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The nuclear temperature is calculated from the derivative of the logarithm of the level densities in 60-62Ni
and 170-172Yb. The latter are obtained within a method, which includes exact pairing for the levels around the
Fermi surface in combination with the independent particle model for the rest of the single-particle spectrum. It
is found that the increase in this temperature is relatively slow up to the excitation energy E∗ = E∗

f so that, at
0 < E∗ � E∗

f , the level density can be described well by the constant-temperature model. The values of E∗
f are

found to be 10 MeV for 170-172Yb and 20 MeV for 60-62Ni, that is much higher than the particle separation threshold.
Within this energy interval, the constant temperature is found to be around 0.5 MeV for 170-172Yb, whereas for
60-62Ni it can be any value between 1.3 and 1.5 MeV, in excellent agreement with the recent experimental finding.
It is also shown that pairing plays an important role in maintaining this constant temperature at low excitation
energy.
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I. INTRODUCTION

The nuclear level density (NLD), defined as the number
of excited levels per unit of excitation energy E∗, increases
exponentially with E∗. This outstanding feature of NLD has
paved the way for studying the average properties of nuclei
within the framework of thermodynamics, such as pairing cor-
relations, nuclear temperature, entropy, heat capacity, etc. [1].
NLD has important contributions in the study of low-energy
nuclear reactions as well as nuclear astrophysics [2,3].

According to thermodynamics, the nuclear temperature is
a parameter, which is defined from the NLD ρ(E) as

T =
[
∂ ln ρ(E)

∂E

]−1

. (1)

In the first model for NLD, which was proposed 80 years ago
by Bethe [4] based on Fermi gas and led to the fundamental
phenomenological formulas for NLD, such as the back-shifted
Fermi gas, the NLD ρ(E) is described approximately as
exp(2

√
aE∗) with the level-density parameter a. The nuclear

temperature T , defined from Eq. (1), is then proportional to
the square root of the excitation energy E∗, viz. T � √

E∗/a.
Therefore, the Fermi-gas model implies an increase in nuclear
temperature T with excitation energy E∗. However this model
fails to describe the NLD at low excitation energies below the
particle separation threshold.

The constant-temperature (CT) model, suggested by Gilbert
and Cameron in 1965 [5], assumes that the NLD at low
excitation energies (E∗ � 10 MeV) can be described by a
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constant-temperature T , namely,

ρ(E∗) = 1

T
e(E∗−E0)/T ≡ B(T )eE∗/T ,

B(T ) = [T eE0/T ]−1. (2)

This model has become increasingly popular in the study
of NLD in recent years [6–9] where it has been suggested
that its validity can be extended to much higher excitation
energies up to E∗ around 20 MeV for 60Ni and 60Co isotopes
[6]. The physical mechanism of this extension has been
proposed based on the first-order phase transition from a
superfluid to an ideal gas of quasiparticles [9] where most
of the energy is absorbed near the critical temperature of Tc �
0.57�(0), which is predicted within the finite-temperature
Bardeen-Cooper-Schrieffer (FTBCS) theory, with �(0) being
the pairing gap at zero-temperature T = 0. On the other hand,
a number of studies in the past four decades have shown that,
in finite systems, such as nuclei, thermal fluctuations smooth
out the sharp phase transition from the superfluid phase to the
normal one so that the pairing gap �(T ) does not collapse at Tc

but monotonically decreases with increasing T [10–16]. This
property of finite systems may put under question the concept
based on the first-order phase transition for extending the CT
model to the region far above the particle separation energy.
In this situation, it is highly desirable to analyze the validity of
this phenomenological model by using a microscopic model,
which is able to describe the NLD at both low as well as
resonance energies. In Ref. [17], by comparing the shell-model
results with the standard phenomenological approaches, it has
been proposed that the CT model reflects the general process
of nuclear chaotic dynamics.

Recently a unified approach has been proposed to simul-
taneously describe both the NLD and the radiative strength
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function based on the solution of exact pairing (EP) problem
in combination with the independent-particle model (IPM),
which is referred to as EP + IPM hereafter [18]. In the present
paper, we will use this approach to study the validity of the CT
model in nickel 60–62Ni and ytterbium 170–172Yb isotopes.

The paper is organized as follows. The formalism of the
EP + IPM is outlined in Sec. II. The results of the numerical
calculations are analyzed in Sec. III. The paper is summarized
in the last section where conclusions are drawn.

II. DESCRIPTION OF NUCLEAR LEVEL DENSITY
WITHIN THE EP + IPM

The present formalism employs the pairing Hamiltonian,

H =
∑

k

εk(a†
+ka+k + a

†
−ka−k) − G

∑
kk′

a
†
+ka

†
−ka−k′a+k′ , (3)

which describes the motion of protons and neutrons within
their mean fields and their interactions via the monopole pair-
ing forces. The strength of the pairing interaction is given by
a constant G, which is different for protons and neutrons. The
notations a

†
±k(a±k) are the creation (annihilation) operators

of a nucleon with angular momentum k (in the deformed
basis), projection m±k , and energy εk for the kth level from �
single-particle levels. This Hamiltonian (3) is diagonalized at
T = 0 to obtain the exact eigenvalues ES with S being the total
seniority, which is equal to 0,2, . . . ,� for a system with an
even number of particles and 1,3, . . . ,� for a system with an
odd number of particles [19]. The exact partition function is
constructed within the canonical ensemble (CE) at T �= 0 by
using these eigenvalues as [16,18]

Z(T ) =
∑

S

2Se−ES/T . (4)

All the thermodynamic quantities, such as free-energyF , total-
energy E , heat-capacity C, and pairing gap � are calculated
from the partition function Z(T ) as

F = −T ln Z(T ), S = −∂F
∂T

= E
T

+ ln Z(T ), (5)

E = F + T S, C = ∂E
∂T

, (6)

� = √−GEpair, Epair = E − 2
∑

k

[
εk − G

2
fk

]
fk, (7)

where the single-particle occupation numbers fk are calculated
from the state-dependent occupation numbers f S

k as

fk = 1

Z(T )

∑
S

2Sf
(S)
k e−ES/T . (8)

This formalism exactly conserves the particle number at zero
and finite temperatures, and the exact pairing gap � does
not vanish at T = Tc as the FTBCS gap but monotonically
decreases with increasing T , remaining finite even at T as
high as 5 MeV [16,18].

In practical calculations the size of the matrix to be
diagonalized cannot be too large. Therefore the exact solutions
of the pairing Hamiltonian are obtained only within a truncated
subspace of single-particle levels around the Fermi surface
where pairing is significant. The partition function Z(T ) of

the total system is then calculated following the prescription
in Refs. [20,21] as

ln Z(T ) = ln Z′
tr(T ) + ln Z′

sp(T ) − ln Z′
tr sp(T ), (9)

where Z′
tr(T ) ≡ Ztr(T )exp(E0/T ) denotes the partition func-

tion with respect to the ground-state energy E0 with Ztr(T )
being the exact partition function (4) obtained in the trun-
cated subspace. The functions Z′

sp(T ) ≡ Zsp(T )exp(E0/T ) and
Z′

tr sp(T ) ≡ Ztr sp(T )exp(E0/T ) are calculated by using the IPM
partition functions Zsp(T ) and Ztr sp(T ), which are obtained
within the IPM [22] for the entire single-particle spectrum and
the truncated one, respectively.

The NLD ρ(E) is calculated as the inverse Laplace
transform of the partition function (9) in the saddle-point
approximation as

ρ(E) = ω(E)√
2πσ

, (10)

with the density of state ω(E) defined as [23]

ω(E) = eS

T
√

2πC , (11)

where the entropy S and the heat-capacity C are obtained from
the partition function Z(T ) (9) by using their corresponding
expressions in Eqs. (5)–(7).

The spin cutoff parameter σ in Eq. (10) describes the width
of the spin distribution. In an axially deformed nucleus, there
are two spin cutoff parameters, which are associated with the
moments of inertia perpendicular (I⊥) and parallel (I‖) to the
nuclear symmetry axis, denoted as σ⊥ = I⊥T/h̄2 and σ‖ =
I‖T/h̄2, respectively. Their empirical expressions, based on
the limit of a rigid body with the same density distribution as
of the nucleus, are given as [24,25]

σ 2
⊥ ≈ 0.015A5/3T , σ‖ = σ⊥

√
3 − 2β2

3 + β2
, (12)

where A is the mass number and β2 is the quadrupole
deformation parameter.

As the pairing Hamiltonian (3) includes neither interactions
of higher multipolarities, such as dipole, quadrupole, etc., nor
the rotational degree of freedom, the increase in NLD owing to
collective vibrational and rotational excitations is introduced
in terms of the vibrational kvib and rotational krot enhancement
factors following the description in Refs. [25–27]. They are
defined as the ratios between the “correct” NLD including all
degrees of freedom and the NLD where the collective vibration
and rotation, respectively, are absent. Their empirical formulas
are given as [25,27]

kvib = e0.0555A2/3T 4/3
, krot = σ 2

⊥ − 1

1 + e[(E−UC )/DC ]
+ 1, (13)

with DC = 1400β2
2A−2/3 and UC = 120β2

2A1/3. An alter-
native treatment of kvib based on the generalized boson
partition function has been reported within the Hartree-Fock-
Bogoliubov plus combinatorial (HFBC) method in Ref. [28],
which separates the coherent particle-hole (ph) configurations
forming the collective phonons from the incoherent ones to
avoid double counting. The distribution of kvib predicted within
this alternative treatment is quantitatively equivalent to the
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FIG. 1. Neutron pairing gaps � [(a)–(c)] and total heat-capacities C [(d)–(f)] as functions of T obtained within the EP + IPM (the thick
solid line) and the FTBCS (the thin solid line) for 60–62Ni isotopes.

above-mentioned empirical formula in the region of excitation
energy E∗ < 30 MeV. Including these effects of vibrational
and rotational enhancements, the final total NLD is given as
[25,29]

ρ̃(E∗) = krotkvibω(E∗)/(σ‖
√

2π ). (14)

By using the nuclear temperature T̃ (E) = [∂ ln ρ̃(E)/∂E]−1,
which is defined from Eqs. (1) and (14), one finds from Eq. (2)
the parameter B(T̃ ) simply as

B(T̃ ) = ρ̃(E∗)e−E∗/T̃ . (15)

III. ANALYSIS OF THE NUMERICAL RESULTS

The numerical calculations are carried out for 60–62Ni and
170–172Yb isotopes, whose single-particle spectra are taken
from the axially deformed Woods-Saxon potentials, following

the method described in Ref. [30]. By defining the nuclear
shape in terms of a multipole expansion into spherical harmon-
ics, this method diagonalizes a model Hamiltonian including
the spin-orbit interaction and Coulomb potential for protons in
the axially deformed harmonic-oscillator basis, which allows
up to 19 harmonic-oscillator shells. The single-particle spectra
used in the present calculations span a large space from the
bottom of the potential up to the major shell with N = 126
(five harmonic-oscillator shells). The neutron spectra are from
around −39 and −40 MeV up to around 25 and 10 MeV,
whereas the proton spectra are from around −34 and −33 MeV
up to 30 and 19 MeV for Ni and Yb isotopes, respectively.
The distances εmax

p − εmin
h between the highest particle (p)

state (top) and lowest hole (h) state (bottom) of these spectra
amount to 64 and 50 MeV for neutrons, whereas for protons
they are 64 and 52 MeV for Ni and Yb isotopes, respectively,
which well cover the regions of giant dipole resonances. The
values of the quadrupole deformation parameter β2 obtained
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FIG. 2. The same as in Fig. 1 but for Yb isotopes. The thick and thin lines stand for the EP + IPM and FTBCS results, respectively.

from the mass calculations in Ref. [31] are employed. They
are estimated from the experimental values of the quadrupole
transition probability B(E2; 2+

1 → 0+
1 ) from the 2+

1 state to
the 0+

1 one or the experimental binding energy. For 60–62Ni
the values of β2 are determined as β2 = 0,−0.13, and −0.2,
respectively, whereas for 170,171Yb and 172Yb these values
are determined as 0.295 and 0.296, respectively. The other
parameters of the Woods-Saxon potential are the same as those
reported in Ref. [30]. The values of the pairing interaction
parameter G for neutrons and protons are chosen so that
the exact neutron and proton pairing gaps obtained at T = 0
reproduce the corresponding experimental values extracted
from the odd-even mass differences [32]. For 60–62Ni isotopes,
which are proton closed-shell nuclei (Z = 28) (�Z = 0), only
neutron pairing is treated by using the values of GN chosen
to be 0.475, 0.48, and 0.473 MeV, respectively. For 170–172Yb
these values are GN (GZ) = 0.25 (0.29), 0.284 (0.286), and
0.24 (0.29) MeV, respectively. The diagonalization of the
pairing Hamiltonian is carried out for 12 doubly degenerate
single-particle levels with six levels above and six levels below

the Fermi surface. A set of a total of 73 789 (69 576) eigenstates
for the even (odd) particle number of each type of particles
is obtained and employed to construct the exact CE partition
function. The remaining portion of the single-particle spectrum
outside this truncated space is treated within the IPM as has
been discussed in the previous section.

Shown in Figs. 1(a)–1(c) are the results of the exact (the
thick lines) and the FTBCS (the thin lines) neutron gaps as
functions of T in 60–62Ni isotopes. The exact pairing gap is
defined following Eq. (18) in Ref. [16]. Although the FTBCS
gaps collapse at the critical temperatures of Tc = 0.99 MeV
for 60,62Ni and 0.85 MeV for 61Ni, the exact gaps generally
decrease with increasing T and remain finite well above Tc.
Even at T = 3 MeV their values are still as large as around
0.7 MeV. In 61Ni a slight increase in the gap is observed at
T < 1 MeV because of the decrease in the blocking effect
from the odd neutron [33]. The heat capacities obtained within
the FTBCS show a prominent spike at Tc as the manifestation
of the phase transition from the superfluid phase to the normal
one, whereas the exact heat capacities only have a small bump
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in comparison with predictions of SMMC calculations (the triangles) [(a)–(c)], the HFBC calculations for the positive (the dashed lines) and
negative parities (the dotted lines), and the HFBCS ones (the dashed-dotted lines). The experimental data for Ni and Yb isotopes are from
Refs. [34,38,39], resepctively.

in the region around Tc, confirming that the phase transition
is smoothed out [Figs. 1(d)–1(f)]. The increase in the heat
capacities with T at high T also assures that the single-
particle spectra employed in the calculations are sufficiently
large.

Similar features are seen for Yb isotopes where the FTBCS
heat capacities have two peaks located at Tc [Figs. 2(d)–2(f)],
which correspond to the collapse of the neutron and proton
pairing gaps [Figs. 2(a)–2(c)], whereas the exact results yield
smooth curves, which monotonically decrease (the pairing
gaps) or increase (the heat capacities) as increasing T .

The NLDs obtained within the EP + IPM (the solid lines)
for Ni isotopes and shown in Figs. 3(a)–3(c) as functions
of E∗ agree much better with the experimental data [34]
than the predictions by the global microscopic calculations
within the HFBC method for both negative (the dashed lines)

and positive (the dotted lines) parities, whose values are
taken from the RIPL-3 database [35]. The latter noticeably
overestimate experimental NLDs for 60,62Ni. The source of
this discrepancy comes from the fact that, to have a good
description of the experimental data, the NLDs obtained within
the HFBC method have to be renormalized based on two
phenomenological parameters, whose values are extracted
from the experimental analysis of the cumulative number of
levels and the neutron resonance spacing at the neutron binding
energy. Given the absence of these experimental data for
60–62Ni, the present HFBC results for them are unrenormalized.
Regarding the EP + IPM, its exact CE partition function is
obtained from the direct diagonalization of the matrix elements
of the pairing Hamiltonian (3), including all possible couplings
among the ph, pp, and hh states without the necessity of any
renormalization of the NLDs. As compared to the prediction
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by the Hartree-Fock plus BCS (HFBCS) approach [36], the
EP + IPM results in general have a steeper slope, which is
lower at E∗ � 7–7.7 MeV (10 MeV) for 60,61Ni (62Ni) and
slightly higher at larger E∗ than that obtained within the

HFBCS. In the low-E∗ region the predictions by both the
EP + IPM and the HFBCS agree well with the experimental
data (within the experimental error bars). In the high-E∗ region
the EP + IPM results still are closer to the experimental data
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than the HFBCS ones especially for 60,61Ni. The prediction
by the shell-model Monte Carlo (SMMC) approach [37] is
bracketed between the EP + IPM and the HFBCS results
in the low-E∗ region but closer to the HFBCS one at
high E∗.

For Yb isotopes, the total NLDs obtained within the
EP + IPM and HFBC (after being renormalized) and shown
in Figs. 3(d)–3(f) agree quite well with the experimental data
and generally better than the predictions by the HFBCS. The
latter overestimates the experimental data for 170,172Yb at
E∗ > 2 MeV. For 171Yb the HFBCS slightly overestimates
the experimental NLD at 0.5 < E∗ < 2 MeV and underesti-
mates it at E∗ > 5 MeV. Meanwhile, the FTBCS in general
underestimates the experimental data, in particular, for the odd
isotopes 61Ni and 171Yb.

The nuclear temperature T̃ , which was calculated by using
the definition (1) and the total NLD ρ̃(E∗) in Eq. (14)
for 60–62Ni isotopes, is displayed in Figs. 4(a1)–4(c2) as a
function of E∗ from which panels (a1), (b1), and (c1) are
the portions at low excitation energy (E∗ � 20 MeV) of the
corresponding panels on their right, that is, (a2), (b2), and (c2).

The corresponding values of the parameter B(T̃ ), which were
calculated by using Eq. (15), are plotted in Figs. 4(d1)–4(f2).
The data points are obtained by using the same Eqs. (1) and
(15) but with the experimental NLDs from Ref. [34] instead
of ρ̃(E∗) (14). The results in Figs. 4(a1)–4(c2) show that,
except for the region of very low excitation energy below
1 MeV, the nuclear temperature T̃ increases almost linearly
with E∗ but this increase is relatively slow so that T̃ can be
approximated with a constant of around 1–1.5 MeV at E∗
within the energy interval where the data points are available.
The values of T̃FTBCS and B(T̃ )FTBCS, which are obtained by
using ρ̃(E∗)FTBCS calculated within the FTBCS, also are shown
in Figs. 4(a1)–4(f2) for comparison (the thin solid lines). At
E∗ � 5 MeV, the thin line, which describes the dependence
of T̃FTBCS on E∗, almost coincides with the thick line for T̃
obtained within the EP + IPM except at E∗

c corresponding
to the critical temperature Tc where the FTBCS pairing gap
collapses. As for B(T̃ )FTBCS, it undergoes not only a singularity
in the form of a deep minimum, but also a jump at E∗

c ,
below (above) which B(T̃ )FTBCS decreases (increases) with
increasing E∗.
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A quite similar feature is also seen in 170–172Yb isotopes
as displayed in Fig. 5 where the data points were obtained by
using the experimental NLDs from Refs. [38,39]. This figure
also shows that the temperature T̃ remains nearly constant
at around 0.5 MeV between E∗ � 0.4 and 0.6 MeV up to
E∗ � 10 MeV, that is, within the original assumption on the
validity of the CT model. The E∗ dependences of T̃FTBCS and
B(T̃ )FTBCS now have two singular points, corresponding to the
collapse of the FTBCS neutron and proton pairing gaps, below
which B(T̃ )FTBCS is generally smaller than B(T̃ ) obtained
within the EP + IPM.

It can also be observed from these results that the values
of the coefficient B(T̃ ) obtained in odd-mass isotopes 61Ni
and 171Yb are about one order larger than the corresponding
values in the neighboring even-even nuclei. The source of this
difference is the pairing suppression at low excitation energy
in odd-mass nuclei because of the blocking effect [33].

In Fig. 6 we compare the NLDs ρ̃(E∗), temperature T̃ ,
and coefficient B(T̃ ) obtained for 60Ni and 170Yb within the
EP + IPM (the solid lines) with their corresponding values
obtained within the IPM (the dashed lines), that is, without
pairing. The figure shows that the slope of the NLDs obtained
without pairing [the dashed lines in Figs. 6(a) and 6(d)] is
steeper than that of the results obtained with exact pairing.
Consequently, the dependence of T̃ on the excitation energy
E∗ is depleted at E∗ < 5 MeV [the dashed lines in Figs. 6(b)
and 6(e)], worsening the validity of the CT model in this
region of low excitation energy. The corresponding values of
the coefficient B(T̃ ) become larger by around one and two
orders at E∗ > 5 MeV for 60Ni and 170Yb, respectively. The
slope of B(T̃ ) obtained without pairing also gets steeper at
E∗ < 5 MeV. At E∗ > 5 MeV, pairing has almost no effect
on T̃ because the lines describing the E∗ dependences of the
NLDs obtained by using exact pairing [the thick lines in Figs. 3,
6(a), and 6(d)], FTBCS pairing (the thin lines in Fig. 3), and
without pairing [the dashed lines in Figs. 6(a) and 6(d)] are
almost parallel to each other. This makes their derivatives over
E∗ almost identical, so are the values of T̃ defined from Eq. (1).

The arithmetic means 〈T̃ 〉 of temperatures T̃ and 〈B(T̃ )〉
of the coefficients B(T̃ ) within the intervals of excitation
energy E∗

i � E∗ � E∗
f with E∗

i = 1, E∗
f = 20, and 10 MeV

for nickel and ytterbium isotopes, respectively, are collected
in Table I. For 60Ni the arithmetic mean 〈T̃ 〉 = 1.11 MeV is
slightly lower than the value found in Ref. [34] where it has
been shown that the NLDs in 60Ni and 60Co can be quite
well described by the CT model at a constant temperature
of T = 1.4 MeV up to E∗ = 20 MeV. Nonetheless, this
value of temperature still is located well between Ti = 0.84
and Tf = 1.52 MeV obtained at E∗

i = 1 and E∗
f = 20 MeV,

respectively.
The choice of T̃ = 1.4 MeV, proposed in Ref. [34], does

not seem to be unique because any value of T̃ within the
energy interval 1 MeV < E∗ � 20 MeV, which is obtained
from the same NLD ρ̃(E∗) (14), whose corresponding to a
coefficient B(T̃ ) remains approximately constant within this
energy interval, can serve as an alternative. To demonstrate
this, in Fig. 7(b), we show the coefficient B(T̃ ) obtained at
several temperatures [Fig. 7(a)] to reproduce the NLD ρ̃(E∗)

TABLE I. Arithmetic means 〈T̃ 〉 of temperatures T̃ and 〈B(T̃ )〉
of the coefficient B(T̃ ) in the energy interval E∗

i � E∗ � E∗
f with

E∗
i = 1 MeV, whereas E∗

f = 20 MeV for 60–62Ni and 10 MeV
170–172Yb isotopes. The values of T̃i at E∗

i and T̃f at E∗
f as well as

the corresponding values Bi ≡ B(T̃i) and Bf ≡ B(T̃f ) of coefficient
B(T̃ ) (15) also are shown.

Nucleus T̃ (MeV) B(T̃ ) (MeV−1) Arithmetic mean

T̃i T̃f Bi Bf 〈T̃ 〉 〈B(T̃ )〉
60Ni 0.84 1.52 0.11 6.04 1.11 1.02
61Ni 0.84 1.54 0.64 20.5 1.14 4.38
62Ni 0.89 1.53 0.11 5.03 1.09 0.79
170Yb 0.41 0.61 1.51 3.62 0.50 1.55
171Yb 0.45 0.65 20.5 41.6 0.53 22.5
172Yb 0.41 0.64 2.02 7.46 0.50 2.72

in 60Ni within the energy interval 0 < E∗ � 20 MeV. As seen
in Fig. 7(b), the lines showing the dependence of B(T̃ ) on E∗
obtained at T̃ = 1.3, 1.4, and 1.52 MeV weakly change with
E∗ in the interval 5 MeV � E∗ � 20 MeV so that they can be
approximated by corresponding constant values.

Shown in Fig. 8 are the predictions for the NLD ρ(E∗) in
60Ni by the CT model (2) at T = 1.3, 1.4, and 1.5 MeV for
which the corresponding constant (E∗-independent) values
of the coefficient B are found so that the best fit to the
experimental NLDs is achieved. As compared to the prediction

 0  5  10  15      20
E* (MeV)

T
 (

M
e

V
)

~

 0

 1

 2

10-2

100

102

B
(T

)
(M

eV
   

)
-1

 (a)

 (b)

Ti

Ti

<T>

<T>

Tf

Tf

1.4
1.3 

1.3 
1.4

~

FIG. 7. Coefficient B(T̃ ) (15) (b) obtained at several tempera-
tures, T̃ = Ti (0.84 MeV), 〈T 〉 (1.11 MeV), 1.3, 1.4 MeV, and Tf

(1.52 MeV) [the horizontal lines in (a)] from the NLD ρ̃(E∗) in 60Ni
as functions of excitation energy E∗.
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FIG. 8. Comparison of NLDs ρ(E∗) obtained from the CT model
(2) at T = 1.3 (the solid line), 1.4 (the dashed line), and 1.5 (the
dotted line) MeV and experimental NLDs for 60Ni.

with T = 1.4 MeV and B = 1.5 MeV−1, the NLD obtained
with T = 1.3 MeV and B = 0.8 MeV−1 gives a better fit
to the low-energy data [35]. The latter were extracted from
the analysis of the experimental level scheme within the in-
terval 0 � E∗ � 4.613 MeV with T = 0.9836 ± 0.0952 and
E0 = 0.8242 ± 0.2981 MeV, which corresponds to a value
of B = 0.44+0.18

−0.11 MeV−1 in Eq. (2). The NLD obtained with
T = 1.5 MeV and B = 3.0 MeV−1 agrees slightly better with
the data in the region 10 MeV � E∗ � 20 MeV. However,
all three predictions overall agree with the experimental data
within the whole interval 0 < E∗ � 20 MeV. In other words,
one may say that, for 60Ni, the CT model of the NLD is valid
up to E∗ = 20 MeV with any constant value of temperature
within the interval 1.3 � T � 1.5 MeV.

IV. CONCLUSIONS

In the present paper, by using the NLD predicted within the
EP + IPM method, which agrees well with the experimental

data, the nuclear temperature T̃ is calculated from the deriva-
tive of the logarithm of NLD (1). This temperature T̃ increases
almost linearly with the excitation energy E∗. However this
increase is relatively slow so that T̃ can be considered
as a constant of around 0.5 MeV at 0 < E∗ � 10 MeV
for ytterbium isotopes. Meanwhile, in 60Ni, the CT model
can describe rather well the experimentally extracted NLD
with a constant temperature between 1.3 � T̃ � 1.5 MeV up
to E∗ = 20 MeV, which is much higher than the particle
separation threshold. This feature is in excellent agreement
with the experimental finding of Ref. [34]. It is also shown
that pairing plays an important role in maintaining this nearly
constant value of temperature at low excitation energy. In
this way, the EP + IPM offers a consistent description of
the NLD, which goes smoothly from the low-energy region
E∗ � 5 MeV to the higher one (up to 20 MeV for Ni isotopes
and 10 MeV for Yb isotopes) without the need for matching
the CT model at low energy and the Fermi-gas one at high
energy as often performed by using the composite level-density
formula [5]. As a matter of fact, the values of the matching
energy Ex defined from the composite level-density formula by
using Eq. (26) and Table III in Ref. [5] are 7.49, 6.16, and 7.53
MeV for Ni isotopes with A = 60, 61, and 62, respectively. For
170–172Yb they are 4.67, 4.06, and 4.74 MeV, respectively. Last
but not least, the fact that the NLD at low excitation energy,
even at E∗ = 0, can be described well by the CT model at a
constant nonzero temperature also supports the suggestion of
introducing a ground-state’s effective temperature [40].
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