −∞, (3.8)

m2 = − c0√
3
+

Q

2
− β2, (3.9)

m3 = − c0√
3
+

Q

2
+ β2, (3.10)

with keeping Λ ∝ α1z finite. This is precisely the decoupling limit of single hypermultiplet

of SU(3) SQCD.

Let us study the scaling limit of the state |R1〉 =: z∆int−∆R+2α1α2+
3Q2

4 |R̃1〉, where

∆int = α2 + β2 − Q2 and ∆R = c20 + β2
2 − Q2. Here we scale out the overall factor

z2α1α2+
3Q2

4 to get rid of diverging contribution. The factor arises because the contribution

of the state |R1〉 = V~α1
(z)|V~α2

(0)〉 in a conformal block with the internal momentum ∆int

behaves as

|R1〉 ∼ z∆int−∆1−∆2 ( |∆int〉+O(z) ) , (3.11)

in other words, we work with the chiral vertex operator V~α1
: V∆2 → V∆int , where V is the

Verma module. This means we expand the state |R1〉 in the Verma module for the highest

weight state |∆int〉. The power of the overall factor is then

∆int −∆1 −∆2 = (∆int −∆R) + 2α1α2 +
3Q2

4
, (3.12)

and this factor gives a diverging contribution 2α1α2 in the collision limit αi → ∞. Thus

we scale it out by defining the renormalized state |R̃1〉. The finite part c∆int−∆R
1 gives the

classical contribution to the corresponding instanton partition function. This normalization

|R̃1〉 = |∆int〉+ |descendants〉 has been used in the context of the Whittaker-Gaiotto states

for asymptotically-free gauge theories [20, 22, 31, 32].

Let us introduce the currents with “positive” modes

T+(y) :=
∑
k≥−1

y−2−kLk, W+(y) :=
∑
k≥−2

y−3−kWk. (3.13)

Then the action of the currents on the state leads to

T+(y)|R1〉 =
(

∆1

(y − z)2
+

∆2

y2
+

z

y(y − z)

∂

∂z
+

L−1

y

)
|R1〉,

W+(y)|R1〉 =

(
w1

(y − z)3
+

w2

y3
+

W
(1)
−1

(y − z)2
+

W
(2)
−1

y2
+

W
(1)
−2

y − z
+

W
(2)
−2

y

)
|R1〉. (3.14)
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This formula follows from OPE’s between the current and the primary fields. Here we used

the fact that the action of L−1 on a primary operator is just the differential ∂z. W
(i)
−k is

the generator acting only on the primary field V~αi
. We rewrite the right hand side of the

second equation by using the formulas

W0|R1〉 =
(
w1 + w2 + 2zW

(1)
−1 + z2W

(1)
−2

)
|R1〉,

W−1|R1〉 =
(
W

(1)
−1 + zW

(1)
−2 +W

(2)
−1

)
|R1〉,

W−2|R1〉 =
(
W

(1)
−2 +W

(2)
−2

)
|R1〉. (3.15)

Then we obtain

W+(y)|R1〉 =
(

w1

(y − z)3
+

w2

y3
+

z2

y2(y − z)2
W

(1)
−1 − w1 + w2

y2(y − z)

+
W0

y2(y − z)
+

W−1

y2
+

W−2

y

)
|R1〉. (3.16)

At first sight, the right hand sides of (3.14) and (3.16) seem to diverge in the collision limit.

To evaluate the limit values correctly, we introduce the following combinations

Tsing(y) := (∂φ1(y))
2 + (∂φ2(y))

2 ,

Wsing(y) :=
√
κ
(
(∂φ1(y))

3 − 3∂φ1(y)(∂φ2(y))
2
)
, (3.17)

where

∂φ1(y) =
α1

y − z
+

α2

y
, ∂φ2(y) =

β1
y − z

+
β2
y
, (3.18)

and β1 = −Q/2. The point is that these combinations remain finite in the collision limit.

Let us start with computing the contribution of the stress-energy current T+(y)|R1〉. By

using Tsing(y) we can recast it into

T+(y)|R1〉 =
(
Tsing(y) +

L−1

y
− Q2

(y − z)2
− Q2

y2
− 2

α1α2 + β1β2
y(y − z)

+
z

y(y − z)

∂

∂z

)
|R1〉,

= z∆int−∆R+2α1α2+
3Q2

4

(
Tsing(y) +

L−1

y
− Q2

(y − z)2
− Q2

y2

−
2β1β2 − 3Q2

4 −∆int +∆R

y(y − z)
+

z

y(y − z)

∂

∂z

)
|R̃1〉.

(3.19)

Notice that due to the re-normalization of the state, the diverging term is completely

canceled out from the above expression. Since ∂φ1 → c1/y
2+c0/y and ∂φ2 → (β2−Q/2)/y

in the collision limit, we obtain the following limit value for T+:

T+(y)|R̃1〉 =

(
c21
y4

+
2c0c1
y3

+
c1

∂
∂c1

+∆int

y2
+

L−1

y

)
|R̃1〉. (3.20)
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It is immediately obvious from this formula that the irregular state |R̃1〉 is characterized

by the following conditions:

L2|R̃1〉 = c21|R̃1〉, (3.21)

L1|R̃1〉 = 2c0c1|R̃1〉, (3.22)

L0|R̃1〉 =
(
c1

∂

∂c1
+∆int

)
|R̃1〉. (3.23)

Since the AGT dictionary used in [9, 32] implies the parametrization c0 =
√
3
2 (Q−m2−m3)

and β2 = m3−m2
2 , it is easy to check that these conditions are actually equal to those in

[32]. The dynamical scale there is Λ = −i
√
3c1.

Let us move on to computation of W+ side. With some algebra, we get

Wsing(y) =
w1

(y − z)3
+

w2

y3

+ 3
√
κ

α2

(
α2
1 −

Q2

4

)
+Qα1β2

(y − z)2y
+

α1

(
α2
2 − β2

2

)
+Qα2β2

(y − z)y2

 . (3.24)

We can therefore use this formula to eliminate the terms w1
(y−z)3

+ w2
y3

from (3.16). We can

also rewrite W
(1)
−1 in the right hand side of (3.16) into a differential operator. Since the

generator W−1 acts on the semi-degenerate field as the operator L−1, we obtain

W
(1)
−1 |R1〉 =

3w1

2∆1
L
(1)
−1|R1〉 =

3
√
κα1

2
∂z|R1〉

= z∆int−∆R+2α1α2+
3Q2

4
−1 3

√
κ

2
α1(2α1α2 +

3Q2

4
+ ∆int −∆R + z∂z)|R̃1〉. (3.25)

By combining these results, we can recast (3.16) into the following form

W+(y)|R1〉 = z∆int−∆R+2α1α2+
3Q2

4

(
Wsing(y)+

3
√
κzα1

2y2(y − z)2
z
∂

∂z
+

√
κ(yP1 + P2)

y2(y − z)2

+
W0

y2(y − z)
+

W−1

y2
+

W−2

y

)
|R̃1〉,

where

P1 = −c30 + 3c0

(
β2
2 −Qβ2 +

Q2

4

)
,

P2 = (c30 − 3β2
2c0)z + 3Qβ2(α2z) +

3Q2

8
(α1z) +

3

2
(α1z)(∆int −∆R). (3.26)

Then, the collision limit of W+(y)|R̃1〉 is obviously finite and the explicit form is

W+(y)|R̃1〉 =
(
Wsing(y) +

√
κc1
y4

(
−3Qβ2 +

3Q2

8
+

3

2
(∆int −∆R) +

3

2
c1

∂

∂c1

)
+

W0 +
√
κ
(
−c30 + 3c0(β2 −Q/2)2

)
y3

+
W−1

y2
+

W−2

y

)
|R̃1〉. (3.27)
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Let us read off the condition for the irregular state from the formula (3.27). Since the

collision limit leads to ∂φ1 → c0/y + c1/y
2 and ∂φ2 → (β2 − Q/2)/y, the limit value of

Wsing(y) takes the following form

Wsing(y) =
√
κ

(
c31
y6

+
3c0c

2
1

y5
+

c1(3c
2
0 − 3(β2 −Q/2)2)

y4
+

c30 − 3(β2 −Q/2)2c0
y3

)
. (3.28)

This result implies that the irregular state |R̃1〉 satisfies

W1|R̃1〉 =
3
√
κc1
2

(
c1

∂

∂c1
+ c20 − 3β2

2 +
3Q2

4
+ ∆int

)
|R̃1〉, (3.29)

W2|R̃1〉 = 3
√
κc0c

2
1|R̃1〉, (3.30)

W3|R̃1〉 =
√
κc31|R̃1〉. (3.31)

We can rewrite the first condition as

W1|R̃1〉 =
3
√
κc1
2

(
L0+c20 − 3β2

2 +
3

4
Q2

)
|R̃1〉. (3.32)

Since c20 − 3β2
2 + 3

4Q
2 = 3

2(Q
2 − Q(m2 +m3) + 2m2m3) from (3.5) – (3.7), the conditions

(3.30), (3.31) and (3.32) are also exactly the same as those for the generalized Whittaker

state introduced in [32] with iΛ =
√
3c1:

W1|R̃1〉 =
√
3κiΛ

2

(
L0 +

3

2

(
2m2m3 −Q(m2 +m3) +Q2

))
|R̃1〉,

W2|R̃1〉 =
√
3κ(iΛ)2

2
(Q−m2 −m3)|R̃1〉,

W3|R̃1〉 =
√
3κ(iΛ)3

9
|R̃1〉. (3.33)

It is easy to check that the five conditions (3.21), (3.22), (3.30), (3.31) and (3.32)

for |R̃1〉 are consistent with the W3 algebra3. Note that the W3 algebra is generated by

L1,2 and W1 by multiple commutators. Due to the presence of L0 term in (3.32) the

commutation relation [Ln−1,W1] = (2n − 3)Wn implies the non-vanishing eigenvalues of

W2,W3. Furthermore, one should have

[W3,W1] =
18

4− 15Q2
(L2)

2 =
18

4− 15Q2
c41,

[W2,W1] =
18

4− 15Q2
L1L2 =

36

4− 15Q2
c0c

3
1. (3.34)

These are consistent with [
W2,3,W1 −

3
√
κc1
2

L0

]
= 0. (3.35)

3See Appendix A for our conventions of W3 algebra.
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3.2 Collision of three punctures: n = 2

We next compute the collision limit of two simple-type punctures and a single full-type

one. In view of the result in the Virasoro case [12] we expect that the irregular state from

the collision of more than two punctures gives rise to an isolated SCFT. In order to work

out the correspondence with the isolated SCFT coming from the linear quiver theory to

be discussed in section 5, we will derive the defining condition for the W3 irregular state.

In the language of the two-dimensional Toda CFT, these three punctures are described by

the state

|R2〉 := V~α1
(z1)V~α2

(z2)|V~α3
(0)〉, ~α1,2 =

(
α1,2,−

Q

2

)
, (3.36)

where V~α1,2
are semi-degenerate fields associated with the simple punctures. The collision

limit of our interest is described by the following scaling limit:

αi → ∞ for i = 1, 2, 3, zi → 0 for i = 1, 2, 3,

with fixing α = α1 + α2 + α3, c1 = α1z1 + α2z2, c2 = α3z1z2 finite. (3.37)

Let us study the action of the W-current on the resulting irregular state by computing

the scaling limit of the corresponding state:

W+(y)|R2〉 =
[ w1

(y − z1)3
+

w2

(y − z2)3
+

w3

y3

+
W

(1)
−1

(y − z1)2
+

W
(2)
−1

(y − z2)2
+

W
(3)
−1

y2
+

W
(1)
−2

y − z1
+

W
(2)
−2

y − z2
+

W
(3)
−2

y

]
|R2〉.

(3.38)

Note that the computation of the action of the energy-momentum tensor T+(y) is com-

pletely parallel to that of Liouville theory that was reviewed in section 2.2. As we did in

the case of n = 1, we can rewrite the second line of the right hand side as

Second Line =
(2yz1 − z21)W

(1)
−1

y2(y − z1)2
+

(2yz2 − z22)W
(2)
−1

y2(y − z2)2
+

W−1

y2
+

W−2

y

+
z21W

(1)
−2

y2(y − z1)
+

z22W
(2)
−2

y2(y − z2)
=: S(y). (3.39)

In order to eliminate W
(i)
−2, which does not act as an differential operator, we use

W0|R2〉 =
(
w1 + w2 + w3 + 2z1W

(1)
−1 + 2z2W

(2)
−1 + z21W

(1)
−2 + z22W

(2)
−2

)
|R2〉,

W1|R2〉 =
(
3z1w1 + 3z2w2 + 3z21W

(1)
−1 + 3z22W

(2)
−1 + z31W

(1)
−2 + z32W

(2)
−2

)
|R2〉. (3.40)
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Then we can rewrite the the above equation S(y) as

S(y) =
W−2

y
+

W−1

y2
+

(y − z1 − z2)W0

y2(y − z1)(y − z2)
+

W1

y2(y − z1)(y − z2)

+
(−y − 2z1 + z2)w1 + (−y + z1 − 2z2)w2 + (−y + z1 + z2)w3

y2(y − z1)(y − z2)

+
z21(z1 − z2)W

(1)
−1

y2(y − z1)2(y − z2)
+

z22(z2 − z1)W
(2)
−1

y2(y − z1)(y − z2)2
. (3.41)

To get rid of the classical contribution to take the scaling limit, we introduce |R̃2〉 as

|R2〉 = z2α1α3
1 z2α2α3

2 (z1 − z2)
2α1α2 |R̃2〉. (3.42)

This is the same as the Virasoro case [12]. We should mention that there exists an ambiguity

in the choice of this prefactor. This choice will affect the overall factor C of the normalized

state and the resulting irregular state as follows:

|R̃2〉 = C(ci) |∆〉+ · · · . (3.43)

The correct choice of the normalization must be fixed, for example, so that the scalar

products of the irregular states can reproduce the Nekrasov partition functions of the

corresponding isolated SCFT’s. However, it is not clear that what is a correct definition

of the Nekrasov partition function of such SCFT in general. Hence, in the following we

assume that the choice in [12] works also for W3 case.

Let us move on to the computation of the limit value of the normalized state with the

W-action W+|R̃2〉. By using the explicit action of generators W
(1,2)
−1 , which is a differential

operator on |R2〉, we obtain the following expression for the last line of (3.41)(
z21(z1 − z2)W

(1)
−1

y2(y − z1)2(y − z2)
+

z22(z2 − z1)W
(2)
−1

y2(y − z1)(y − z2)2

)
|R2〉

= z2α1α3
1 z2α2α3

2 (z1 − z2)
2α1α2

( 3z1α1(z1 − z2)z1∂z1
2y2(y − z1)2(y − z2)

+
3z2α2(z2 − z1)z2∂z2
2y2(y − z1)(y − z2)2

+
3α2

1α3z1(z1 − z2) + 3α2
1α2z

2
1

y2(y − z1)2(y − z2)
+

3α2
2α3z2(z2 − z1) + 3α2

2α1z
2
2

y2(y − z1)(y − z2)2

)
|R̃2〉. (3.44)

In the scaling limit these terms become

3z1α1(z1 − z2)z1∂z1
2y2(y − z1)2(y − z2)

+
3z2α2(z2 − z1)z2∂z2
2y2(y − z1)(y − z2)2

→ 3c1c2∂c1 + 3c22∂c2
y5

+
3c22∂c1
2y6

, (3.45)

and we can also easily evaluate the limit values of the remaining terms in (3.41) only with

a little algebra.

To derive the limit value of the first line of (3.38), let us introduce Wsing(y) for the

case n = 2 as follows:

∂φ1(y) =
α1

y − z1
+

α2

y − z2
+

α3

y
, ∂φ2(y) =

β1
y − z1

+
β2

y − z2
+

β3
y
. (3.46)
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The definition of Wsing in terms of ∂φi is precisely the same as the case of n = 1. Notice

that since the primary fields V1,2 are now semi-degenerate, we set β := β1 = β2 = −Q
2 .

With some algebra we can show

Wsing(y) =
w1

(y − z1)3
+

w2

(y − z2)3
+

w3

y3
+

(∑3
i=0 y

3−i
(
A(i)(α) +B(i)(α, β)

))
y2(y − z1)2(y − z2)2

, (3.47)

Using this equation, we can recast the first line of (3.38) in the function of Wsing, A
(i) and

B(i). The coefficient polynomials A(i) and B(i) are given by

A(0) +B(0) =
√
κα3 − w1 − w2 − w3 − 3

√
κα(β3 + 2β)2,

A(1) = 3
√
κ
(
z1
(
−α1α

2
2 − α1α

2
3 − 2α2α

2
3 − 2α2

2α3 − 2α1α2α3

)
+ z2

(
−α2α

2
1 − α2α

2
3 − 2α1α

2
3 − 2α2

1α3 − 2α1α2α3

) )
,

B(1) =
√
κz1

(
3α1β

2 − 6α2β
2 − 6α3β

2
3 + 6α(β3 + β)(β3 + 2β)− 3z1(β3 + 2β2)

2
)
+
(
1 ↔ 2

)
,

A(2) = 3
√
κ
(
z21α2α3(α2 + α3) + z32α1α3(α1 + α3) + 2z1z2α3 (α1α2 + α1α3 + α2α3)

)
,

B(2) =
√
κ
(
z21
(
−6α1β

2 + 3α2β
2 + 3α3β

2
3 − 6αββ3 + 3α1(3β

2 + 2ββ3 + β2
3)
)
+
(
1 ↔ 2

)
,

+ z1z2
(
9α3β

2
3 − α3(3β

2
3 + 18ββ3 + 6β2)− 6αβ3(β3 + β)

) )
,

A(3) = −3
√
κz1z2α

2
3 (α1z2 + α2z1) ,

B(3) =
√
κ
(
z21z2

(
6α1β

2 − 3α2β
2 − 3α3β

2
3 + 3α1(3β

2 − β2
3) + 3α(β2

3 − β2) + 3α3(2ββ3 − β2)
)

+
(
1 ↔ 2

)
+ 3z1z2(z1α1 + z2α2)

(
3β2 − β2

3

) )
. (3.48)

It is not so hard to take the scaling limit of these polynomials. So the remaining task is

the evaluation of the limit of the term Wsing(y). The limit of ∂φi are easily evaluated as

∂φ1(y) =
c0
y

+
c1
y2

+
c2
y3

, ∂φ2(y) =
β3 + 2β

y
, (3.49)

and by substituting them into the definition equation of Wsing(y), we can show that Wsing

takes the following form in the collision limit:

Wsing(y) =

√
κc32
y9

+
3
√
κc1c

2
2

y8
+

3
√
κc2(c2c0 + c21)

y7
+

√
κ(6c0c1c2 + c31)

y6

+
3
√
κ
(
c2c

2
0 + c21c0 − c2(β3 + 2β)2

)
y5

+
3
√
κc1

(
v2 − (β3 + 2β)2

)
y4

+

√
κc0(c

2
0 − 3(β3 + 2β)2)

y3
.

(3.50)

Now that we have the limit value of all terms of the right hand side of (3.38), we

can rewrite down the explicit form of W+|R̃2〉 in the collision limit. We introduce |I2〉 :=
limcollision |R̃2〉 to distinguish between before and after the limit. By substituting the above
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results into (3.38), we obtain the generating function of the irregular state condition for

|I2〉:

W+(y) |I2〉 =
(W−2

y
+

W−1

y2
+

W0

y3
+

W1

y4

+
√
κ
3c20c2 + 3c0c

2
1 − 3(β2

3 + 5β2)c2 + 3c1c2∂c1 + 3c22∂c2
y5

+
√
κ
6c0c1c2 + c31 + 3c22∂c1/2

y6
+

√
κ
3c0c

2
2 + 3c21c2
y7

+
√
κ
3c1c

2
2

y8
+

√
κ
c32
y9

)
|I2〉.

(3.51)

This equation imposes the non-zero irregular state conditions on |I2〉 for the generators

Wn=2,3,...,6

W2|I2〉 =
√
κ
(
3c20c2 + 3c0c

2
1 − 3(β2

3 + 5β2)c2 + 3c1c2∂c1 + 3c22∂c2
)
|I2〉,

W3|I2〉 =
√
κ
(
6c0c1c2 + c31 + 3c22∂c1/2

)
|I2〉,

W4|I2〉 =
√
κ
(
3c0c

2
2 + 3c21c2

)
|I2〉,

W5|I2〉 =
√
κ 3c1c

2
2|I2〉,

W6|I2〉 =
√
κ c32|I2〉. (3.52)

Note that |I2〉 is annihilated by the higher modes Wn>6. The conditions for the Virasoro

generators Ln are completely the same as those of the Liouville theory. Once one fixes

the ansatz for the irregular state |I2〉 = C(ci)|∆〉 + · · · , we can use these irregular state

conditions to determine the irregular state explicitly.

3.3 Collision of general n+ 1 punctures

The computation in the previous subsections is generalized to the case of n+1 punctures.

We consider here the collision limit of n simple-type punctures and a full-type one. In A2

Toda CFT, the state with these punctures is defined as

|Rn〉 := V~α1
(z1) · · ·V~αn(zn)|V~αn+1

(0)〉, (3.53)

where V~α1
, . . . , V~αn correspond to simple punctures and V~αn+1

corresponds to a full punc-

ture. This means that the momenta of these vertex operators satisfy ~αi = (αi,−Q/2) for

i = 1, . . . , n and ~αn+1 = (αn+1, βn+1). The collision limit of our interest is the following

scaling limit:

αi → ∞ , zi → 0 , (3.54)

with their combinations given in (2.17) kept finite:

cp = (−1)p
n+1∑
i=1

(
αi

∑
1≤j1<···<jp≤n

j1,..., jp 6=i

zj1 · · · zjp

)
. (3.55)
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The action of the “positive” W-current (3.13) on the state (3.53) is

W+(y)|Rn〉 =
n+1∑
j=1

(
wj

(y − zj)3
+

W
(j)
−1

(y − zj)2
+

W
(j)
−2

y − zj

)
|Rn〉, (3.56)

where we set zn+1 = 0. Note that V~αi
(i = 1, . . . , n) satisfies the degenerate condition

W
(i)
−1|Rn〉 =

3wi

2∆i
L
(i)
−1|Rn〉, (3.57)

where the conformal weights are

∆i = α2
i −

3

4
Q2 , wi =

√
καi

(
α2
i −

3

4
Q2

)
(for i = 1, . . . , n),

∆n+1 = α2
n+1 + β2

n+1 −Q2 , wn+1 =
√
καn+1

(
α2
n+1 − 3β2

n+1

)
. (3.58)

Then the coefficients w1, . . . , wn+1 and the eigenvalues of W
(1)
−1 , . . . ,W

(n)
−1 are the functions

of these conformal weights. The remaining eigenvalues ofW
(n+1)
−1 andW

(j)
−2 (j = 1, . . . , n+1)

can be written in terms of those of Wp (p ≥ −2). By comparing (3.13) and (3.56) in the

collision limit, or y � zi, we can read off the eigenvalues of Wp as

Wp|Rn〉 =
(
1

2
(p+ 1)(p+ 2)zpjwj + (p+ 2)zp+1

j W
(j)
−1 + zp+2

j W
(j)
−2

)
|Rn〉 , (3.59)

then the remaining eigenvalues can be written in terms of those of Wp (p = −2, . . . , n− 1):

W
(i)
−2|Rn〉 =

n−1∑
p=0

Mi,pWp|Rn〉 (for i = 1, . . . , n),

W
(n+1)
−2 |Rn〉 = W−2|Rn〉+

n−1∑
p=0

Mn+1,pWp|Rn〉,

W
(n+1)
−1 |Rn〉 = W−1|Rn〉+

n−1∑
p=0

Mn+2,pWp|Rn〉, (3.60)

where

Wp := Wp −
n∑

i=1

(p+ 2)zp+1
i W

(i)
−1 −

n+1∑
j=1

1

2
(p+ 1)(p+ 2)zpjwj ,

Mi,p =
(−1)p

z2i
∏

j 6=i(zj − zi)

∑
1≤j1<···<jn−p−1≤n

j1,..., jn−p−1 6=i

zj1 · · · zjn−p−1 (for i = 1, . . . , n) ,

Mn+1,p =
(−1)p+1∏n

i=1 z
2
i

∑
1≤j1<···<jk≤n
r1,..., rk=1,2

zr1j1 · · · z
rk
jk

(where r1 + · · ·+ rk = n− p− 1) ,

Mn+2,p =
(−1)p+1∏n

i=1 zi

∑
1≤j1<···<jn−p−1≤n

zj1 · · · zjn−p−1 . (3.61)
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Now we take the limit (3.54). In order to make the discussion clearer, we divide the

action of W-current (3.56) into three parts by using the relations in (3.60):

W+|Rn〉 =

 n−1∑
p=−2

ζp
yp+3

Wp +
n∑

i=1

ξi
y2

W
(i)
−1 +

n+1∑
j=1

χj

y3
wj

 |Rn〉

=:
(
W

(A)
+ +W

(B)
+ +W

(C)
+

)
|Rn〉 , (3.62)

where ζp, ξi and χj are the functions of y and zi.

First we read off the coefficients of Wp terms (p = −2, . . . , n− 1) as

W
(A)
+ |Rn〉 =

W−2

y
+

W−1

y2
+

n−1∑
p=0

ζp
yp+3

Wp

 |Rn〉 , (3.63)

where

ζp =
1∏n

i=1(y − zi)

n−p−1∑
q=0

∑
1≤j1<···<jq≤n

(−1)qzj1 · · · zjq · yn−q . (3.64)

Then in the limit (3.54), this becomes

W
(A)
+ |Rn〉 →

n−1∑
p=−2

Wp

yp+3
|Rn〉 . (3.65)

Next we can similarly read off the coefficients of W
(i)
−1 terms (i = 1, . . . , n) as

W
(B)
+ |Rn〉 =

n∑
i=1

z2i
∏

j 6=i(zi − zj)

y2(y − zi)
∏n

k=1(y − zk)
W

(i)
−1|Rn〉 , (3.66)

where j = 1, . . . , n. By using the degenerate condition (3.57) for W
(i)
−1, we find

W
(i)
−1|Rn〉 =

3

2

√
καi

∂

∂zi
|Rn〉 . (3.67)

Let us here redefine the state

|Rn〉 =:
∏

1≤i<j≤n+1

(zi − zj)
2αiαj |R̃n〉 , (3.68)

just as in (3.42) for n = 2. As we commented there, there is a subtlety in the choice

of overall factor. We will argue this issue in section 6, and here we assume that this

normalization properly works. After this redefinition, we divide (3.66) into two parts as

W
(B)
+ |R̃n〉 =

3

2

√
κ

n∑
i=1

z2i
∏

l 6=i(zi − zl) · αi

y2(y − zi)
∏n

k=1(y − zk)

(
∂

∂zi
+

∑
1≤j≤n+1

j 6=i

2αiαj

zi − zj

)
|R̃n〉

=:
(
W

(B1)
+ +W

(B2)
+

)
|R̃n〉 . (3.69)
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Finally, the coefficients of wi terms (i = 1, . . . , n+ 1) can be read off as

W
(C)
+ |R̃n〉 =

1

y2
∏n

k=1(y − zk)

n∑
i=1

zi
∏

l 6=i(zi − zl)

y − zi

( ∑
1≤j≤n
j 6=i

zi
zi − zj

+ 2 +
zi

y − zi

)
wi|R̃n〉

+

∏n
l=1(−zl)

y3
∏n

k=1(y − zk)
wn+1|R̃n〉 (3.70)

where wi and wn+1 are given in (3.58).

In order to take the limit (3.54) of these terms, we should note that

zi
∏

1≤j≤n
j 6=i

(zi − zj) · αi =

n∑
p=0

cpz
n−p
i , zi

∂

∂zi
= zi

n∑
p=0

∂cp
∂zi

∂

∂cp
=

n∑
p=1

c(i)p

∂

∂cp
, (3.71)

for i = 1, . . . , n, where

c(i)p := (−1)p
∑

1≤j≤n+1
j 6=i

(
αj

∑
1≤j1<···<jp−1≤n
j1,..., jp−1 6=i,j

zizj1 · · · zjp−1

)
. (3.72)

Therefore, in the limit (3.54), the terms including the differentials in (3.69) become

W
(B1)
+ |R̃n〉 =

3

2

√
κ

y2
∏n

k=1(y − zk)

n∑
p=1

n∑
q=0

n∑
i=1

c
(i)
p zn−q

i

y − zi
cq

∂

∂cp

→ 3

2

√
κ

yn+3

n∑
p=1

n∑
q=0

q−p∑
r=0

p cn+p−q+r

yr
cq

∂

∂cp
|R̃n〉 , (3.73)

and the remaining terms become

(
W

(B2)
+ +W

(C)
+

)
|R̃n〉 →

√
κ

yn+3

( ∑
0≤p,q,r≤n
p+q+r≥n

cpcqcr
yp+q+r−n

− 3cn(β
2
n+1 +

1
8n(n+ 3)Q2)

)
|R̃n〉 .

(3.74)

To summarize, by putting the results (3.65), (3.73) and (3.74) together, we obtain the

final form:

W+|R̃n〉 =

 n−1∑
p=−2

Wp

yp+3
+

3n∑
q=n

√
κCq

yq+3

 |R̃n〉 , (3.75)

where

Cq =
∑

0≤r≤s≤t≤n
r+s+t=q

3! crcsct
(1 + δr,s + δs,t)!

+
∑

0≤r≤s≤n
t=r+s−q≥1
(q≤2n−1)

3t crcs
1 + δr,s

∂

∂ct
− δq,n · 3cn(β2

n+1 +
1
8n(n+ 3)Q2) .

(3.76)
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Therefore, we can clearly see that the irregular state |R̃n〉 is a simultaneous eigenstate of

W2n, . . . ,W3n, the actions of Wn, . . . ,W2n−1 on it are given by the first order differential

operators, and it is annihilated by the higher modes Wk>3n. However, the actions of

W0,W1, . . . ,Wn−1 on the state cannot be found out in our discussion. Presumably this is

because in this article we mainly use the information of W3 Ward identities and do not

look at the internal momentum dependence carefully. We may miss necessary information

to determine the resulting irregular state. To make the derivation of the irregular state

complete, we have to deal with the collision limit more precisely by taking the internal

channel into account.

4. Isolated SCFT with SU(2) flavor symmetry

The CFT computations in the previous sections were performed only locally. Namely we

considered the collision of the punctures on the open disk around the origin. In order

to look at the corresponding N = 2 theories on the gauge theory side, we should add a

point at infinity to obtain the Riemann sphere, on which the compactification of the six-

dimensional N = (2, 0) theory is made. The compactification on C0,n+2 with a particular

marking gives a (UV superconformal) linear quiver gauge theory with n − 1 gauge group

factors. Thus the colliding limit of several (regular) punctures on the CFT side corresponds

to an appropriate scaling limit of linear quiver gauge theories.

At a particular locus on the Coulomb branch of N = 2 gauge theory where mutually

non-local particles become massless, it is known that the theory is an interacting SCFT [3].

This kind of special points has been found in various papers [4, 5, 40, 41, 42, 43]. Also the

possible classification was discussed in [44, 45, 46, 47]. We then expect that the colliding

limit considered on the CFT side is the same as the limit which leads the quiver gauge

theory into the nontrivial fixed point. In this section, we illustrate this idea by showing how

SU(2) linear quiver gauge theory gives the isolated SCFT with an SU(2) flavor symmetry,

whose irregular states have been introduced in [11]. In the next section, we will apply a

similar procedure to SU(3) linear quiver gauge theory to obtain isolated SCFT’s with an

SU(3) flavor symmetry.

We focus on the colliding limit of n+ 1 regular punctures at the origin while fixing a

regular puncture at infinity. In the gauge theory view point, this corresponds to the scaling

limit to the Argyres-Douglas (AD) fixed points of the linear quiver gauge theory:

2− SU(2)− SU(2)− · · · − SU(2)︸ ︷︷ ︸
n−1

− 2, (4.1)

where each SU(2) represents an SU(2) vector multiplet and the number attached to the

left or right of the quiver is the number of the fundamentals. In section 4.1, we will show
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that the maximal conformal point of this quiver is indeed the W(A1, C0,1,{n+1}) theory.

Note that this theory can be also obtained as the maximal conformal point of SO(4n)

SYM theory (thus it is called as D2n theory) or of SU(2n − 1) gauge theory with two

flavors [11, 48]. The Seiberg-Witten curve of (the relevant deformation of) this SCFT is

given by

x2 =
1

w2n+2
+

cn
w2n+1

+ · · ·+ c1
wn+3

+
c0

wn+2
+

v1
wn+1

+ · · ·+ vn
w3

+
m2

−
w2

. (4.2)

The parameters vi and ci (i = 1, . . . , n−1) are, respectively, the VEV’s of the relevant defor-

mation operators Vi and their corresponding couplings, which are added to the Lagrangian

by δL =
∑

i

∫
d2θ1d

2θ2ciVi. On the other hand, c0 is the mass parameter associated with

the U(1) global symmetry. The deformation parameters appearing in the Seiberg-Witten

curve are always classified in these three types.

We also note that it is also possible to get the W(A1, C0,1,{n+1}) theory starting from

a different linear quiver:

1− SU(2)− SU(2)− · · · − SU(2)︸ ︷︷ ︸
n−1

− 2. (4.3)

In other words, the maximal conformal points of the quivers (4.1) and (4.3) are equivalent.

In the case with n = 2, this was found in [4].

There is another class of isolated SCFT’s W(A1, C0,1,{n+ 1
2
}). One can show that this

can be obtained as a sub maximal conformal point of the linear quiver (4.1). However in

section 4.2, we will look at a different quiver

SU(2)− SU(2)− · · · − SU(2)︸ ︷︷ ︸
n−1

− 2. (4.4)

and show that W(A1, C0,1,{n+ 1
2
}) is the maximal conformal point of it. While this class of

SCFT’s may not be related with the irregular states constructed by the collision limit in

section 2, we will study this for completeness. Notice however that an explicit expression

of the state has been obtained in [11].

Let us first write down the Seiberg-Witten curve of the linear quiver (4.1). We denote

the mass parameters of the hypermultiplets on the left of SU(2)1 and on the right of

SU(2)n−1 as m3,4 and m1,2 respectively. We will define m± = (m1 ± m2)/2 and m̃± =

(m3 ± m4)/2. We also denote the mass parameters of the bifundamentals as m̂i (i =

1, . . . , n−2) where the first bifundamental with mass m̂1 is coupled to SU(2)1 and SU(2)2,

and so on.

Since each SU(2)i (i = 1, . . . , n − 1) gauge group is UV superconformal, there are

n − 1 gauge coupling constants qi. Finally we denote the Coulomb moduli parameters as

ui (i = 1, . . . , n− 1).
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The M-theory curve can be written as [1, 49]

(v +m1)(v +m2)t
n+1 +

n−1∑
i=1

Ci(v
2 +Miv − ui)t

i + C(v −m3 − m̂)(v −m4 − m̂) = 0,(4.5)

where Ci and C are constants which depend on the coupling constants qi, and m̂ :=∑n−2
i=1 m̂i is the sum of all the bifundamental mass parameters. From the type IIA brane

configuration, it is reasonable to have the overall shifts by m̂ in the last term. Mi are

unknown constants which will be fixed later. We can rewrite the curve as

n∏
i=1

(t− ti) · v2 +X(t)v + Y (t) = 0, (4.6)

where we have defined ti such that

n∏
i=1

(t− ti) = tn +
n−1∑
j=1

Cjt
j + C (4.7)

and

X(t) = 2m+t
n +

n−1∑
i=1

CiMit
i − 2C(m̃+ + m̂),

Y (t) = (m2
+ −m2

−)t
n −

n−1∑
i=1

Ciuit
i + C(m3 + m̂)(m4 + m̂). (4.8)

Note that C =
∏n

i=1(−ti). By shifting v to absorb the linear term and defining v = xt, we

get

x2 =

(
X(t)

2t
∏n

i=1(t− ti)

)2

− Y (t)

t2
∏n

i=1(t− ti)
. (4.9)

The Seiberg-Witten differential in this coordinate is λSW = xdt. It is possible to choose

Mi in X such that the terms in the parenthesis become

m+

t− t1
+

n−1∑
i=2

tim̂i−1

t(t− ti)
+

tnm̃+

t(t− tn)
. (4.10)

Then, after some algebra, we obtain

x2 =

(
m+

t− t1
+

n−1∑
i=2

m̂i−1

t− ti
+

m̃+

t− tn
+

m̃−
t

)2

−
{(m+ + m̃+ + m̃− + m̂)2 −m2

−}tn−1 +
∑n

i=1Ciũit
i−1

t
∏n

i=1(t− ti)
, (4.11)

where ũi = ui+ · · · . It is easy to see that the differential λSW = xdt has poles at t = 0, tn,

ti, t1 and ∞ whose residues are m̃−, m̃+, m̂i−1, m+ and m−. This curve is a double cover

of the sphere with n+ 2 regular punctures. We are free to fix one of ti, so we fix t1 = 1.
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4.1 W(A1, C0,1,{n+1}) theory

We now consider the maximal degeneration limit of the Seiberg-Witten curve (4.11), which

corresponds to the maximal conformal fixed point. First of all, let us observe that the curve

(4.11) can be rewritten as

x2 =
f2n(t)

t2
∏n

i=1(t− ti)2
, (4.12)

where f2n(t) = m2
−t

2n + · · ·+C2m̃2
−. This implies that the branch points of the curve are

at the roots of the 2n-th polynomial f2n. The genus is n− 1 agreeing with the number of

the Coulomb moduli.

Since we have 2n parameters, m̃−, m̃+, m̂i, m+ and ui, the branch cuts can be tuned

to be scaled as (Cm̃−)
1/n as Cm̃− → ∞. As we will soon see below, this corresponds to

the maximal degeneration point of the curve. In order to focus on this point, we set the

coordinate t as t = (Cm̃−)
aw (a > 0). By this, we still have a curve of the same genus

n− 1. By substituting this into (4.12), we get

x2 =

(
m2

−
w2

+ · · ·+ (Cm̃−)
2

4(Cm̃−)2naw2n+2

) n−1∏
i=1

(
1− ti

(Cm̃−)aw

)−2

. (4.13)

Note that we have multiplied the r.h.s. by (Cm̃−)
2a since we are considering the quadratic

differential x2(dt)2. Note also that the 1/w2n+2 term is the highest one such that the curve

is of genus n− 1. This determines a = 1/n.

n = 2 case

In order to illustrate how we can take this limit more precisely, let us first consider n = 2

case. The original gauge theory is simply SU(2) with four flavors where m1, m2, m3 and

m4 are the mass parameters of hypers, u is the Coulomb moduli. In this case the curve is

x2 =

(
m+

t− 1
+

m̃+

t− q
+

m̃−
t

)2

−
{(m̃− + m̃+ +m+)

2 −m2
−}t+ ũ

t(t− 1)(t− q)
. (4.14)

The Seiberg-Witten differential has three poles at t = 0, q, 1 and ∞ with residues m̃−,

m̃+, m+ and m− respectively. Note that C = q in this case.

It is useful to rewrite the terms in the r.h.s. of the parenthesis in (4.14) as

g2(t)

t(t− 1)(t− q)
, (4.15)

where g2 is

g2(t) = (m̃− + m̃+ +m+)t
2 − ((1 + q)m̃− + m̃+ + qm+)t+ qm̃−. (4.16)

We now consider the limit where the punctures at t = q and t = 1 collide to the one at

t = 0 while the puncture at t = ∞ is fixed. This means that we fix the mass parameter m−.
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Then we want to find the limit by scaling m̃−, m̃+, m+ and ũ such that the Seiberg-Witten

curve maximally degenerates. At the same time, we have to scale the local coordinate of

the sphere t as t = (qm̃−)
1/2w, as we noticed above. Let us first consider the first term in

the r.h.s. of (4.14). This can be written as(
g2(t)

(qm̃−)w3

)2(
1− 1

(qm̃−)1/2w

)−2(
1− q

(qm̃−)1/2w

)−2

, (4.17)

Again notice that we have multiplied the r.h.s. by the overall factor qm−. Thus, we demand

that these are finite in the limit Cm̃− → ∞. This fixes that

m̃− + m̃+ +m+ =: c0, − (1 + q)m̃− + m̃+ + qm+

(qm̃−)1/2
=: c1, (4.18)

which completely determine the scaling of m+ and m̃+. Thus we get(
c0
w

+
c1
w2

+
1

w3

)2

. (4.19)

Notice that it is impossible to have higher order terms in w with keeping all the terms finite.

(If possible, the genus of the curve could be greater than that of the original quiver.)

Then, we consider the last term in the r.h.s. of (4.14). The first term stays finite

combining with (m̃−+m̃++m+)2

w2 coming from (4.19), and the second term is expanded as

− ũ
(qm̃−)1/2w3 + · · · . It is impossible to have the higher order finite terms and therefore the

scaling of ũ is

ũ = −(qm̃−)
1/2v. (4.20)

These fix the scaling of all the parameters and finally we get

x2 =

(
1

w3
+

c1
w2

+
c0
w

)2

−
c20 −m2

−
w2

+
v

w3

=
1

w6
+

2c1
w5

+
2c0 + c21

w4
+

v + 2c1c0
w3

+
m2

−
w2

, (4.21)

which is the Seiberg-Witten curve of the W(A1, C0,1,{3}) theory.

Note that we treated the first and second terms in (4.14) separately, when we considered

the limit. Indeed, this is the only way to produce the most singular pole at t = 0. On

the CFT side, we may focus only on the limit of the external momenta and the complex

structures which is the same as the one (4.18) where the first term in (4.14) is finite. The

CFT side is implicit for the variable corresponding to the Coulomb moduli.

Generic n

We now consider the limit where n regular punctures collide to the one at t = 0. We fix

the puncture at t = ∞ with residue m− unchanged. As in the n = 2 case, let us focus on
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the terms in the parenthesis in the r.h.s. of (4.11) which can be written as

gn(t)

t
∏n

i=1(t− ti)
, (4.22)

where gn is an n-th polynomial:

gn = c0t
n +

n−1∑
i=1

ĉit
n−i + Cm̃−. (4.23)

We have defined

c0 = m̃+ + m̃+ m̂, (4.24)

ĉ1 = −t1(m̃− + m̃+ + m̂)−
n−1∑
i=2

ti(m̃+ + m̃− +m+ + m̂− m̂i−1)− tn(m̃− +m+ + m̂),

and so on. Note that f2n = g2n + · · · . By scaling the coordinate t = (Cm̃−)
1/nw, the first

term in the r.h.s. of (4.11) is(
c0
w

+

n−1∑
i=1

ĉi

(Cm̃−)i/nwi+1
+

1

wn+1

)2

. (4.25)

Thus, we keep

c0 and
ĉi

(Cm̃−)i/n
=: ci (4.26)

finite, where i = 1, . . . , n− 1. Finally, by appropriately scaling ũi (i = 1, . . . , n− 1), we get

from the last term in (4.11)

vn
w3

+ · · ·+ v1
wn+1

. (4.27)

By combining these altogether, we obtain

x2 =

(
1

wn+1
+

n−1∑
i=1

ci
wi+1

+
c0
w

)2

−
c0 −m2

−
w2

+
n−1∑
j=1

vn−j

wj+2
, (4.28)

which is the Seiberg-Witten curve of the W(A1, C0,1,{n+1}) theory, a double cover of a

sphere with one irregular puncture at t = 0 of degree n + 1 and one regular puncture at

t = ∞. The residues of them are c0 and m− respectively.

4.2 W(A1, C0,1,{n+ 1
2
}) theory

As we commented, it is possible to obtain the W(A1, C0,1,{n+ 1
2
}) theory as a sub maximal

conformal point of the same quiver (4.1). Instead of doing so, we will proceed two steps

here: we obtain the curve of the reduced quiver (4.4) and then consider the maximal

conformal point of it.
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The first step can be done similarly to the calculation in the previous section. The

Seiberg-Witten curve of the quiver (4.4) is

x2 =

(
m+

t− t1
+

n−1∑
i=2

m̂i−1

t− ti

)2

−
(m+ + m̂)2 −m2

−
t2

+
Λ2

t3
+

∑n−1
i=1 Ciũit

i−1

t2
∏n−1

i=1 (t− ti)
. (4.29)

We will set t1 as t1 = 1 below. Note that it is possible to obtain this curve from (4.13) by

taking the limit decoupling the massive flavors: the collision of two punctures at t = 0 and

tn giving the irregular puncture at t = 0.

The curve can be rewritten as

x2 =
f2n−1(t)

t3
∏n−1

i=1 (t− ti)2
, (4.30)

where

f2n−1 = m2
−t

2n−1 + · · ·+ (CΛ)2. (4.31)

The branch points are at the roots of the (2n− 1)-th polynomial f2n−1 and at t = 0. Thus

the genus is n− 1.

In order to obtain the maximal conformal point of this quiver, we take the limit

(CΛ) → ∞, as in the previous subsection. In this limit, the branch cuts are at t = 0 and

at t = O((CΛ)
1

2n−1 ). In order to focus on the physics around the latter region, we scale

the coordinate as t = (CΛ)aw with a > 0. Note that the resulting Seiberg-Witten curve

should be of genus n. It follows that the curve is written as

x2 =

(
m2

−
w2

+

n−1∑
i=1

v̂n−i

(CΛ)iawi+2
+

n−1∑
i=1

ĉi

(CΛ)(n+i−1)awn+i+1

+
(CΛ)2

(CΛ)(2n−1)aw2n+1

)
n−1∏
i=1

(
1− ti

(CΛ)aw

)−2

, (4.32)

where v̂i and ĉi are combinations of the mass parameters and the Coulomb moduli. It

follows from the genus of the curve is n− 1 that a = 2
2n−1 . Then, it is possible to keep the

combinations

v̂n−i

(CΛ)ia
=: vn−i,

ĉi

(CΛ)(n+i−1)a
=: ci (4.33)

finite. Thus, the resulting curve is

x2 =
m2

−
w2

+

n−1∑
i=1

vn−i

wi+2
+

n−1∑
i=1

ci
wn+i+1

+
1

w2n+1
. (4.34)
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n = 2 case

For illustration of the limit we consider the case of n = 2. Namely, the SU(2) gauge theory

with two flavors scaling to the W(A1, C0,1,{ 5
2
}) theory as the maximal conformal point.

The curve in this case is

x2 =
m2

+

(t− 1)2
−

m2
+ −m2

−
t2

+
Λ2

t3
− ũ

t2(t− 1)
(4.35)

We can rewrite this as

x2 =
f3(t)

t3(t− 1)2
(4.36)

where

f3(t) = m2
−t

3 + (2m2
+ − 2m2

− − ũ+ Λ2)t2 + (−m2
+ +m2

− + ũ− 2Λ2)t+ Λ2. (4.37)

In order to get the maximal conformal point, we scale t = (−Λ)2/3 where C = −1 with

the following combinations being fixed

2m2
+ − 2m2

− − ũ+ Λ2

(−Λ)2/3
=: v,

−m2
+ +m2

− + ũ− 2Λ2

(−Λ)4/3
=: c. (4.38)

Note that this prescription of the limit is slightly different from the on in the N = 2n case

where we consider the limit of the terms separately. The solution is

m2
+ = Λ2 + (−Λ)4/3c+ (−Λ)2/3v, ũ = 3Λ2 + 2(−Λ)4/3c+ (−Λ)2/3v. (4.39)

Therefore, we get the curve

x2 =
m2

−
w2

+
v

w3
+

c

w4
+

1

w5
(4.40)

which is one of the W(A1, C0,1,{ 5
2
}) theories.

5. Isolated SCFT with SU(3) flavor symmetry

Now we consider the isolated SCFT with an SU(3) flavor symmetry by generalizing the

argument in the previous section. Recently, such kind of SCFT’s has been found by string

theory consideration [6], the BPS quiver method [50] (see also [51, 52]) and the correspon-

dence with the Hitchin system and 3d mirror symmetry [53, 54] (see also [55]). These are

generalizations of the one first found in [5, 40] as an IR fixed point of SU(3) SQCD.

TheW3 irregular states constructed in section 3 indicate that there should be a series of

SCFT’s, W(A2, C0,1,{n}) theory, associated with C0,1,{n}, where the degree of the irregular

puncture is counted with respect to the Seiberg-Witten differential. In section 5.1, we find

they arise from SU(3) linear quiver gauge theories as a nontrivial IR fixed point on the

Coulomb branch. In section 5.2, we study the SCFT’s from other quiver gauge theories,

though the relation with the two-dimensional CFT is not clear. In section 5.3, we show

that the W(A2, C0,1,{n}) theories agree with the ones studied in [50].

– 31 –



5.1 W(A2, C0,1,{n+1}) theory

Let us first consider the SU(3)n−1 gauge theory with 3 + 3 fundamental hypermultiplets

3− SU(3)− SU(3)− · · · − SU(3)︸ ︷︷ ︸
n−1

− 3. (5.1)

The following computation goes in parallel with section 4.1. The M-theory curve is

∏
a=1,2,3

(v +ma) · tn +

n−1∑
i=1

Ci(v
3 + Piv

2 +Qiv +Ri)t
i + C

∏
b=4,5,6

(v − (mb + m̂)) = 0, (5.2)

where m̂ is the sum of bifundamental mass parameters m̂j (j = 1, . . . , n − 2), and Pi, Qi

and Ri are functions of them and the Coulomb moduli. Ci and C are determined by the

positions of punctures t = ti (i = 1, . . . , n) in the same way as (4.7). Then we can rewrite

(5.2) as

n∏
i=1

(t− ti) · v3 +X(t)v2 + Y (t)v + Z(t) = 0, (5.3)

where

X(t) = 3m+t
n +

n−1∑
i=1

CiPit
i − 3C(m̃+ + m̂),

Y (t) = M2t
n +

n−1∑
i=1

CiQit
i + CM̃2,

Z(t) = m1m2m3t
n +

n−1∑
i=1

CiRit
i − C(m4 + m̂)(m5 + m̂)(m6 + m̂) . (5.4)

Here we define m+ = 1
3(m1 +m2 +m3), m̃+ = 1

3(m4 +m5 +m6), and

M2 =
∑

1≤i<j≤3

mimj , M̃2 =
∑

4≤i<j≤6

(mi + m̂)(mj + m̂) . (5.5)

By shifting v to eliminate the v2 terms and defining x := v/t, we obtain

x3 + φ(2)(t)x+ φ(3)(t) = 0. (5.6)

The quadratic and the cubic differentials, φ(2) and φ(3), are

φ(2)(t) = −3

(
X

3t
∏n

i=1(t− ti)

)2

+
Y

t2
∏n

i=1(t− ti)
, (5.7)

φ(3)(t) = 2

(
X

3t
∏n

i=1(t− ti)

)3

− XY

3t3
∏n

i=1(t− ti)2
+

Z

t3
∏n

i=1(t− ti)
. (5.8)

In the following, we set t1 = 1 and 1 > t2 > · · · > tn > 0.
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We demand that the Seiberg-Witten differential λSW = xdt has a regular pole of

simple type at t = 1 with residue (2m+,−m+,−m+). Similarly, there are poles of the

same type at t = t2, . . . , tn, and their residues must be of the same form with m+ replaced

by m̂1, . . . , m̂n−2 or m̃+, respectively. This means that X(t) satisfies

X(t)

3t
∏n

i=1(t− ti)
=

m+

t− 1
+

n−1∑
j=2

tjm̂j−1

t(t− tj)
+

tnm̃+

t(t− tn)
, (5.9)

which determines Pi as

Pi =
3

Ci
(−1)n−i

∑
1≤p1<···<pn−i≤n

tp1 · · · tpn−i

×
(
m+(1− δp1,1)−

∑n−i
a=1m̂pa−1 − m̃+δpn−i,n

)
. (5.10)

Then, after some algebra, we can write the quadratic differential (5.7) as

φ(2)(t) = −3

(
m+

t− 1
+

n−1∑
i=2

m̂i−1

t− ti
+

m̃+

t− tn
+

m̃−
t

)2

+
V2t

n−1 +
∑n−1

j=1 Cju
(2)
j tj−1

t
∏n

k=1(t− tk)
, (5.11)

where ε := m̃+ + m̃− + m̂,

V2 = M2 + 6m+ε+ 3ε2 , u
(2)
j = Qj + 2Pjε+ 3ε2 , (5.12)

and also we defined

−3m̃2
− =: −3m̃2

+ +
∑

4≤i<j≤6

mimj = M̃2 − 3(m̃+ + m̂)2, (5.13)

Note that the m̃2
− depends only on m4, m5 and m6. Similarly, the cubic differential (5.8)

can be rewritten as

φ(3)(t) = 2

(
m+

t− 1
+

n−1∑
i=2

m̂i−1

t− ti
+

m̃+

t− tn
+

m̃−
t

)3

+
V4

t2
∏n

k=1(t− tk)2
+

V3t
n +

∑n−1
j=1 Cju

(3)
j tj + CM̂3

t3
∏n

k=1(t− tk)
, (5.14)

where

V3 = m1m2m3 − 3m+ε
2 − 2ε3 , u

(3)
j = Rj − Pjε

2 − 2ε3 ,

V4 = −1

3
X(t)

V2t
n−1 +

n−1∑
j=1

Cju
(2)
j tj−1

 = −m+V2t
2n−1 + · · · ,

M̂3 = −(m4 + m̂)(m5 + m̂)(m6 + m̂) + 3(m̃+ + m̂)ε2 − 2ε3 . (5.15)

Let us check the residues of the Seiberg-Witten differential at the poles t = ∞ and 0.

In the limit of t → ∞, the leading terms in φ(2) and φ(3) are
M2−3m2

+

t2
and (m1m2m3 −
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m+M2+2m3
+)/t

3, respectively. Therefore we find that at t = ∞ there is a regular puncture

of full type whose residue is

1

3
(−2m1 +m2 +m3, m1 − 2m2 +m3, m1 +m2 − 2m3) . (5.16)

Similarly in the limit of t → 0, the leading terms in φ(2) and φ(3) are−3m̃2
−

t2
and (−m4m5m6+

m̃+
∑

4≤i<j≤6mimj − 2m̃3
+)/t

3, respectively. Thus we find that the puncture at t = 0 is

also regular full type one whose residue is

1

3
(2m4 −m5 −m6, −m4 + 2m5 −m6, −m4 −m5 + 2m6) . (5.17)

Now we consider the limit where the n punctures at t = 1, t2, . . . , tn simultaneously

collide to the puncture at t = 0, while the remaining puncture at t = ∞ is kept intact. In

order to take such a limit, let us rescale the coordinates as

t = (Cm̃−)
1/nw (5.18)

and take the limit Cm̃− → ∞ with suitable variables kept finite. We first consider

m+

t− 1
+

n−1∑
i=2

m̂i−1

t− ti
+

m̃+

t− tn
+

m̃−
t

=:
c0t

n +
∑n−1

j=1 ĉjt
n−j + Cm̃−

t
∏n

k=1(t− tk)
(5.19)

in the differentials (5.11) and (5.14). Here we define

c0 := m+ + m̃+ + m̃− + m̂

ĉj := (−1)j
∑

1≤p1<···<pj≤n

tp1 · · · tpj

×
(
m+(1− δp1,1) + (m̂−

∑j
a=1 m̂pa−1) + m̃+(1− δpj ,n) + m̃−

)
. (5.20)

Then we require that the following variables should be kept finite in the limit:

c0 , cj :=
ĉj

(Cm̃−)j/n
, (5.21)

where j = 1, . . . , n−1. Note that all of the variables available here are n mass parameters,

so we can have at most n finite parameters.

In order to find the final form of the quadratic and the cubic differentials, we must

also keep the following variables finite:

Cju
(2)
j

(Cm̃−)1−j/n
= jv

(2)
j +

j−1∑
`=1

`cn−j+`v
(2)
` ,

Cj û
(3)
j

(Cm̃−)1−j/n
= v

(3)
n−j ,

M̂3 + V2(m̃+ + m̂)

m̃−
= β2, (5.22)
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where we define û
(3)
j := u

(3)
j + εu

(2)
j − 1

3V2Pj .

Therefore we finally find in the limit the quadratic differential becomes

φ(2) = −3

(
1

wn+1
+

n−1∑
i=1

ci
wi+1

+
c0
w

)2

+

n−1∑
j=1

(n− j)v
(2)
n−j +

∑n−j−1
p=1 p cj+pv

(2)
p

wj+2
+

V2

w2
(5.23)

and the cubic differential becomes

φ(3) = 2

(
1

wn+1
+

n−1∑
i=1

ci
wi+1

+
c0
w

)3

+

2n−1∑
j=1

∑
1≤p≤n

1≤q≤n−j
0≤j−p+q≤n

q cpcj−p+qv
(2)
q

wj+3
+

β2

wn+3
+

n−1∑
`=1

v
(3)
`

w`+3
+

V3 −m+V2

w3
,

(5.24)

where V2 and V3 are defined in (5.12) and (5.15), and we set cn = 1. It is easy to see that

the Seiberg-Witten differential has a simple pole at t = ∞ of full type and a pole of degree

n+ 1 at t = 0. Thus, this theory is associated with C0,1,{n+1}.

The scaling dimensions of the parameters can be calculated by demanding that the

Seiberg-Witten differential has dimension one. Since x3 + φ2x + φ3 = 0, this completely

fixes the dimensions of the parameters in the differentials (5.21) and (5.22) as

∆(ci) = 1− i

n
, ∆(c0) = ∆(β) = 1, ∆(V2) = 2, ∆(V3) = 3.

∆(v
(2)
i ) = 1 +

i

n
, ∆(v

(3)
i ) = 3− i

n
, (5.25)

where i = 1, . . . , n− 1. We therefore see that the parameters ci and v
(2)
i are paired to give

the relevant deformations. On the other hand, v
(3)
i have dimensions greater than two, thus

they are interpreted as irrelevant operators.

By comparing the results in section 3 and this subsection, and assuming the correspon-

dence between the cubic differential of gauge theory and the W-current of Toda theory

φ(3) → 2√
κ
W+ , (5.26)

we find the correspondence of the parameters in both theories is

c0 → c0 , ci → ci , cn → 1 , v
(2)
j → 3

∂

∂cj
, β2 → −6

(
β2
n+1 +

1
8n(n+ 3)Q2

)
. (5.27)

We cannot see the counterparts of v
(3)
j in the Toda theory, since the actions ofW0, . . . ,Wn−1

on the irregular state are not found out in our discussion.

Finally we note that the same isolated SCFT W(A2, C0,1,{n+1}) can be also obtained

from a different quiver gauge theory:

2− SU(3)− SU(3)− · · · − SU(3)︸ ︷︷ ︸
n−1

−3. (5.28)
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It means that the maximal conformal point of this quiver is the same as that of (5.1).

5.2 Other quiver theories

As in section 4.2, we can consider other classes of quiver gauge theories:

1− SU(3)− SU(3)− · · · − SU(3)︸ ︷︷ ︸
n−1

− 3, (5.29)

and

SU(3)− SU(3)− · · · − SU(3)︸ ︷︷ ︸
n−1

− 3, (5.30)

to search isolated SCFT’s with an SU(3) flavor symmetry. Since the relation of these

SCFT’s with the irregular state in W3 algebra is unclear, we will not pursue general cases.

Instead, we consider only n = 2, 3 for the quiver (5.30).

Let us derive the Seiberg-Witten curve of the quiver theory (5.30). The M-theory

curve is

∏
a=1,2,3

(v +ma) · tn +

n−1∑
i=1

Ci(v
3 + Piv

2 +Qiv +Ri)t
i + (CΛ)3 = 0 , (5.31)

where Λ is the dynamical scale.4 We set
∏n−1

k=1(t − tk) = tn−1 +
∑n−1

i=1 Cit
i−1 and C =

C
1/3
1 . By a similar calculation to the previous case, we obtain the quadratic and the cubic

differentials as

φ(2)(t) = −3

(
m+

t− 1
+

n−1∑
i=2

m̂i−1

t− ti

)2

+
V2t

n−1 +
∑n−1

j=1 Cju
(2)
j tj−1

t2
∏n−1

k=1(t− tk)
, (5.32)

φ(3)(t) = 2

(
m+

t− 1
+

n−1∑
i=2

m̂i−1

t− ti

)3

+
V4

t3
∏n−1

k=1(t− tk)2
+

V3t
n +

∑n−1
j=1 Cju

(3)
j tj + (CΛ)3

t4
∏n−1

k=1(t− tk)
,

and

V2 = M2 + 6m+m̂+ 3m̂2 , u
(2)
j = Qj + 2Pjm̂+ 3m̂2 .

V3 = m1m2m3 − 3m+m̂
2 − 2m̂3 , u

(3)
j = Rj − Pjm̂

2 − 2m̂3 ,

V4 = −X(t)

3t

V2t
n−1 +

n−1∑
j=1

Cju
(2)
j tj−1

 = −m+V2t
2n−2 + · · · . (5.33)

The Seiberg-Witten differential has regular poles of simple type at t = ti (i = 1, . . . , n− 1)

and of full type at t = ∞. The pole at t = 0 is of irregular whose degree is 4
3 .

4We take m4,5,6 → ∞ and tn → 0 with tnm4m5m6 = Λ3 kept finite in the previous case (5.2).
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The maximal conformal point of this quiver can be obtained by taking the limit where

the n − 1 regular punctures collide to the irregular one at t = 0. In order to take such a

limit, we rescale the coordinate as

t = (CΛ)aw (5.34)

and then take the limit CΛ → ∞ with some variables kept finite.

n = 2 case

We now consider the maximal conformal point of the n = 2 case, namely SU(3) SQCD

with Nf = 3. We first consider the quadratic differential φ(2) whose expansion is

φ(2)(w) =
V2 − 3m2

+

w2
+

C1u
(2)
1 − 6m2

+ + V2

(CΛ)aw3
+

C1u
(2)
1 − 9m2

+ + V2

(CΛ)2aw4
+ · · · . (5.35)

Let m+ be a finite parameter here. It follows that the second term can be kept finite

by C1u
(2)
1 = (CΛ)av

(2)
1 , where v

(2)
1 is a finite parameter, and the higher order terms are

suppressed. After taking the limit, we get

φ(2)(w) =
v
(2)
1

w3
+

V2 − 3m2
+

w2
. (5.36)

We next consider the cubic differential φ(3) whose expansion is

φ(3)(w) =
V3 −m+V2 + 2m3

+

w3
+

6m3
+ + C1u

(3)
1 −m+C1u

(2)
1 − 2m+V2 + V3

(CΛ)aw4

+
12m3

+ + C1u
(3)
1 − 2m+C1u

(2)
1 − 3m+V2 + V3 + (CΛ)3

(CΛ)2aw5
+ · · · . (5.37)

Since m+ is finite and C1u
(2)
1 ∼ (CΛ)a, in order to make the 1/w4 and 1/w5 terms finite,

we need to set C1u
(3)
1 = (v

(3)
1 +m+v

(2)
1 )(CΛ)a, where v

(3)
1 is a second finite parameter, and

a = 3/2. After taking the limit, we get

φ(3)(w) =
1

w5
+

v
(3)
1

w4
+

V3 −m+V2 + 2m3
+

w3
. (5.38)

Thus we obtain the Seiberg-Witten curve of the W(A2, C0,1,{ 5
3
}) theory.

The dimensions of the parameters are

∆(m+) = 1 , ∆(V2) = 2 , ∆(V3) = 3 , ∆(v
(2)
1 ) =

1

2
, ∆(v

(3)
1 ) =

3

2
, (5.39)

which agree with the ones of the class 2 SCFT of SU(3) with Nf = 3 in [5]. Note that the

W(A1, C0,1,{2}) theory (or the D4 theory) studied in section 4.1 has similar deformation

parameters, except for m+. (As discussed in [5], this mass parameter m+ can be freely

tuned.) Thus we conclude that W(A2, C0,1,{ 5
3
}) = W(A1, C0,1,{2}).
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n = 3 case

For the calculation of maximal conformal point in the n = 3 case, it is convenient to define

the variables c0, ĉ1 as

m+

t− 1
+

m̂1

t− t2
=:

c0t+ ĉ1
(t− 1)(t− t2)

. (5.40)

The quadratic differential is expanded as

φ(2)(w) =
V2 − 3c20

w2
+

−6c0ĉ1 + C2u
(2)
2

(CΛ)aw3
+

−3ĉ21 + C1u
(2)
1 + C2u

(2)
2

(CΛ)2aw4

+
−6ĉ21 + C1u

(2)
1 + C2u

(2)
2

(CΛ)3aw5
+ · · · . (5.41)

Here we assume that V2 and c0 are finite, and drop the vanishing terms in the collision

limit. Let us impose the following conditions:

ĉ1 = c1(CΛ)a + ζ(CΛ)4a/3 ,

C2u
(2)
2 = (v(2) + 6c0c1)(CΛ)a + 6c0ζ(CΛ)4a/3 ,

C1u
(2)
1 = (c(2) + 3c21)(CΛ)2a + 6c1ζ(CΛ)7a/3 + 3ζ2(CΛ)8a/3 , (5.42)

where c1, ζ, c
(2) and v(2) are kept finite. After taking the limit we obtain

φ(2)(w) =
c(2)

w4
+

v(2)

w3
+

V2 − 3c20
w2

. (5.43)

On the other hand, the cubic differential is expanded as

φ(3)(w) =
V3 −m+V2 + 2c30

w3
+

6c20ĉ1 −m+C2u
(2)
2 + C2u

(3)
2

(CΛ)aw4

+
6c0ĉ

2
1 −m+C1u

(2)
1 − 2m+C2u

(2)
2 + C1u

(3)
1 + C2u

(3)
2

(CΛ)2aw5

+
2ĉ31 − 2m+C1u

(2)
1 − 3m+C2u

(2)
2 + C1u

(3)
1 + C2u

(3)
2 + (CΛ)3

(CΛ)3aw6

+
6ĉ31 − 3m+C1u

(2)
1 − 4m+C2u

(2)
2 + C1u

(3)
1 + C2u

(3)
2 + (CΛ)3

(CΛ)4aw7
+ · · · , (5.44)

where we assume that V3 −m+V2 remains finite. We note that m+ = (c0 + ĉ1)/(1− t2) =

ζ(CΛ)4a/3 + · · · from (5.40). In order to make the 1/w4 and 1/w5 terms finite, we need to

impose the following conditions:

C2u
(3)
2 = (v

(3)
2 − 6c20c1)(CΛ)a + · · ·+ (v(2) + 6c0c1)ζ(CΛ)7a/3 + 6c0ζ

2(CΛ)8a/3 ,

C1u
(3)
1 = (v

(3)
1 − 6c0c

2
1)(CΛ)2a + · · ·

· · ·+ (c(2) + 3c21)ζ(CΛ)10a/3 + 6c1ζ
2(CΛ)11a/3 + 3ζ3(CΛ)4a . (5.45)
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To make the 1/w6 term finite, we need to impose additional conditions

a =
3

4
, ζ = 1 , c(2) = 3c21 . (5.46)

Then the 1/w7 term also becomes finite. After taking the limit we obtain

φ(3) =
1

w7
+

c(3)

w6
+

v
(3)
1

w5
+

v
(3)
2

w4
+

V3 −m+V2 + 2c30
w3

, (5.47)

where we define c(3) = 2c31. Thus we obtain the Seiberg-Witten curve of the W(A2, C0,1,{ 7
3
})

theory.

The dimensions of the parameters are

∆(c0) = 1 , ∆(V2) = 2 , ∆(V3 −m+V2) = 3 ,

∆(c(2)) =
1

2
, ∆(v(2)) =

5

4
, ∆(c(3)) =

3

4
, ∆(v

(3)
1 ) =

3

2
, ∆(v

(3)
2 ) =

9

4
. (5.48)

Therefore, the pairs of parameters (c(2), v
(3)
1 ) and (c(3), v(2)) give the relevant deformations,

and the parameter v
(3)
2 is interpreted as the irrelevant operator. This isolated SCFT, how-

ever, seems unusual because both the relevant couplings c(2) and c(3) can be written in terms

of c1. This means that they are simultaneously turned on and cannot be independently

shifted in this case.

5.3 Comparison with BPS quiver method

In [50], isolated SCFT’s denoted by D(G,n) with a flavor symmetry G have been con-

sidered, based on type IIB compactification on local Calabi-Yau three-fold specified by

Â(s, t) × Ap. (The defining equation of this will be given shortly.) The four-dimensional

theory can be considered as N = 2 SU(p+1) gauge theory coupled to two strongly coupled

sectors labeled by s and t. By decoupling the gauge sector of this theory one ends up with

decoupled SCFT’s D(SU(p+1), s−1) and D(SU(p+1), t−1) each with a global symmetry

SU(p+ 1) which should be (a subgroup of) a flavor symmetry of the SCFT.

It is then natural to propose that the D(SU(3), n) SCFT is identical to the ones which

we found in the previous subsections. More precisely, we will show

D(SU(3), 3n− 1) = W(A2, C0,1,{n+1}) . (5.49)

To see this, let us consider the Calabi-Yau geometry of Â(s, t)×Ap which is described by

the equation

W = Λb(zs + z−t) + Pp+1(x) + y2 + w2 = 0, (5.50)

where b is the coefficient of the one-loop beta function of the gauge coupling and Pp+1 =

xp+1 + u2x
p−1 + · · · . Note that by setting z = ez

′
we recover the expression in [50]. The

decoupling of the gauge group leads to the geometry of D(SU(p+ 1), s− 1):

W̃ = zs + Pp+1(x) + y2 + w2 = 0, (5.51)
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where the moduli, u2, . . ., in P become the mass parameters.

The holomorphic three-form of the Calabi-Yau three-fold can be written as

Ω =
dz

z
∧
(
dx ∧ dy

∂W̃/∂w

)
=

dz

z
∧
(
dx ∧ dy

2w

)
. (5.52)

In order to find the Seiberg-Witten curve and the differential we need to integrate Ω over

the two-spheres, parametrized by const + xp+1 + y2 + w2 = 0; see the calculation in [56].

After integration we obtain

λSW = x
dz

z
, (5.53)

where x is determined by the curve

WSW = zs + Pp+1(x) = 0. (5.54)

First of all, let us check that this is indeed the correct one when p = 1 namely

D(SU(2), s− 1) theory. In this case, we obtain the curve

WSW = zs + x2 + u2 = 0. (5.55)

By shifting x → xz to absorb the 1/z factor in the differential, we get

zs−2 + x2 +
u2
z2

= 0. (5.56)

By z → 1/t we finally obtain

x2 +
1

ts+2
+

u2
t2

= 0. (5.57)

Supplying the less singular terms corresponding to the relevant and the mass deformations,

we can make (5.57) identical to the curve of the W(A1, C0,1,{ s
2
+1}) theory.

Then, let us consider the D(SU(3), s − 1) theory. Repeating the same argument, we

obtain the curve

x3 +
u2
t2

x+
1

ts+3
+

u3
t3

= 0, (5.58)

with the differential

λSW = xdt. (5.59)

Note that at t = ∞ the differential has a simple pole of full type, since u2 and u3 are

independent mass parameters, and that the degree of the pole at t = 0 is s
3 +1. By adding

less singular terms, the curve can be identified with that of the W(A2, C0,1,{ s
3
+1}) theory.

When s = 3n, this shows (5.49). Furthermore, the cases of s = 2 and 4 correspond to

n = 2 and 3 of the SCFT’s found in subsection 5.2, respectively. Due to the fact we

noticed at the end of subsection 5.2, however, the n = 3 SCFT is slightly different from

the D(SU(3), 3) theory: the couplings of the relevant deformations in the former theory

are not independent.
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6. Discussions

As we have seen in this paper the irregular state for isolated SCFT’s with an SU(3)

flavor symmetry is a simultaneous eigenvector of the higher positive modes Ln, . . . , L2n

and W2n, . . . ,W3n with n ≥ 2. Some of the lower positive modes act as the first order

differential operators. We should mention that these conditions cannot determine the

irregular state in the Verma module uniquely. In fact this issue already appears in the

Virasoro case. Let us illustrate it by the simplest example of the Virasoro irregular state

with n = 2, where we have

Lk|I2〉 = λk|I2〉, (2 ≤ k ≤ 4), (6.1)

L`|I2〉 = 0, (5 ≤ `). (6.2)

The action of L0 and L1 may be given by some first order differential operators, which we

will discuss later. The condition (6.2) implies that only non-vanishing inner products with

the basis of the Verma module are

〈∆, c|Lk1
1 Lk2

2 Lk3
3 Lk4

4 |I2〉 = λk2
2 λk3

3 λk4
4 〈∆, c|Lk1

1 |I2〉, (6.3)

where |∆, c〉 is the primary state with the conformal dimension ∆ and the central charge

c. Hence the irregular state |I2〉 is expanded as follows:

|I2〉 =
∞∑
k=0

ak|Ψk〉, (6.4)

where |Ψk〉 is a vector in the Verma module at level k and

ak := 〈∆, c|Lk
1|I2〉. (6.5)

As in the n = 1 case, or the cases of W(A1, C0,1,{ 3
2
}) and W(A1, C0,1,{2}), the family of

states |Ψk〉 is completely fixed, once we specify the simultaneous eigenvalues λ2, λ3 and

λ4. However, there remain an infinite number of arbitrary constants an. We can expect

that the L1 action as a differential operator provides some recursion relation on an. In

terms of the “CFT” parameters c0,1,2 associated with the collision of three primaries, the

eigenvalues are given by λ4 = c22, λ3 = 2c1c2 and λ2 = 2c0c2 + c21. Then the action of L1 is

L1|I2(ci)〉 =
(
v1 + 2c0c1 − c2

∂

∂c1

)
|I2(ci)〉, (6.6)

where in addition to c0,1,2 we have introduced the parameter v1 coming from the Coulomb

moduli on the gauge theory side. Using

v + 2c0c1 − c2
∂

∂c1
= eχ(ci)

(
−c2

∂

∂c1

)
e−χ(ci) (6.7)
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with χ(ci) :=
c0c21
2c2

+ vc1
c2

, we obtain a recursion relation

an = 〈∆, c|eχ(ci)
(
−c2

∂

∂c1

)n

e−χ(ci)|I2(ci)〉

= eχ(ci)
(
−c2

∂

∂c1

)n

e−χ(ci)a0(ci), (6.8)

where we have used the fact that the primary state |∆, c〉 is independent of ci. The factor

in front of a0 is essentially the Hermite polynomial. Hence the total ambiguity in the

solutions to the Virasoro irregular state with n = 2 is the “initial” condition a0(ci), once

we fix the Verma module (or the “final” conformal weight ∆(α)) the irregular state |I2(ci)〉
belong to. The last condition is related to the L0 action on |I2(ci)〉.

The above ambiguity of the “initial” condition is nothing but the overall coefficient

ambiguity a0 of the ansatz for the solution

|In〉 = a0(ci)
(
|∆〉+ descendants

)
. (6.9)

Since the irregular state conditions involve the derivatives with respect to ci, the coefficient

a0 of the leading term |∆〉 may affect the higher-level terms drastically when one solve the

condition recursively. Fortunately in the simplest case of above, we can derive the recursion

relation. However, in general it is not clear at all that the recursion relations coming from

the differential operator are under our control. This problem is also related to the ansatz

to define the normalized state |R̃n〉 from |Rn〉, which we have used to eliminate infinities

in taking the collision limit of punctures. In this paper we are sloppy with the internal

momentum dependence of the state |Rn〉. The more precise regular state is

|Rn;αi, βj〉 = 1∆ V∆1(z1) 1∆(β1) V∆2(z2) 1∆(β2) · · ·1∆(βn−1) V∆n(zn) |∆n+1〉, (6.10)

where βi is an internal momentum of this channel and 1∆ is the projection operator to

the Verma module with the corresponding conformal dimension. This expression also fixes

the ordering of the fusions of the vertex operators to describe the linear quiver on the dual

gauge theory side. We see the coefficient of the leading term of |R̃n〉 is

|R̃n〉 =
〈∆| V∆1(z1) 1∆(β1) V∆2(z2) 1∆(β2) · · ·1∆(βn−1) V∆n(zn) |∆n+1〉∏

i<j(zi − zj)2αiαj
|∆〉+ descendants ,

(6.11)

where this leading coefficient is the fraction between the n + 2 point Liouville conformal

block and the free field conformal block. The behavior of the fraction in the collision limit

is not obvious and one may be afraid of its vanishing as zi → 0. However, we can define

the overall normalization a0 by multiplying it by a certain function f(αi) of αi to obtain
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the non-zero limit

a0(ci, βj) = lim
collision

f(αi)
〈∆| V∆1(z1) 1∆(β1) V∆2(z2) 1∆(β2) · · ·1∆(βn−1) V∆n(zn) |∆n+1〉∏

i<j(zi − zj)2αiαj
.

(6.12)

This coefficient may provide a correct normalization (6.9) for |In〉 to reproduce the Nekrasov

partition function of the corresponding four-dimensional theory as a function of ci and βj .

However, since the fraction of the conformal blocks looks a complicated form, it is very

hard to evaluate the limit-value a0 explicitly.

In summary, it is an important problem to fix the overall normalization of the irregular

state for working out the AGT-like correspondence of isolated N = 2 SCFT. The fact that

this overall coefficient plays a key role to establish the AGT relation for Pestun’s partition

functions on S4 [57] may provide a clue for the problem. Let us demonstrate it by the

simplest case n = 1. In this case there is essentially no ambiguity of solution because we

can replace the derivative term Λ∂Λ by L0. Here we assume Q = 0 for simplicity. The

fraction of conformal blocks in this case is merely z
∆−c20
1 , and so the overall coefficient is

defined by

C = lim
collision

α
∆−c20
1 z

∆−c20
1 = c

∆−c20
1 . (6.13)

This coefficient provides the classical part Λa2 and a part of proportionality coefficient of

the AGT relation

correlation function on S4 ∝
∫

a2da(DOZZ part)|Λa2Z inst|2. (6.14)

This idea may be used to establish a possible AGT relation for isolated SCFT’s with

irregular states.
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A. Convention for A2 Toda field theory

The action of two-dimensional A2 Toda field theory is

S =

∫
d2σ

√
g

 1

8π
gxy∂x~ϕ · ∂y ~ϕ+ µ

∑
k=1,2

eb~ek·~ϕ +
Q

4π
R~ρ · ~ϕ

 (A.1)

where ~ϕ is the Toda fields satisfying ~ϕ · (1, 1, 1) = 0. gxy is the metric on 2-dim Riemann

surface, and R is its curvature. µ is the scale parameter, b is the dimensionless coupling

constant, and Q := b + 1/b. ~ek is the k-th simple root and ~ρ is the Weyl vector (i.e. half

the sum of all positive roots) of sl3 algebra.

Our convention of sl3 algebra is as follows; Let ~ui be the orthonormal bases of R3 with

~ui · ~uj = δij . The simple roots are defined as

~e1 = ~u1 − ~u2 , ~e2 = ~u2 − ~u3 . (A.2)

Together with the maximal root ~θ = ~e1 + ~e2 = ~u1 − ~u3, they form a positive root system

of sl3. The fundamental weights ~w1 and ~w2 are defined by ~wi · ~ej = δij and given by

~w1 =
1

3
(2~u1 − ~u2 − ~u3) , ~w2 =

1

3
(~u1 + ~u2 − 2~u3) . (A.3)

The Weyl vector is ~ρ = 1
2(~e1 + ~e2 + ~θ) = ~w1 + ~w2 = ~θ, the last equality is specific to sl3

algebra. Finally the weights of the fundamental representation are

~λ1 = ~w1 =
1

3
(2~u1 − ~u2 − ~u3) , ~λ2 = ~w1 − ~e1 =

1

3
(−~u1 + 2~u2 − ~u3) ,

~λ3 = ~w1 − ~e1 − ~e2 =
1

3
(−~u1 − ~u2 + 2~u3) . (A.4)

In the following, we simply choose ~ui as ~u1 = (1, 0, 0), ~u2 = (0, 1, 0) and ~u3 = (0, 0, 1).

The symmetry algebra of A2 Toda theory is well known as W3 algebra. The generators

of this algebra are defined by the two chiral Noether currents with spin 2 and 3 as

T (z) =

∞∑
n=−∞

Ln

zn+2
, W (z) =

∞∑
n=−∞

Wn

zn+3
. (A.5)

The commutation relation among these generators is

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln,Wm] = (2n−m)Wn+m

2

9
[Wn,Wm] =

c

3 · 5!
n(n2 − 1)(n2 − 4)δn+m,0 +

16

22 + 5c
(n−m)Λn+m

+(n−m)

(
1

15
(n+m+ 2)(n+m+ 3)− 1

6
(n+ 2)(m+ 2)

)
Ln+m (A.6)
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where the central charge is c = 2− 24Q2 and

Λn =

∞∑
k=−∞

:LkLn−k : +
1

5
xnLn ; x2l = (1 + l)(1− l) , x2l+1 = (2 + l)(1− l) . (A.7)

Note that here we fix the normalization of the generators. In this convention, all the

generators are hermite, i.e. the adjoint of generators are L†
n = L−n and W †

n = W−n.

The highest weight state in this algebra is given by the vertex operator in Toda theory:

V~α(z) = :e~α·~ϕ(z) : , |V~α〉 = lim
z→0

V~α(z)|0〉 , (A.8)

where ~α ∈ C3 and ~α · (1, 1, 1) = 0. Note that ~α is called Toda momentum, whose concrete

form can be determined by the degenerate state condition [58]. Its expression for all the

cases in AGT relation is given in [59].5 In the maintext of this paper, Toda momentum is

denoted as (α1, α2), which means

~α = −i

(
α1√
3
+

Q

2

)
(1, 1,−2)− i

(
α2 +

Q

2

)
(1,−1, 0)

= −i
α1√
3
(1, 1,−2)− iα2(1,−1, 0)− iQ~ρ . (A.9)

The conformal weights of the vertex operator are given as

L0|V~α〉 = ∆~α|V~α〉 , W0|V~α〉 = w~α|V~α〉 , (A.10)

where

∆~α =
1

2
(−2iQ~ρ− ~α) · ~α = α2

1 + α2
2 −Q2,

w~α = i
3√
2

√
48

22 + 5c

3∏
i=1

(~α+ iQ~ρ) · ~λi =
2√

4− 15Q2
α1(α

2
1 − 3α2

2) . (A.11)

Finally we show the free field representation of the chiral currents:

T (z) = −1

2
:(∂z ~ϕ)

2 : − iQ~ρ · ∂2
z ~ϕ , (A.12)

√
2

3
W (z) = :

3∏
i=1

(~λi · ∂z ~ϕ) : +
iQ

2
:
[
(~λ1 · ∂~ϕ)(~e1 · ∂2~ϕ) + (~λ3 · ∂~ϕ)(~e2 · ∂2~ϕ)

]
: +

1

2
Q2~λ2 · ∂3~ϕ .

Similarly to Toda momentum, Toda field can be also denoted as (ϕ1, ϕ2), which means

~ϕ =
i√
6
ϕ1(1, 1,−2) +

i√
2
ϕ2(1,−1, 0) . (A.13)

5The expression in [59] has been justified only in the correspondence to the 1-loop partition function

of the corresponding gauge theories. The correspondence to the instanton partition function remains a

challenging discussion. For A2 Toda theory, it has been checked in [60] up to instanton level 3. For a general

AN case, the check is still incomplete: The discussion using Heisenberg algebra seems promising [61], and

some researchers suggest W1+∞ algebra is useful for this discussion [62].
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In this notation, the generators are

T (z) =
1

2

[
(∂zϕ1)

2 + (∂zϕ2)
2
]
+

Q√
2
(
√
3∂2

zϕ1 + ∂2
zϕ2)

W (z) =
i

2
√
3

[
(∂zϕ1)

3 − 3∂zϕ1(∂zϕ2)
2
]
+

√
3iQ

2
√
2

[
∂zϕ1(

√
3∂2

zϕ1 − 2∂2
zϕ2)−

√
3∂zϕ2∂

2
zϕ2

]
+

√
3iQ2

4
(∂3

zϕ1 −
√
3∂3

zϕ2) (A.14)

and the vertex is V~α(z) = :e~α·~ϕ : = :e
√
2(α1ϕ1+α2ϕ2)+

Q√
2
(
√
3ϕ1+ϕ2) : .

B. Virasoro irregular conformal blocks

Virasoro irregular states which describe degree 3
2 and 2 singularities [20] were shown to be

extended to any order in [11, 12, 39]. As classified in [39], the conditions satisfied by the

states constructed in [11, 12] which are considered in section 2, are different: the former

state |Gm〉 is specified by

L1 |Gm〉 = Λ
2
m v1 |Gm〉 , Lm |Gm〉 = Λ2 |Gm〉 , (B.1)

and is not an eigenstate for Lk with 1 < k < m. The latter state |In〉 is specified by

Ln |In〉 = `n |In〉 , . . . , L2n |In〉 = `2n |In〉 , (B.2)

where `k (n ≤ k ≤ 2n) are constants, and is not an eigenstate for Lk with k < n.

In [11], an explicit solution to the conditions (B.1) has been given:

|Gm〉 =

∞∑
`=0

∑
`p

Λ2`/m

[m
2
]∏

i=1

c
`m−i

i

[m−1
2

]∏
a=1

v`aa Q−1
∆ (m`m(m− 1)`m−1 · · · 2`21`1 ;Y )L−Y |∆〉 ,

(B.3)

with ` is a level ` =
∑m

s=1 s`s. Note that we assumed that the coefficient of the primary

state of the expansion of the irregular state is 1, namely |Gm〉 = |∆〉 + O(Λ), where

O(Λ) terms include various descendant states. (As discussed above, if we allow the other

normalization of the primary state, the expansion of the irregular state could be different

from that of (B.3). But, we do not see this possibility in this Appendix.) We will see

below that this state satisfies the conditions (B.1) in the convention of descendant fields:

L−k1L−k2 · · · |∆〉 with

k1 ≤ k2 ≤ . . . . (B.4)

Furthermore, we will see that in the different convention of descendant fields:

k1 ≥ k2 ≥ . . . , (B.5)

the explicit state (B.3) satisfies the conditions (B.2) for 2n = m.
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B.1 Irregular states in the first convention

First of all, let us check that the state (B.3) is indeed a solution of (B.1) in the first

convention (B.4). Note that the state (B.3) satisfies

〈∆|LY |Gm〉 = Λ2`/m

[m
2
]∏

i=1

c
`m−i

i

[m−1
2

]∏
a=1

v`aa , for Y = m`m(m− 1)`m−1 · · · 2`21`1 . (B.6)

In [11], it was shown that this state satisfies (B.1) and

Lk |Gm〉 = 0 for k > m. (B.7)

For Lk with 1 < k < m, we obtain

Lm−1 |Gm〉 = Λ2(m−1)/m

(
c1 + (2−m)

∂

∂v1

)
|Gm〉 , (B.8)

Lm−2 |Gm〉 = Λ2(m−2)/m

(
c2 + (3−m)c1

∂

∂v1
+

(2−m)(3−m)

2

∂2

∂v21
+ (4−m)

∂

∂v2

)
|Gm〉 ,

and so on. A generic feature is that the action of Lm−k starts with a term with ck and

the remaining terms, although involved, can be written as differential operators in the

parameters.

For instance, the state |G4〉 is given by

|G4〉 =
∞∑
`=0

∑
`p

Λ`/2c`31 m`2v`11 Q−1
∆ (4`43`32`21`1 ;Y )L−Y |∆〉 , (B.9)

where we have renamed c2 as m which corresponds to the dimension-one mass parameter

of the gauge theory. This state satisfies

L1 |G4〉 = Λ
1
2 v1 |G4〉 , L2 |G4〉 = Λ

(
m− c1

∂

∂v1
+

∂2

∂v21

)
|G4〉 ,

L3 |G4〉 = Λ
3
2

(
c1 − 2

∂

∂v1

)
|G4〉 , L4 |G4〉 = Λ2 |G4〉 . (B.10)

B.2 Irregular states in the second convention

Let us next consider the same state (B.3) in the convention (B.5). Let us below see that

when m = 2n, this state satisfies the same conditions as those of |In〉. When m = 2n, we

have a state

|G̃2n〉 =

∞∑
`=0

∑
`p

Λ`/n
n−1∏
i=1

c
`2n−i

i v`ii m
`nQ−1

∆ (2n`2n(2n− 1)`2n−1 · · · 2`21`1 ;Y )L−Y |∆〉 ,

(B.11)
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where we have renamed ck as m, as in previous section. This state satisfies

〈∆|LY |G̃2n〉 = Λ`/n
n−1∏
i=1

c
`2n−i

i v`ii m
`n , for Y = 1`12`2 · · · 2n`2n . (B.12)

Note that Y is different from (B.6).

One can check that

〈∆|LY L2n−s|G̃2n〉 = Λ
2n−s

n cs〈∆|LY |G̃2n〉, (B.13)

for 0 ≤ s < n, with c0 = 1, and

〈∆|LY Ln|G̃2n〉 = Λm〈∆|LY |G̃2n〉. (B.14)

This means

L2n−s |̃G2n〉 = Λ
2n−s

n cs|G̃2n〉 for 0 ≤ s < n,

Ln|G̃2n〉 = Λm|G̃2n〉, (B.15)

For Ls (s < n), the state is not the eigenstate, but acts as differential operators with

respects to ci parameters, e.g., one can check that

〈∆|LY Ln−1|G̃2n〉 = Λ
n−1
n

(
vn−1 + 2

∂

∂cn−1
+ c1

∂

∂m

)
〈∆|LY G̃2n〉, (B.16)

which means that

Ln−1|G̃2n〉 = Λ
n−1
n

(
vn−1 + 2

∂

∂cn−1
+ c1

∂

∂m

)
|G̃2n〉. (B.17)

For instance, the state |G̃4〉 is given by

L4|G̃4〉 = Λ2|G̃4〉, L3|G̃4〉 = Λ
3
2 c1 |̃G4〉, L2|G̃4〉 = Λm|G̃4〉,

L1|G̃4〉 = Λ
1
2

(
v1 + 2

∂

∂c1
+ c1

∂

∂m

)
|G̃4〉. (B.18)

We can check that these are exactly the same as the condition satisfied by the state |I2〉.
Indeed, the state |I2〉 is specified by

L4 |I2〉 = ĉ22 |I2〉 , L3 |I2〉 = 2ĉ1ĉ2 |I2〉 , L2 |I2〉 = (2ĉ0ĉ2 + ĉ21) |I2〉 ,

L1 |I2〉 = v̂1 + 2ĉ0ĉ1 + ĉ2
∂

∂ĉ1
|I2〉 , (B.19)

where we used hatted variables for the parameters in section 2. (We ignored the terms

including Q.) The first three equations implies the relations among the parameters

ĉ2 = Λ, ĉ1 =
c1Λ

1/2

2
, ĉ0 =

1

2
(m− c21

4
). (B.20)

Thus, the derivative can be written in terms of the parameters of our state as

ĉ2
∂

∂ĉ1
= Λ

1
2

(
2

∂

∂c1
+ c1

∂

∂m

)
. (B.21)

This shows the equivalence of our state and the one in [12], with the identification v1 =

v̂1 + 2ĉ0ĉ1.
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C. Irregular states of U(1) current algebra

In this section we want to show that in the case of U(1) current algebra the irregular

states obtained by the confluence of the vertex operators are nothing but the standard

coherent states. The crucial point here is the free field nature of the U(1) current algebra.

Namely all the positive modes an (n > 0) of the U(1) current are mutually commuting and

the Verma module is the (infinite) tensor product of the Fock space of a single harmonic

oscillator.

Let us introduce a free chiral boson;

ϕ(z) = q + a0 log z −
∑
n 6=0

an
n
z−n, (C.1)

with the commutation relations:

[am, q] = δm,0, [am, an] = m δm+n,0. (C.2)

Associated U(1) current is

J(z) = ∂ϕ(z) =
∑
n∈Z

an z−n−1 (C.3)

and the Fock vacuum |α〉 = Vα(z)|0〉 is created by the vertex operator

Vα(z) = : e αϕ(z) : (C.4)

By the OPE

J(z)Vα(w) ∼
α

z − w
Vα(w), (C.5)

we have the following action on |Rn〉 = Vα1(z1) · · ·Vαn(zn)|α0〉:

J(y)|Rn〉 =

(
α1

y − z1
+ · · ·+ αn

y − zn
+

α0

y

)
|Rn〉 (C.6)

=
Pn(y)

y
∏n

i=1(y − zi)
|Rn〉, (C.7)

where Pn(y) = c0y
n + c1y

n−1 + · · · + cn−1y + cn. Then we will take the limit zi → 0 and

αi → ∞, while keeping c0, c1, . . . , cn finite. The limit state |In〉F = limzi→0,αi→∞ |Rn〉
satisfies;

J(y)|In〉F =

n∑
i=0

ci
y1+i

|In〉F . (C.8)

This means that

ai|In〉F = ci|In〉F (1 ≤ i ≤ n), ak|In〉F = 0, (k ≥ n), (C.9)
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and hence |In〉F is nothing but the standard coherent state with eigenvalue ci for the i-th

oscillator mode. The most simple example is the collision of two vertex operators, where

P1(y) = c0y + c1, c0 = α0 + α1, c1 = −α0z1 (C.10)

We take the limit z1 → 0 and α0 → +∞, keeping α0 + α1 and c1 finite (or α1 → −∞).

This is a point like limit of the dipole with an infinite charge. The coherent state produced

by the confluence of (n+1) punctures can be generated by the generalized vertex operator

on the primary state; as

|In; ci, α〉F = lim
z→0

exp

(
n∑

k=1

1

k
(ck ∂kϕ(z)

)
|α〉. (C.11)
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