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Level density and thermodynamics in the hot rotating 96Tc nucleus
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Evaporated neutron energy spectra have been measured in coincidence with low-energy discrete γ rays in
the reaction 4He + 93Nb at E(4He) = 28 MeV. The low-energy light-ion beam provides the scope of extracting
the experimental nuclear level density (NLD) in the compound nuclear reaction. Angular-momentum gated
NLDs have been extracted in the excitation energy range of E∗ ∼ 5–15 MeV from the measured neutron energy
spectra. The extracted NLDs have been compared with different theoretical calculations such as the exact
pairing plus independent particle model at finite temperature (EP+IPM), Hartree-Fock plus BCS (HFBCS),
and Hartree-Fock-Bogoliubov plus combinatorial method (HFBC). Interestingly, the experimental NLDs are in
good agreement with the results of the EP+IPM, whereas the HFBCS and HFBC fail to describe these data.
Consequently, the thermodynamic properties of 96Tc at finite angular momentum have been extracted using the
EP+IPM NLDs. Through the analysis of the calculated thermodynamic quantities, it is shown that no pronounced
bump is seen in the heat capacity of 96Tc, in opposition with the earlier results of 96Mo, which showed a prominent
bump at T ∼ 0.7–1 MeV. This difference is understandable since pairing in the even-even system (96Mo) is always
stronger than that in the odd-odd one (96Tc).

DOI: 10.1103/PhysRevC.96.054326

I. INTRODUCTION

One of the basic aims in diverse fields of science (physics,
chemistry, and biology) is understanding the small system,
which manifests many striking properties due to its tiny
dimension. Some popular examples of such systems are atomic
nuclei, nanoparticles, magnetic domain in ferromagnets,
quantum dots, biological molecular machines, and solidlike
clusters, which are important in the relaxation of glassy
systems, etc. [1]. The study of thermodynamic properties of
these systems, in spite of being an arduous task, is highly
imperative as those properties describe how such systems
respond to the changes in their environment [2].

The atomic nucleus is a well-known example of a small
system, which shows the prototypical behavior of a complex
miniature arrangement that goes beyond the simple sum of
individual nucleon properties. Nuclear thermodynamics was
essentially initiated by Bethe in 1936 [3], which explains the
nuclear bulk properties instead of the individual nucleon ones
and demonstrates the energy exchange process of a macro-
scopic system [4]. The knowledge of nuclear thermodynamics
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also enables us to understand the presence of pairing phase
transition in the nucleus, whose effect was included in the
nuclear theory after the Bardeen-Cooper-Schrieffer (BCS)
theory [5]. As a result, the study of nuclear thermodynamics
has gained much enthusiasm in the recent past [6–9].

Measuring the nuclear level density (NLD) is the starting
point to obtain the thermodynamic quantities (TQs) of atomic
nuclei. The introduction of the collective enhancement into the
description of NLD has removed many contradictions of the
previous analyses of experimental data, as has been reviewed
in detail in Ref. [6]. In the past, nuclear researchers lacked
proper experimental methods to measure the TQ until recently,
when nuclear experimentalists proposed a unique technique to
simultaneously extract the NLD and radiative γ -ray strength
function [10]. This achievement has opened up a new horizon
in this field. They have extracted the level density for 93–98Mo
and obtained the S-shape canonical heat capacity as an
indication of pairing phase transition at a critical temperature
of Tc = 0.7–1.0 MeV [11,12]. In the recent past, Schiller et al.
[7] and Melby et al. [8] observed steplike structures in the
level densities around excitation energy E∗ ∼ 1–7 MeV, most
probably because of the breaking of nucleon Cooper pairs,
which leads to a gradual decrease of pairing correlations.
However, they have extracted the level density below the
particle threshold energy at very low angular momentum J
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(a few h̄) and extrapolated it to the higher energy using the
functional form of the Fermi gas (FG) model [3] to estimate
the TQ. However, the knowledge of NLD functional form is
not yet satisfactory due to the lack of experimental data at high
E∗ and J . Therefore, it would be better if one could measure
the NLD below and above the particle threshold, and compare
the measured data with a consistent theoretical calculation to
investigate thermodynamic properties of atomic nuclei. On the
other hand, the inverse level density parameter, which is an im-
portant ingredient in the functional form of the FG model [3],
should be measured experimentally as it varies strongly with
T and J [13–16]. In addition, all the reported information on
nuclear thermodynamics is at a very low J (a few h̄). Till now,
there is no information of nuclear thermodynamics at a higher
J , that is, a question still remains on how angular momentum
affects the thermodynamic behavior of atomic nucleus.

Precise measurement of NLD is a very difficult task due
to the lack of proper experimental technique. The nuclear
levels can be divided into two energy regions, namely the
low-energy discrete region (below 3–5 MeV) and the high-
energy continuum one (>5 MeV). In the low-energy region,
the NLD is directly measured by counting the discrete levels,
whereas above the region of discrete levels, it is measured
by using some model-based functions (constant temperature
formula, Fermi Gas model, etc.) with some parameters (level
density parameter, spin cutoff factor, etc.). The parameters in
the model-based function are either taken from the systematics
or experimentally measured. There are several approaches to
experimentally estimate the NLD above the discrete region.
One of them is the Oslo method, which extracts the NLD
from the particle-γ coincidence matrices by using inelastic
scattering and/or transfer reactions [10]. Another one is by
measuring the particle evaporation spectra from compound
nuclear reactions [17,18]. The Oslo method is limited to a
region of low excitation energy (up to the particle threshold)
and low J (a few h̄), whereas it is possible to extract
the NLD beyond or below the particle threshold at higher
J by using the particle evaporation technique. The major
problem with the particle evaporation technique is the possible
contributions from the multistep and direct reactions. However,
the use of a low-energy light-ion beam (α) could provide
the scope for extracting the NLD from a particular channel
and the contributions from direct reaction can be ruled out
by measuring the particle spectra at backward angle. The
consistency of these two experimental techniques has been
checked in Ref. [18], where it has been shown that particle
spectra are most suitable for NLD studies.

In the present work, the angular momentum gated NLDs
in the excitation energy range of E∗ ∼ 5–15 MeV are
extracted by using the evaporated neutron energy spectra in
the 4He + 93Nb reaction. The advantage of using the light-ion
beam is that, at lower excitation energy, the compound
nucleus mainly decays via the 1n channel and thus produces
the residual nucleus 96Tc. Angular momentum information is
extracted by measuring the low-energy discrete γ rays. The
inverse level density parameter (k), an important ingredient in
the calculation of NLD, is also measured directly in our exper-
iment. The extracted NLD is then compared with the results
of different microscopic calculations and the best matched

NLD has been used to investigate the thermodynamics of
96Tc at different T and J . In addition, the spin cutoff factor as
a function of excitation energy has also been extracted from
the ratio of NLDs at different angular momenta.

II. EXPERIMENTAL DETAILS AND ANALYSIS

The experiments were carried out at the Variable Energy
Cyclotron Center, Kolkata using a light-ion α beam from
the K-130 cyclotron. A self-supporting 1 mg/cm2 thick 93Nb
target (99.9% enriched) was bombarded by α beam at
28 MeV populating 97Tc nucleus at the initial excitation energy
of 29.3 MeV. A liquid organic scintillator-based (BC501A)
neutron detector [19], placed at a distance of 150 cm from the
target position, was used to detect the evaporated neutrons in
coincidence with the low-energy discrete γ rays. The neutron
detector was placed at a backward angle of 125◦ with respect to
the beam direction in order to remove the contributions from
the direct reaction. A 50-element low-energy γ -multiplicity
filter [20] was used to detect those low-energy discrete γ rays in
order to make an angular momentum gated measurements. The
multiplicity filter (consisting of 50 BaF2 detectors, each having
dimension of 3.5 × 3.5 × 5 cm3) was split into two blocks
of 25 detectors each, in a staggered castle-type geometry to
equalize the solid angle for each multiplicity detector element,
and placed at a distance of 5 cm above and below the center
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FIG. 1. (a) Time-of-flight and (b) pulse shape discrimination
(bottom panel) spectra in the reaction of 4He + 93Nb at Elab(4He) =
28 MeV. QL and QS are the charge integrated over the long (2 μs)
and short integration (50 ns) gate widths, respectively.
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of scattering chamber. The efficiency of the multiplicity setup
was 56% as calculated using the GEANT4 simulation [21].

The evaporated neutrons were measured by the time-of-
flight (TOF) technique. The START trigger was generated
from the γ -multiplicity filter when at least one detector,
each from the top and bottom blocks, fired in coincidence,
above an energy threshold of 250 keV. The STOP trigger
was generated when the signal in the neutron detector crossed
a threshold of 250 keV. The neutron-γ discrimination was
achieved by both the pulse shape discrimination (PSD) and
TOF techniques. The typical TOF and PSD spectra obtained
from the present experiment are shown in Fig. 1. The event
was recorded when both top and bottom multiplicity detectors
fired in coincidence with the signal (with the threshold
>250 keV) from the neutron detector. The beam dump was
heavily shielded with lead bricks and borated paraffin to
keep the background of the detectors at a minimum level. A
CAMAC-based electronics and VME-based data acquisition
system were used to simultaneously record the energy and
time information of the detectors.

The neutron TOF spectrum was converted to the energy
spectrum using the prompt γ peak as a time reference. The
efficiency correction for the neutron detector was performed
using GEANT4 simulation code [21]. The multiplicity folds
(the number of detectors fired) were obtained by measur-
ing the low-energy discrete γ rays. The experimental fold
distribution of the multiplicity filter was converted to the
angular momentum distribution using the GEANT4 simulation
with the approach discussed in Ref. [20]. The uncertainty
in the extracted angular momentum was ±4h̄. The fold and
angular-momentum distributions are shown in Fig 2. The
fold-gated neutron energy spectra are shown in Fig. 3. The
error bars shown in Fig. 3 are due to counting statistics only.

III. DESCRIPTION OF NUCLEAR LEVEL DENSITY BY
USING STATISTICAL MODEL

The fold-gated neutron energy spectra were fitted to the
statistical model CASCADE [22] calculations with the NLD
prescription (FG model) [3] given by

ρ(E∗,J ) = 2J + 1

12θ3/2

√
a

exp (2
√

aU )

U 2
, (1)

where, θ = 2Ieff

h̄2 , Ieff is the effective rigid-body moment of
inertia, a is the level density parameter. The available energy
is U = E∗ − J (J+1)

θ
− Sn − �P , where Sn and �P are the

neutron separation energy and pairing energy, respectively.
In the CASCADE calculation, the Ignatyuk’s prescription of
level density parameter a was adopted [23], which takes into
account the nuclear shell effects at low excitation energy and
connects smoothly to the liquid drop value at high excitation.
The Ignatyuk’s prescription is given by

a = ã

{
1 − �S

U
[1 − exp(−γU )]

}
, (2)

where γ = 0.4A4/3

ã
, ã (=A/k) is the asymptotic Fermi gas value

of the liquid-drop NLD parameter at the excitation energy
where shell effects melt, leaving a smooth dependence on nu-
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FIG. 2. (a) Experimental fold distribution along with the GEANT4

simulation. (b) Angular momentum distribution for different folds
(F ) for the 4He + 93Nb reaction at 28 MeV incident energy.

clear mass A, whereas �S is the shell correction obtained from
the difference of the experimental and the liquid-drop model
masses and γ is the rate at which the shell effect damps with
increasing the excitation energy. The transmission coefficients
for the statistical model calculation are obtained from the op-
tical model. The potential parameters for neutron, proton, and
α are taken from Refs. [24–26], respectively. The moment of
inertia of the CN is taken as Ieff = I0(1 + δ1J

2 + δ2J
4), where

I0(= 2
5MA5/3r2

0 ) is the moment of inertia of a spherical nu-
cleus, δ1 and δ2 are the deformability parameters, and r0 is the
radius parameter. The values of δ1 and δ2 used in the CASCADE

code are 2 × 10−5 and 2 × 10−8, respectively. The role of the
deformability parameters δ1 and δ2 is found to be inconsequen-
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FIG. 3. Evaporated neutron energy spectra (filled circles) along
with results of the statistical model calculations (continuous line) for
different folds (F ).
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FIG. 4. Neutron contribution (CASCADE) from different channels
along with experimental data for fold F = 2.

tial and the shape of neutron energy spectra depends mostly on
the level density parameter. The neutron energy spectra along
with the best-fitted CASCADE calculations are shown in Fig. 3.

The measurable quantities in Eq. (1) are the angular
momentum (J ) and inverse level density parameter (k = A/̃a).
The angular-momentum distribution was extracted from the
experimental fold distributions and was used as inputs for
different folds in the CASCADE code. The inverse level density
parameter was estimated from the experimental neutron
spectra after the best fitting with statistical model calculation
using a χ2-minimization technique within the energy range of
3–9 MeV (see, e.g., Fig. 3). Thereafter, the measured neutron
energy spectra, best-fitted spectra, k and J are used in the FG
model (1) to extract the experimental NLD using the equation
following the approach presented in Refs. [17,27,28], namely

ρexp(EX) = ρfit(EX)
(dσ/dE)exp

(dσ/dE)fit
. (3)

Here, (dσ/dE)exp and (dσ/dE)fit are the experimental neutron
evaporation and best-fitted theoretical spectra, respectively.
The excitation energy is EX = U − ECM

n , where ECM
n is the

neutron energy in the center-of-mass frame. The quantity
ρfit(EX) is the best-fitted level density taken from CASCADE

calculation as has been discussed above.
To identify the predominant contributor, the neutron evap-

oration spectra from different nuclei in the decay chain of the
CN were extracted from the CASCADE code and are displayed
in Fig. 4 along with the total neutron energy spectra. It can be
clearly seen that the contribution in the neutron energy of 3–10
MeV is mainly dominated by the 1n channel, producing the
residual nucleus 96Tc. The contribution of 1n channel with
respect to the 2n channel in this energy range is ∼90%.
Hence, in this case, the extraction of the experimental level
density parameter using χ2 minimization in the energy range of
3–9 MeV enables one to select the contribution mostly from
the 96Tc nucleus.

IV. MICROSCOPIC DESCRIPTION OF NUCLEAR
LEVEL DENSITY

The experimental data are compared with results of
the microscopic calculation based on the exact solutions

of the pairing Hamiltonian for a given number of single-
particle levels around the Fermi surface in combination with
the independent-particle model for the remaining portion of
the single-particle spectrum (EP+IPM) [29]. The details of
this microscopic model are given below.

The model considers the pairing Hamiltonian describing a
system of neutrons (ν) and protons (π ) moving in the corre-
sponding mean-field potentials and interacting via monopole
pairing forces with constant parameters Gτ (τ = ν, π ). The
Hamiltonian is taken in its usual form as

H =
∑

k

εk(a†
kak + a

†
−ka−k) −

∑
τ

Gτ

τ∑
k,k′

a
†
ka

†
−ka−k′ak′ ,

(4)

where a
†
±k and a±k denote the particle creation and annihilation

operators, respectively, on the kth single-particle levels in the
deformed basis. This Hamiltonian can be diagonalized to find
all the exact eigenvalues ES and single-particle occupation
numbers f S

k at different total seniorities S [30], which stand for
the total numbers of unpaired particles. These exact solutions
are then embedded into the CE to construct the exact partition
function at T �= 0 as [31]

ZCE(β) =
∑

S

dSe
−βES

, (5)

where dS = 2S is the degeneracy and β = 1/T is the inverse of
temperature. Because the size of the matrix to be diagonalized
in the pairing Hamiltonian (4) cannot be too large, this exact
CE partition function is limited to the description of thermal
properties only of the levels around the Fermi surface. To find
the total partition function of the whole system, this exact CE
partition function is combined with those obtained within the
IPM by using Eq. (15) of Ref. [32], under the assumption that
pairing is negligible for the levels far from the Fermi surface.
The total partition function obtained in this way becomes

lnZ′ = lnZ′
tr + lnZ′

sp − lnZ′
sp,tr, (6)

where Z′ is defined as the partition function with respect to the
ground-state energy E0, namely Z′ ≡ ZeβE0 with Z = ZCE(β)
in Eq. (5). In Eq. (6), Z′

tr is the CE partition function for
the truncated single-particle spectrum, which consists of the
levels around the Fermi surface; Z′

sp is the partition function
obtained within the IPM for the entire single-particle spectrum
from the bottom of the potential up to the closed shell with
N = 126, whereas Z′

sp,tr is the same partition function but
for the truncated single-particle spectrum around the Fermi
surface, which is already used for calculating Z′

tr. Based on the
partition function (6), one can easily calculate all the nuclear
TQ following the standard equations discussed in Ref. [3].
As a result, the density of states ω(E∗) at temperature T =
β−1

0 is calculated approximately by applying the method of
steepest descent in evaluating the Laplace transformation of
the partition function as [33]

ω(E∗) = eS(E∗)

(
−2π

∂E
∂β0

)−1/2

, (7)
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where

E∗(T ) = E(T ) − E(T = 0) (8)

is the excitation energy of the system. For spherical nuclei at
high E∗, the NLD ρ(E∗,M) at a given z projection of angular
momentum J can be estimated from the density of states ω(E∗)
by using the Gaussian approximation as [33,34]

ρ(E∗,M) 	 ω(E∗)

σ
√

2π
exp

[
− M

2σ 2

]
. (9)

The NLD ρ(E,J ) at a given total spin J can be then obtained
as the difference between the level density with z projection
M = J and that with M = J + 1 as [33–35]

ρ(E,J ) = ρ(E,M = J ) − ρ(E,M = J + 1)

	 2J + 1

2σ 3
√

2π
ω(E)exp

[
− J (J + 1)

2σ 2

]
, (10)

where σ is the spin cutoff parameter depending on the nuclear
moment of inertia I as σ 2

⊥(‖) = I⊥(‖)T /h̄2 with I⊥(‖) being the
moment of inertia perpendicular (parallel) to the symmetry
axis of the nucleus. The perpendicular spin cutoff parameter
is empirically given based on the limit of rigid body [36]

σ 2
⊥ ≈ 0.015A5/3T . (11)

The parallel spin cutoff factor σ‖ is obtained from σ⊥ by using
the empirical relation [37]

σ 2
⊥ = σ 2

‖
1 + β2/3

1 − 2β2/3
, (12)

where β2 is the quadrupole deformation parameter. For
spherical and deformed nuclei, the collective and rotational
degrees of freedom, which strongly enhance the level density
but are not taken into account in the Hamiltonian (4), should
be included in the NLD. As a result, instead of Eq. (10), one
obtains the approximate formulas of the total NLD ρvib for
(quasi)spherical nuclei and ρrot for well-deformed ones as [34]

ρvib(E,J ) ≈ 2J + 1

2σ 3
‖
√

2π

ω(E)

(1 − e−β�λ )2λ+1
exp

(
−J (J + 1)

2σ 2
||

)
,

(13)

ρrot(E,J ) ≈ 1

2σ‖
√

2π
ω(E)

×
J∑

K=−J

exp

[
− K2

2σ 2
‖

− J (J + 1) − K2

2σ 2
⊥

]
, (14)

with �λ in Eq. (13) being the phonon energy of the vibrational
excitation corresponding to the phonon multipolarity λ, and the
projection K of total angular momentum J on the symmetry
axis in Eq. (14). The calculation of ρvib(E,J ) includes the two
most important multipole excitations, namely the quadrupole
(λ = 2) and the octupole (λ = 3) ones, whose energies are
taken from the experimental data of the first 2+ and 3− states.
The collective enhancement has also been included in the
original calculations of the NLD within the EP+IPM by using
empirical formulas for the collective vibrational and rotational
enhancement factors [29].

Given the NLD (13) or (14), one can construct the partition
function of the nucleus at a given J and T , making use of the
inverse Laplace transformation for the level density [38] as

Z(β,J ) =
∑

ρ(E,J )e−βEδE, (15)

where ρ(E,J ) is obtained from Eq. (13) or (14). Knowing the
partition function, one can compute all the TQ of a nucleus at
different T and J by using the standard equations discussed in
Ref. [3], except that the thermodynamic entropy S(T ) should
be calculated based on the Clausius definition dS = βdE
[31], namely

S =
∫ T

0

1

τ
C(T )dτ, (16)

where C(T ) = ∂E(T )
∂T

is the heat capacity. Consequently, the
free energy F (T ) is calculated from F = E − T S, where E =
T 2 ∂

∂T
[lnZ(T)]. The reason for using Eq. (16) is due to the well-

known unphysical divergence of the saddle-point approxima-
tion at very low E, from which the J -dependent partition func-
tions (15) as well as the TQ are calculated [38]. This divergence
sometimes leads to a negative value of the entropy at very low
T if it is calculated by using the expression S = (F − E)/T .

The numerical calculations are performed for the nucleus
96Tc, whose single-particle spectra are obtained within the
axially deformed Woods-Saxon potential with the quadrupole
deformation parameter β2 equal to 0.16 [39]. The diagonal-
ization of the pairing Hamiltonian (4) is carried out for 12
doubly degenerate single-particle levels, with six levels located
above and the other six levels below the Fermi surface [29].
The blocking effect by the odd nucleon is properly taken into
account. The pairing interaction parameters Gτ are chosen
as GN = 0.47 MeV and GZ = 0.42 MeV for neutrons and
protons, respectively, so that the neutron and proton exact
pairing gaps at T = 0 reproduce their corresponding values
obtained from the experimental odd-even mass differences
[31]. The neutron and proton BCS gaps collapse at the critical
temperatures Tc equal to 0.95 MeV and 0.84 MeV, respectively.
Meanwhile the exact pairing gaps do not vanish, but monoton-
ically decrease with increasing T at T > 0.6 MeV and remain
finite in the range between 0.4–0.6 MeV even at T = 4 MeV,
smoothing out the sharp phase transition from superfluid phase
to the normal one in the BCS theory, as shown in Fig. 5. This
feature of the exact pairing has been discussed thoroughly in
the past (see, e.g., Refs. [29,31]). The slight increase of the ex-
act gaps with T at T � 0.6 MeV is caused by the weakening of
odd-particle blocking at low T as has been studied in Ref. [42].

The TQ at J = 12 and 16h̄ are calculated by using
the partition function (15) with the NLD ρ(E,J ) obtained
from Eq. (14) because the 96Tc nucleus under consideration
is asymmetrically deformed with positive value of β2 =
0.16. These calculated ρ(E,J ) are then compared with the
corresponding experimental data as well as those obtained
within other approaches such as the Hartree-Fock BCS [43]
and Hartree-Fock-Bogoliubov plus combinatorial methods
(HFBC) for positive and negative parities [44].

It is worth noticing that the theoretical calculations of the
NLD within the EP+IPM do not require the knowledge of the
level density parameter a, which is a Fermi gas concept. It can
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FIG. 5. Neutron and proton pairing gaps for 96Tc as functions
of temperature. The thick and thin lines denote the exact and BCS
results, respectively.

be estimated from the theoretical excitation energy E∗ (8) by
using the Fermi gas formula E∗ = aT 2. The spin cutoff factor
σ 2

‖ can also be estimated microscopically in terms of the single-
particle spin projection mk and quasiparticle energies Ek as in
Ref. [35]. This would allow us to study how the moment of
inertia depends on the nuclear superfluidity and temperature
as has been shown in Fig. 17 of Ref. [6], but by using the
EP+IPM instead of the BCS pairing. However, this is beyond
the scope of the present work, where the EP+IPM calculations
are employed to support the experimental measurements of
NLDs alone.

V. RESULTS AND DISCUSSIONS

A. Experimental and theoretical nuclear level densities

The experimental level density along with the results of
different theoretical calculations for J = 12 and 16 h̄ are
shown in Fig. 7. The level density parameter and angu-
lar momentum were measured and used in the CASCADE

code to calculate the level density. The uncertainty in the
level density due to the statistical model parameter (such
as different systematics of optical model parameter, radius
parameter, diffuseness, etc.) has been checked and found to
be ∼10%. The low-energy NLD data (∼1 MeV, represented
by the open circles in Fig. 7) are obtained from the total
NLD, which is calculated by counting the number of the
experimental discrete levels taken from Ref. [45]. These
low-energy data are multiplied by the spin distribution f (J ) =
(2J + 1)exp[−J (J + 1)/2σ 2]/[2σ 3

√
2π ] with σ 2 being the

spin cutoff factor taken from the systematics and weighted
over the experimental angular-momentum distribution for a
proper comparison with the high-energy data.

It is very important to note that the neutron energy spectra
should have negligible contamination from noncompound
reactions to obtain the NLD using particle spectra. This
is inferred by measuring the evaporated neutron spectra at
backward angle where the contributions from direct and
preequilibrium reactions are expected to be negligibly small.
A previous study confirmed that the neutron energy spectra

measured at backward angles from α-induced reactions on
different mass regions are mainly dominated by compound
nuclear reactions [46–48]. In addition, the experimental fold
distributions were generated during the off-line analysis by
gating with the high-energy γ rays [49] to remove the
nonfusion events, which generally appear for the lowest folds.
It is observed that the fold distributions gated with high-energy
γ rays and with neutrons are almost the same [49]. Therefore,
the good matching between the simulated fold distribution
(considering only CN angular momentum distribution) and
experimental fold distribution [see Fig. 2(a)] also confirms the
negligibly contribution from nonfusion events.

The error due to J distribution (±4) is taken care of by using
the extracted level density weighted over the experimental J
distribution. The present technique for extracting the angular
momentum gated level density could be well suited for lighter
projectiles such as α particles at very low excitation energies,
where the contribution from only one residue is significant or if
the measurement could be carried out in coincidence with the
evaporation residue. The importance of this measurement lies
in the direct measurement of inverse level density parameter k
at the experimental J and T as it is well known that k changes
significantly with J and T [13–16]. The values of k, J , and T
for different folds are shown in Fig. 6.
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FIG. 6. The value of k, J and T for different folds. The dotted
and dashed lines represent the k value according to CGCM [40] and
EGSM [41], respectively, as discussed later in the text.
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FIG. 7. Angular momentum gated NLD (filled cirlces) along with
the results of different theoretical calculations. Open circles are taken
from RIPL-3 [45] weighted over our J distribution and filled triangle
is from Hille et al. [52].

It is evident from Fig. 7 that the EP+IPM NLDs agree well
with the experimental data in both low- and higher-energy
regions, whereas the NLDs obtained within the HFBCS can
describe the experimental data at J = 16h̄ only and those
obtained within the HFBC underestimate the measured data.
The reason is that the HFBCS violates the particle number and
it does not also take into account thermal fluctuations, which
are very important in finite systems as atomic nuclei [50].
As the result, to fit the experimental data, the NLDs obtained
within the HFBCS and HFBC have to be renormalized to
the known NLD data, namely the data extracted from the
experimental analysis of the cumulative number of discrete
levels at low E and the average neutron resonance spacing
data at the neutron binding energy D0 [43,44]. Unfortunately,
the experimental value D0 for the 96Tc nucleus is not available
at present. Therefore, the HFBCS NLD was normalized to
the low-E data only and it certainly does not describe the
high-E data as seen in Fig. 7. At the same time, by comparing
the NLDs obtained from the HFBC in RIPL-3 [45] with
those given in BRUSILB [51] within the same method but
without renormalization, we found that the HFBC NLDs from
these two libraries, which are shown in Fig. 7, are exactly
the same. This indicates that, without renormalization, the
HFBC completely fails to describe the NLD data. It should be
mentioned here that no normalization is required within the
EP+IPM as has been mentioned in detail in Ref. [29].

It is worthwhile noticing that the present experimental data
are not normalized as there are no available data at finite an-
gular momentum. Therefore, the NLD of 96Tc at E∗ = 6–6.5
MeV was estimated from Ref. [52] by using the experimentally

measured spin cutoff factor and the corresponding formula
described there. The estimated value matches nicely with
our level density [as shown in Fig. 7(a)]. It is observed that
the present experimental data are about 12 times smaller in
comparison to neighboring nuclei 95,96Mo at E∗ = 6 MeV
(J = 0h̄) due to the finite angular momentum selected in our
experiment for 96Tc. Our level density has also been compared
with the results of microscopic EP+IPM calculation, which
provides the absolute value of NLD and recently explained the
level density in other mass regions without any normalization
[29]. The good matching between the present experimental
data and EP+IPM results provides the confidence on our
measurement of NLD. Therefore, the EP+IPM results for
the J -dependent NLDs shown in Fig. 7 together with those
for the total NLDs reported in Ref. [29] clearly show that the
EP+IPM method, which conserves exactly the particle number
at both zero and finite temperature, is indeed a microscopic
method able to provide a reliable description of both total and
angular-momentum-dependent NLD data.

To obtain the NLD for the whole range of E∗, the composite
Gilbert-Cameron model (CGCM) [40] has been used in the
past. This model combines the constant temperature model at
low E∗ with Fermi gas model at higher E∗ to get a realistic E∗-
dependent NLD. The CGCM model gives ã = αA + βA2/3,
where A is the mass number, the parameters α and β are
estimated as α = 0.0692559 and β = 0.282769 [40], and thus
the value of k comes as 7.63 MeV for 96Tc. Another formalism
of NLD exists, namely the enhanced generalized superfluid
model (EGSM), which takes into account the E∗ shifts, shell
dependencies of NLD, and collective enhancement due to
vibrational and rotational effects, within the framework of the
nuclear superfluidity at low energy and Fermi gas at higher
energy [41]. It gives the corresponding values of α and β as
0.093 ± 0.004 and 0.105 ± 0.014, respectively [53]. The E∗
shift is estimated as δshift = 0.617 − 0.00164A MeV. In this
case, k becomes 8.3 MeV for 96Tc. The k values, based on
EGSM and CGCM, have been plotted in Fig. 6(a), along with
the experimental values. Our experimental data agree better
with the EGSM values rather than with the CGCM ones. The
higher value of experimental k indicates lower ã that in turn
decreases the NLD. This could be explained in the light of
the theory of fading out of collectivity in NLD, as the EGSM
includes the collective enhancement of NLD [15,47–49]. This
is corroborated by the agreement of experimental data with the
results of EP+IPM microscopic calculations, which include
the collective enhancement effect.

B. Spin cutoff factor

The ratio of experimental level densities at the same E∗ but
different J values allows us to extract the energy dependence
of the spin cutoff factor (σ ) as shown in Fig. 8, where the
extracted σ as a function of excitation energy is compared
with the theoretical approximation σ 2

F = 0.01389A5/3

ã

√
aU

[53] (shown as dotted line). The error bar in the experimental
data is estimated from the errors of NLDs and J . Besides,
the estimated σ by a frequently used theoretical prediction
σ 2 = 0.1461

√
a(U − δ)A2/3 [6,54] with the pairing energy δ

is also plotted in the same figure (dashed line). This prediction
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FIG. 8. Excitation energy-dependent spin cutoff factor (filled
symbols) along with different theoretical calculations. The dotted
lines are taken from Ref. [53], the dashed lines are taken from
Ref. [54]. The continuous and double dot-dashed lines represent the
σ⊥ and σ‖, respectively, used in the EP+IPM calculation.

is based on a statistical mechanical calculation, which averages
the square of the spin projection on the z axis over the
single-particle states near the Fermi level [6]. The experimental
data are also compared with the results of the microscopic
EP+IPM calculations by using the Eqs. (11) and (12) as shown
by the continuous (σ⊥) and double dot-dashed (σ‖) lines,
respectively, in Fig. 8. It is seen that the trend of the extracted
σ is reproduced by the EP+IPM (σ⊥) and the formulas given
in Refs. [6,53,54].

C. Nuclear thermodynamical quantities

As the NLDs obtained within the EP+IPM agree well with
the experimental data, they can be used to calculate the TQ in
order to understand the behaviors of the latter as functions of
T and J . The TQ of 96Tc have been estimated using EP+IPM
NLDs for J = 12 and 16 h̄ as shown in Fig. 9. It can be seen
from this figure that all the TQ show the correct trend as that
observed in a nearby nucleus 96Mo [11,12]. The free energy,
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FIG. 9. Angular momentum gated thermodynamic quantities as
functions of temperature obtained using EP+IPM level densities.

entropy, and average energy behave smoothly as functions of
temperature as expected. However, the nature of heat capacity
in 96Tc is different from 96Mo nucleus, namely there is a
pronounced bump in the heat capacity of 96Mo at around T ∼
0.7–1 MeV, which is close to the critical temperature Tc where
the pairing gap collapses [11,12]. As for the heat capacity of
96Tc, a little bump is seen at around T ∼ 0.5–1.0 MeV. This
difference might come from the pairing property of odd-odd
96Tc nucleus, which is weaker than that in even-even 96Mo.
It is also observed that the angular momentum does not have
much effect on the nature of the TQ. Among the four TQ,
the heat capacity is the most important quantity as it gives
the useful information about the pairing phase transition. As
can be seen from Fig. 9, the heat capacities for J = 12 and
16 h̄ coincide at high temperature (T > 1.5 MeV). However,
at low T , there is a noticeable change due to the angular
momentum. Therefore, the angular momentum could have an
important role in even-even systems or for those nuclei that
show the pairing reentrance phenomena [55]. Thus, it would be
very interesting to study the angular momentum effect on the
pairing phase transition in even-even systems in the near future.

VI. SUMMARY AND CONCLUSIONS

Angular momentum gated NLDs in the energy range of
E∗ = 5–15 MeV have been extracted using the evaporated
neutron energy spectra in the 4He + 93Nb reaction. The level
density parameter and angular momentum were measured
experimentally and used in the statistical model code to
estimate the NLD. The use of a low-energy light-ion α beam
allows us to extract the NLD at below and above the particle
threshold energy. The extracted NLDs for J = 12 and 16
h̄ were compared with the results of different microscopic
calculations such as EP+IPM, HFBCS, and HFBC. It is
observed that EP+IPM explains rather well the experimental
data and thus it was used to extract the thermodynamic
properties of 96Tc nucleus. It is quite interesting to note that the
free energy, entropy, and average energy show the correct trend
as that observed in the nearby 96Mo nucleus. However, the
bump in the heat capacity of 96Tc is not as pronounced as that
seen in 96Mo, in spite of being the same mass. This difference
should not be a surprise since pairing in the even-even system
as 96Mo is always stronger than that in the odd-odd system as
96Tc. In addition, although the angular momentum does not
have much effect on the nature of thermodynamic quantities,
it would be very interesting to study the angular momentum
effect on pairing correlation in even-even systems. In addition,
the E∗-dependent spin cutoff factor has also been extracted and
is found to be in reasonable agreement with the well-known
theoretical formulas.
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