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Abstract

We revisit conformal quantum mechanics (CQM) from the perspective
of sine-square deformation (SSD) and the entanglement Hamiltonian. The
operators that correspond to the SSD and the entanglement Hamiltonian
are identified. Thus, the nature of SSD and entanglement can be discussed
in a much simpler CQM setting than higher dimensional field theories.

In [1,2], it was shown that sine-square deformation (SSD) [3] for two-dimensional
(2d) conformal field theory (CFT) [4] can be understood by introducing a new
quantization scheme called “dipolar quantization.”1) The basic idea was general-
ized in Ref. [12] to incorporate the entanglement Hamiltonian and other interesting
deformations of 2d CFT. In this Letter, we examine whether the idea of dipolar
quantization is applicable to the one-dimensional (1d) case, which is called confor-
mal quantum mechanics (CQM). CQM was first studied in the seminal paper by
de Alfaro, Fubini, and Furlan [13].

To put the problem in perspective, let us consider a scalar field φ(x) on general
d-dimensional flat spacetime xµ(µ = 0, . . . , d−1) following the argument presented
in Ref. [13]. Suppose φ(x) transforms under the scale transformation xµ → x′µ =
λxµ as

φ(xµ)→ φ′(x′µ) = φ′(λxµ) = λ−
2d
2 φ(xµ) (1)

A simple invariant action for φ(x) can be obtained as

S =

∫ ∏
µ

dxµ
1

2

(
∂νφ∂

νφ− gφ
2d
d−2

)
, (2)

where g is the dimensionless coupling constant. Because scale invariance implies
conformal invariance in most cases [14], this action provides a good starting point.

1)See Refs. [5,6] for earlier studies on SSD and Refs. [9–11] for more recent studies. References
[7, 8] study SSD in the context of string theory and conformal field theory.
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In addition, Eq. (2) suggests the difficulty in the Lagrangian formalism for d = 2
case, in which the energy momentum tensor is taken as the basis of the theory
rather than the lagrangian.

The case of interest here is d = 1, which has the following Lagrangian:

L =
1

2
(q̇(t))2 − g

2

1

q(t)2
, (3)

where t is the 1d “spacetime” coordinate. We also changed the notation of the
“field” from φ to q(t) because we are now dealing with a quantum mechanical sys-
tem. We can then show that the Lagrangian (3) possesses the following symmetry:

t → t′ =
at+ b

ct+ d
, ad− bc = 1, (4)

q(t) → q′(t′) =
1

ct+ d
q(t), (5)

which is a larger symmetry than scale invariance and translational invariance com-
bined. In fact, it is 1d conformal symmetry, as we anticipated.

The transformation (4) for t can be conveniently decomposed into the following
three components:
Translation a = d = 1 and c = 0 lead to

t→ t+ b. (6)

Dilatation a = 1/d and b = c = 0 lead to

t→ a2t. (7)

Special Conformal Transformation(SCT) a = d = 1 and b = 0 lead to

t→ t

ct+ 1
. (8)

The infinitesimal version of transformations (6) - (8) of the above three can be
represented in terms of the differential operators as follows.

(Time)Translation
d

dt
≡ P0, (9)

Dilatation t
d

dt
≡ D, (10)

SCT t2
d

dt
≡ K0. (11)

These operators form a closed algebra,

[D,K0] = K0, [D,P0] = −P0, [P0, K0] = 2D, (12)
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which is readily isomorphic to sl(2,R) algebra or, equivalently, the subalgebra
formed by the three Virasoro generators L1, L0, andL−1:

[L0, L−1] = L−1, [L0, L1] = −L1, [L1, L−1] = 2L0. (13)

The time-translation generator P0 should be identified with the Hamiltonian

H =
1

2
p(t)2 +

g

2

1

q(t)2
, (14)

where p is the canonical momentum. Equation (14) was directly derived from
Lagrangian (3). Using the symplectic structure, the rest of the generators may be
expressed in terms of q and p:

K0 =
1

2
q(t)2, (15)

D = −1

4
(p(t)q(t) + q(t)p(t)) . (16)

In Eq. (16) we employed symmetrization in anticipation of quantization.
In Ref. [13], de Alfaro, Fubini, and Furlan introduced the new operator

R ≡ 1

2

(
aP0 +

1

a
K0

)
, (17)

where a is a constant with the dimensions of time, along with two other operators.
Then, R was proposed to supersede H as the time-translation operator, or the
Hamiltonian.

The distinction between the operator R and the original Hamiltonian H = P0

is best clarified from the symmetry viewpoint [2,13]. First, the (quadratic) Casimir
invariant for sl(2,R) algebra is

C(2) =
1

2
L−1L1 +

1

2
L1L−1 − (L0)

2 =
1

2
K0P0 +

1

2
P0K0 −D2. (18)

Therefore, for any adjoint action of sl(2,R) algebra on the linear combination of
the generators,

x(0)L0 + x(1)L1 + x(−1)L−1 −→ x′(0)L0 + x′(1)L1 + x′(−1)L−1, (19)

the following combination remainsunchanged 2):

2x(1)x(−1) + 2x(−1)x(1) −
(
x(0)
)2

= 4x′(1)x′(−1) −
(
x′(0)

)2 ≡ c(2) (20)

2)Note that the numerical coefficients of the quadratic form in Eqs. (18) and (20) are compo-
nents of matrices that are inverse of each other.
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In terms of the coefficients x(0), x(1), andx(−1), the operator R is expressed as

R : x(0) = 0, x(1) =
a

2
, x(−1) =

1

2a
, (21)

and the expression for the original Hamiltonian H (or P0) is

H : x(0) = 0, x(1) = 1, x(−1) = 0. (22)

Putting these coefficients into c(2) defined in Eq. (20), we immediately find

c(2) = 1 for R, (23)

and
c(2) = 0 for H. (24)

These results imply that one cannot connect R and H by any adjoint action of
sl(2,R), nor by its exponentiation, SL(2,R). In this sense, operators R and H are
disconnected.

Now, note the absence of constant a in expression (23), which infers that a
can be changed numerically by an adjoint action of sl(2,R) or SL(2,R) action
on the operator R. In fact, an infinitesimal change in a → a(1 − ε) evokes the
commutation with D as

R
a→a(1−ε)−−−−−→ 1

2

(
a(1− ε)P0 +

1

a(1− ε)
K0

)
= R +

1

2

(
−aP0 +

K0

a

)
ε

= R + [D,R]ε. (25)

Thus, different values of a in R are connected by the action of D. Two other
actions can be applied to R, namely, P0 and K0, which would produce terms
corresponding to D and yield a nonzero x(0) coefficient. Hereinafter, we assume a
to be unity for the sake of simplicity.

We then ask if any class of operators is connected to H by the action of
SL(2,R). Apparently, the answer is affirmative because the following operator
H(a,b)

H(a,b) : x(0) = ±2
√
ab, x(1) = a, x(−1) = b, for ab ≥ 0, (26)

yields c(2) = 0 as does H, which can be written in the above notation as

H = H(1,0). (27)

H(a,b) is explicitly written as

H(a,b) = aP0 + bK0 ± 2
√
abD, (28)
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or, in terms of the canonical variables,

H(a,b) =
a

2
p(t)2 +

ag

2

1

q(t)2
+
b

2
q(t)2 −

√
abp(t)q(t), (29)

where, without loss of generality, we have chosen one of the double signs that
appeared in Eq. (26).

The transformation between H(1,0) and H(a,b) can be interpreted in terms of
classical mechanics because we have designed the system so that it accommodates
conformal symmetry. In fact, the transformation can be achieved by changing the
canonical coordinates as follows:{

q(t)→ 1√
a
Q(t)

p(t)→
√
aP (t)−

√
bQ(t)

, (30)

where P (t) and Q(t) are the new canonical coordinates. The generating function
of the above canonical transformation is

W =
√
aq(t)P (t)−

√
ab

2
q2(t). (31)

Another class of generators yields negative c(2), the simplest of which is

R̄ ≡ H −K =
1

2
p(t)2 +

1

2

g

q(t)2
− 1

2
q(t)2. (32)

For R̄, the coefficients are

R̄ : x(0) = 0, x(1) = 1, x(−1) = −1, (33)

which yield c(2) = −1. 3)

Now, each distinct class of c(2) can be conveniently represented by the following
combination of coefficients:

x(0) = 0, x(1) = 1, x(−1) =
c(2)

4
. (34)

The corresponding generator is

H +
c(2)

4
K0 =

1

2
p2 +

g

2

1

q2
+
c(2)

8
q2. (35)

Because the above generator resembles the ordinary Hamiltonian, it is clarifying
to draw the graph of the potential V (q) = g

2
1
q2

+ c(2)

8
q2 for each case. Figure 1
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q

V (q)

c(2) = 1

c(2) = 0

c(2) = −1

Figure 1: Potential V (q) for c(2) = 1, 0, and− 1.

shows the potential for the cases where c(2) equals 1, 0, and −1, respectively. In
the following, we investigate each case.

Reference [13] observed that the invariance of the Casimir invariant (18) is
apparent from expressions (14) - (16), if one imposes the commutation relation
over q and p as [q, p] = iI:

1

2
HK0 +

1

2
K0H −D2 =

(
g

4
− 3

16

)
I, (36)

where I is the identity operator of the (enveloping) algebra in question 4). Without
fear of confusion, we also denote the parameter

(
g
4
− 3

16

)
as C(2). Using the notation

C(2), one obtains
L±1L∓1 = L2

0 ± L0 − C(2)I (37)

which turns out to be useful for finding the eigenvalues of L0.
Suppose a normalized eigenstate vector |E〉 exists such that

L0|E〉 = E|E〉, 〈E|E〉 = 1. (38)

3)R̄ corresponds to −S in the notation of Ref. [13].
4)As noted in Ref. [13], the case g = 0 yields particularly simple representations by the creation

and annihilation operators [a, a†] = 1, which are called singleton representations. Despite the
ostensible lack of enough structure to accommodate the symmetry, this is an example of a
spectrum generating algebra, and the symmetry algebra is represented by the transitions between
the different energy states [15,16].
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It is then straightforward to show that one can construct eigenstates witheigen-
values E ± 1 by multiplying by L∓1 because

L0 (L∓1|E〉) = (L∓1L0) |E〉+ L∓1|E〉 = (E ± 1)L∓1|E〉. (39)

We would like to normalize the eigenstates obtained above,

L∓1|E〉 ≡ c±(E)|E ± 1〉, (40)

so that
〈E ± 1|E ± 1〉 = 1. (41)

The normalization factor c± can be calculated using Eq. (37), which yields

|c±(E)|2 = 〈E|L±1L∓1|E〉 = 〈E|L2
0 ± L0 − C(2)I|E〉 = E2 ± E − C(2) ≥ 0. (42)

This condition of positivity can be clearer if we introduce a common notation for
the Casimir invariant C(2) = j(j − 1) (we assume j ≥ 0):

|c±(E)|2 = E(E ± 1)− j(j − 1) ≥ 0. (43)

We thus conclude that E ≥ j or E ≤ −j, and from physical considerations, we
prefer positive E. Finally, as the eigenvalues of L0, we obtain

E = n+ j, (44)

where n = 0, 1, 2, 3, . . . 5). Because R can be identified with L0, we obtain the
system with a discrete spectrum using R as the Hamiltonian in stead of the original
H. This is fairly evident from Fig. 1 because R corresponds to the case c(2) = 1,
where the range of motion is apparently limited to a finite region.

Conversely, the case c(2) = 0 does not exhibit discrete energy states because the
motion of the particle is not confined by the potential. Instead, it has a continuous
spectrum as discussed in detail in Ref. [13]. This emergence of the continuous
spectrum compelled the authors of Ref. [13] to propose R as the Hamiltonian of
CQM instead of the original H, which corresponds to the case c(2) = 0.

However, we prefer to propose another interpretation ofH here: In light of SSD,
we do not have to reject an operator just because it leads a continuous spectrum.
In fact, this is the signature of SSD systems. Therefore, we propose to regard H as
the SSD Hamiltonian. If we accept this interpretation, the relation between radial
quantization [18] and SSD in 2d conformal field theories [1, 2] naturally parallels
that between R and H. This interpretation offers a nice intuition on somewhat

5)One might consider an extension of sl(2,R) to the full Virasoro algebra on these eigenstates.
See Ref. [17] for a related discussion.
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mysterious nature of the continuous spectrum of SSD: it stems from the runaway
potential in the CQM case.

Next, we turn our attention to the case c(2) = −1. Since the potential for
this case is unbounded below, the system is unstable, no meaningful physical
interpretation is apparent. However, the sl(2,R) symmetry of the system enables
the following analysis.

First, the generators H,K0, D, and R allows another non-trivial identification
with the Virasoro subalgebra:

L′0 =
1

2i
(H −K0) =

1

2i
R̄, (45)

L′−1 = −1

2
(H +K0)−D = −1

2
R−D, (46)

L′1 =
1

2
(H +K0)−D =

1

2
R−D. (47)

The set of operators above satisfies the same commutation relations given in Eq.
(13). Since the algebraic structure is the same, the eigenvalues for the operator
L′0 should be the same. However, the “Hamiltonian” in question is R̄, not L′0.
The difference between R and L0 is the multiplication of the the imaginary unit i.
Thus we find that the spectrum of R̄ is 2i times that of R.

Next, what can we make of a “Hamiltonian” with pure imaginary eigenvalues?
Although imaginary eigenvalues appear unphysical, all these eigenvalues take the
form 2iEn, where En represent the eigenvalues of the “physical” Hamiltonian R, as
explicitly shown in Eq. (44). If we take t→ β/2, the “time” translation becomes

exp(itR̄) =
∑
|n〉e−βEn〈n|. (48)

It is clear that the above operator corresponds to the thermal density matrix
operator

ρ ≡ exp(−βR)

Tr [exp(−βR)]
. (49)

The relation between the density matrix operator ρ and R̄,

R̄ ∼ − 1

β
ln ρ (50)

is reminiscent of the entanglement Hamiltonian [19–26]. Therefore, we infer that
this case corresponds to the entanglement Hamiltonian. Because the system has
only one degree of freedom and there is no other degree of freedom to integrate
out, we naturally obtain the expression for the entire density matrix from the
corresponding entanglement Hamiltonian for d = 1.
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At this point, it would be insightful to contemplate the action of sl(2,R).
The sl(2,R) algebra is also the Lie algebra of the projective special linear group
PSL(2,R) = SL(2,R)/{±} which is apparently a subgroup of SL(2,R). The
relation between PSL(2,R) and SL(2,R) is reminiscent of the relation between
SO(3) and SU(2). PSL(2,R) naturally acts on the hyperbolic plane H2, which is
the upper half of the complex plane {z ∈ C; Imz > 0} with the Poincaré metric

ds2 =
|dz|2

(Imz)2
, (51)

or the Poincaré disk with the metric

ds2 =
|dz|2

(1− |z|2)2
. (52)

The action of PSL(2,R) on H2 gives the following automorphism:

z 7→ az + b

cz + d
, (53)

where a, b, c, d ∈ R and ad− bc 6= 0. The action of PSL(2,R) on the Poincaré disk
that corresponds to R,H, and R̄ respectively, is depicted in Fig. 2

R : c(2) = 1 H : c(2) = 0 R̄ : c(2) = −1

Figure 2: Time translation on the Poincaré disk. On the boundary of the disk,
“time flow” is uniform without fixed point for R or c(2) = 1 case, while it is limited
to the finite region bounded by the two fixed points for R̄ or c(2) = −1 case. H or
c(2) = 0 case exhibits the marginal behavior, and it has one fixed points at infinity.

Note, in particular, that the Möbius transformation is similar to the transfor-
mation above, except that it forms a complex Lie group and is isomorphic to the
automorphism of the Riemann sphere Aut(Ĉ) rather than to the automorphism of
the half plane. The observation here would also be useful in the study of SSD for
the case of open strings, where the setup of the upper half plane is natural.
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In summary, we find the same structure in CQM as observed in 2d CFT where
the choice of the Hamiltonian leads to radial quantization, the dipolar quantization
or SSD, and the entanglement Hamiltonian, respectively. We identify the respec-
tive Hamiltonians in CQM using sl(2,R) symmetry. The findings here will offer a
simpler setup for the study of SSD and the entanglement Hamiltonians. It would
be also interesting to investigate further in the context of the conformal boot strap
approach [27] or the recent discussion of the CQM correlation function [28].
Acknowledgement: The author would like to thank N. Ishibashi, H. Kawai, K.
Okunishi, S. Ryu, and the participants of the iTHEMS workshop ”Workshop on
Sine square deformation and related topics, ” for fruitful discussions and many
suggestions, which greatly contributed to the present work.
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