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A possible method to solve the sign problem is developed by modifying the original theory. Con-
sidering several modifications of the theory, the observable in the original theory is reconstructed
from the identity connecting the observables in the original and modified theories. We demonstrate
that our method gives the correct results even if the original theory has the severe sign problem by
using a simple 1-dimensional integral.

I. INTRODUCTION

In the many fields of physics, the first-principle cal-
culation plays an important role to analyze the nonper-
turbative properties of theories. However, when the ac-
tion S is complex valued, the first-principle calculation
is difficult because of the cancellation between the Boltz-
mann factors e−S . This problem is referred to as the
sign problem. Although several ways have been pro-
posed to solve the sign problem, it has not been solved
yet. A possible solution for the sign problem is the com-
plex Langevin method. The complex Langevin method
is based on the stochastic quantization [1] with complex
actions [2, 3, 4, 5] (see [6, 7] for a review). While the
original Langevin method with real actions always gives
the correct results, the complex Langevin method some-
times fails to reproduce the correct results [8, 9, 10, 11].
The condition of the correctness the complex Langevin
method has been discussed [12, 13]. If the distribution of
the complex variables in the complex Langevin dynamics
overlaps the singularity of the drift term of the complex
Langevin equation, it breaks a requirement for the cor-
rectness of the complex Langevin method. Recently, it
is shown that this problem is one of the reasons for the
failure of the complex Langevin method and it is referred
to as the singular drift problem [14, 15]. As other rea-
sons, the complex Langevin fails when the distribution
of the variables in the complex Langevin dynamics has a
tail of slow decay in the complex direction [16] and when
the ergodicity of the complex Langevin dynamics is not
satisfied [17]; see Ref. [18] a recent review of the complex
Langevin method. The applicable scope of the complex
Langevin in Quantum Chromodynamics(QCD) at finite
density has been investigated [17, 19, 20, 21, 22, 23, 24].
The purpose of this paper is to develop a way to ob-

tain the correct results even when the complex Langevin
method fails to reproduce the correct results. Our
method proposed in this paper is a improvement of the
method proposed in our previous paper [25]. In the pre-
vious paper, we proposed a new idea to avoid the sign
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problem. In this approach, the expectation value of ob-
servables in a bad model, which suffers from the sign
problem is reconstructed by ones in a good model which
is free from the sign problem through a simple identity.
Here, the good model is defined by adding an analytic
function to the fermionic determinant of the original bad
model so that the modified model has a desirable prop-
erty from a view point of some numerical computational
schemes to be applied. Thus, we refer to this approach
as the modification method. In the previous work how-
ever, we implicitly assumed that the reweighting factor
involved in the identity can be always computed within
appropriate precisions. Obviously, this assumption will
not be satisfied when the sign problem is quite severe.
Thus, the applicability of the modification method is ex-
pected not be different so much from others investigated
so far, such as reweighting method [26, 27, 28, 29].

In this paper, we propose a new method and demon-
strate that it is applicable without computing the
reweighting factor. In Sec. II, we review the modification
method proposed in the our previous paper [25] and point
out that the reweighting factor appears in the key iden-
tity and the method is not applicable when the reweight-
ing factor is small. Then, we improve our method and
the actual procedure is explained in the general case. In
Sec. III, we apply our method to a simple model, the
Gaussian model, and demonstrate that our method re-
produces the correct results. Then, we discuss some prop-
erties of the our method, such as the advantages, the dif-
ference from the reweighting method and the applicable
scope. Section IV presents our conclusions.

II. MODIFICATION METHOD

We focus on the class of models whose partition func-
tion has a following form:

Zf =

∫
D

dxf(x)e−Sq(x), (1)

where f(x) is a complex-valued function defined on x ∈
R, Sq(x) is a real-valued action and D is an integration
domain on a real axis, D ⊂ R. Since one can general-
ize our formulation to a higher dimensional theory in a
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straightforward way, we consider 0-dimensional field the-
ory, namely 1-dimensional integral. Typically, this type
of the partition function appears by integrating out the
fermion sector from the action. For instance, this class
of models includes the Thirring model, random matrix
models, and QCD. In these cases, f(x) corresponds to
the fermion determinant.
By exponentiating f(x) in Eq. 1, we get

Zf =

∫
D

dxe−(Sq(x)−log f(x)). (2)

Clearly seen from this expression, the effective action
S(x) ≡ Sq(x) − log f(x) is complex unless f(x) always
take real and positive values, that is f(x) ∈ R+. When
S(x) is complex valued function, it causes the sign prob-
lem for this class of models.
The expectation value of an observable O(x) is defined

by

⟨O⟩f ≡ 1

Zf

∫
D

dxO(x)f(x)e−Sq(x). (3)

For the later convenience, we introduce the special nota-
tion for the case of f(x) ≡ 1:

Z ≡ Z1 =

∫
D

dxe−Sq(x), ⟨O⟩ ≡ ⟨O⟩1 . (4)

With these definitions, the observable O(x) obeys

⟨f⟩ ⟨O⟩f = ⟨fO⟩ . (5)

By using the identity, we find the following relation for
two arbitrary complex-valued functions f(x) and g(x)
and the observable O(x):

⟨f⟩ ⟨O⟩f + ⟨g⟩ ⟨O⟩g = ⟨f + g⟩ ⟨O⟩f+g . (6)

If ⟨f⟩ ̸= 0, we obtain

⟨O⟩f = ⟨O⟩f+g +
(
⟨O⟩f+g − ⟨O⟩g

) ⟨g⟩
⟨f⟩

. (7)

This is what we have shown in the previous paper [25].
This identity is useful when the expectation value ⟨O⟩f
is difficult to compute due to the sign problem. If one
chooses an appropriate g(x) so that the alternative model
Zg and the modified model Zf+g are free from the sign
problem, one obtains ⟨O⟩f through computing ⟨O⟩g and

⟨O⟩f+g. We refer to this technique as the modification
method. It is known that this method is applicable to the
U(1)-link model [10]. A practical way to find an optimal
g(x) is also proposed in the previous work [25].
However, there is a caveat. It is non-trivial whether

⟨O⟩f can be computed within appropriate precisions due

to the existence of the factor ⟨g⟩ / ⟨f⟩. In fact, this factor

is rewritten as

⟨g⟩
⟨f⟩

=

∫
dxg(x)e−Sq(x)∫
dxf(x)e−Sq(x)

(8)

=

∫
dxg(x)e−Sq(x)∫

dx
(

f(x)
g(x)

)
g(x)e−Sq(x)

=

⟨
f

g

⟩−1

g

. (9)

The quantity ⟨f/g⟩g is nothing but the so-called

reweighting factor [30]. If the absolute value of the
reweighting factor is small, it indicates that the sign prob-
lem is severe. Apparently, one can compute ⟨O⟩f through

Eq. 7 when g(x) is chosen so that the factor | ⟨f/g⟩g | is
sufficiently large. Therefore, it seems that our modifica-
tion method has the same difficulty as the reweighting
method [26].

Nevertheless, we shall point out that our method is
different from the reweighting method and the large
reweighting factor is not necessary to apply the modi-
fication method. To see this, we rewrite Eq. 7 as

y = agx+ bg. (10)

Here, we separate the Eq. 7 into the g-independent parts

y = ⟨O⟩f , x =
1

⟨f⟩
, (11)

and g-dependent parts

ag =
(
⟨O⟩f+g − ⟨O⟩g

)
⟨g⟩ , (12)

bg = ⟨O⟩f+g . (13)

Suppose that all g-dependent quantities can be computed
without the sign problem, and there are several candi-
dates of such functions g(x). In this case, g-independent
quantities y and x are obtained as an intersection point
of the set of straight lines {agx + bg}. In the follow-
ing section, we demonstrate the method discussed in this
section, which is referred to as the multi-modification
method in this paper, using a simple model.

III. APPLICATION TO THE GAUSSIAN
MODEL

In this section, we apply our method to the Gaussian
model. To begin with, the sign problem in the model is
discussed. Then, we demonstrate how our method works
and gives the correct results.
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A. Sign problem in the Gaussian model

The Gaussian model is a 0-dimensional field theory,
which has the partition function

Zf =

∫ ∞

−∞
dxf(x)e−x2/2, f(x) = (x+ iα)2 (14)

with a positive real parameter α > 0. The effective action
S(x) = x2/2 − log f(x) is complex valued because f(x)
is complex valued when α ̸= 0. Then, this model has the
sign problem.
The analytic solutions of the observables in this model

can be easily obtained. For example, the observables x2,
x4, x6 are obtained as

⟨
x2

⟩
f
=

3− α2

1− α2
(15)⟨

x4
⟩
f
=

15− 3α2

1− α2
(16)⟨

x6
⟩
f
=

105− 15α2

1− α2
. (17)

In this study, we adopt the complex Langevin method
to numerically calculate the observables in the Gaussian
model. The complex Langevin equation of this model is
written as

dz

dt
= D(z) + η(t), (18)

where z is the complexified variable x → z ∈ C and t
is the fictitious time of the complex Langevin dynamics.
The First term of the RHS in Eq. (18) is the drift term,
which is expressed as

D(z) = −∂S(z)

∂z
= −z +

2

z + iα
(19)

and the second term is the Gaussian noise term, which
satisfies

⟨η(t)⟩η = 0, ⟨η(t1)η(t2)⟩η = 2δt1,t2 , (20)

where ⟨· · · ⟩η denotes the noise average. It was shown
that the complex Langevin method in this model gives
the correct results when the singular drift problem does
not occur [14, 15]. In this model, there are no problems
on the slow decay of the distribution in the complex di-
rection and the ergodicity. Thus in this model, we sup-
pose that the condition for the correctness of the complex
Langevin method is only the absence of the singular drift
problem.
In the Gaussian model, the correctness of the complex

Langevin method depends on the parameter α. In Fig.
1, the numerical results of the complex Langevin method
for an observable O(z) = Re(z2) are shown. When the
parameter α is sufficiently large α & 2.7, the complex
Langevin method gives the correct result. This is be-

cause there is no singular drift problem when α & 2.7.
To see that, in Fig. 2, the histogram of the absolute value
of drift term ρ(|D(z)|) in the complex Langevin dynam-
ics is shown when α = 2.7. In the numerical calculation,
we use the Euler’s method to solve the complex Langevin
equation for the total Langevin flow time 107 with the
discrete time dt = 10−2. We take configuration every
1 Langevin time after 102 Langevin time for the ther-
malization. Since the histogram in Fig. 2 exponentially
damps when α = 2.7, it is found that the singular drift
problem does not occur. On the other hand, the complex
Langevin method fails to give the correct results in the
other region, in particular around α ≃ 1. In Fig. 3, the
distribution of the drift term with α = 1.5 is shown. Un-
like the case with α & 2.7, the distribution with α = 1.5
does not exponentially drop and has the long tail to the
large |D|. Thus, when α = 1.5, it seems that the singular
drift problem occurs. Such kind of the analysis has been
done in the previous study in the Gaussian model [14].
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FIG. 1. The observables ⟨Re(z2)⟩ plotted against the param-
eter α in the Gaussian model. Solid line denotes the analytical
solution and the points denotes the numerical results of the
complex Langevin method.

In this paper, in order to reproduce the correct results
even in the small-α region by numerical calculation, we
consider the modification method. However, it is diffi-
cult to calculate observables within sufficient precision
only by directly using the modification method in the
Gaussian model. To see that, in the following, we con-
sider to directly apply the modification formula (7) to
the Gaussian model.

As a modification function g(x) of the theory, we con-
sider a function

g(x) = (x+ iβ)2 (21)

with a positive real parameter β. This function has the
same form as f(x) in Eq. (14) and different parameter β.
In order to apply the modification method, we have to



4

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0  5  10  15  20  25

ρ(
|D

|)

|D|

FIG. 2. The histogram for the absolute value of the drift
term in the complex Langevin equation of the Gaussian model
when α = 2.7 in log scale.
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FIG. 3. The histogram for the absolute value of the drift
term in the complex Langevin equation of the Gaussian model
when α = 1.5 in log scale.

choose appropriate function g(x), namely the parameter
β here, so that the following quantities can be correctly
calculated:

1. The observables ⟨O⟩g and ⟨O⟩f+g

2. The factor ⟨g⟩ / ⟨f⟩

Concretely, the value of β is constrained in the follow-
ing way. The observable ⟨O⟩g in the g-theory should be
correctly calculated by the complex Langevin method.
Since the modification function g(x) has the same form
as the original function f(x), we already know that ⟨O⟩g
is correctly obtained when β > 2.7. In addition to the
observable ⟨O⟩g, the observable ⟨O⟩f+g in the (f + g)-
theory also should be correctly calculated by the complex

Langevin method. We perform the complex Langevin dy-
namics and investigate the distribution of the drift term
in the (f + g)-theory for each α and β. For example,
in Fig. 4, it is shown that the distribution of the abso-
lute value of the drift term exponentially drops and the
singular drift problem does not occur when α = 1.5 and
β = 3.5. In our analysis on the distribution of the drift
term, we find that there is no singular drift problem in
the (f + g)-theory for arbitrary α > 0 if we choose g(x)
with β ≥ 3.5. Thus, the 1st condition of β is β ≥ 3.5.
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FIG. 4. The histogram for the absolute value of the drift term
in the complex Langevin equation of the modified Gaussian
model when α = 1.5 and β = 3.5 in log scale.

Next, following the 2nd condition, the factor ⟨g⟩/⟨f⟩
should be correctly calculated. However, this factor is
problematic in the modification method. As discussed in
(9) in the section II, this factor is rewritten to the inverse

of the reweighting factor ⟨f/g⟩−1
g . When the sign prob-

lem is severe, the absolute value of the reweighting factor
| ⟨f/g⟩g | tends to be small, and it is difficult to calculate

the observable ⟨O⟩f with sufficient precision. Actually,
as shown in Fig. 5, the absolute value of the reweight-
ing factor | ⟨f/g⟩g | is smaller than 1 in 0 < α < 3 with
3.5 ≤ β. In particular, in the region around α = 1, where
the sign problem is severe, the reweighting factor is al-
most 0. This happens because of the oscillatory behavior
of the quantity ⟨f⟩. Thus, there is no β satisfying both
1st and 2nd conditions above.

Then, it is quite difficult to calculate the observable
⟨O⟩f by using the modification formula (7). This problem
occurs also in the ordinary reweighting technique [26].
Although the modification method is different method
from the reweighting method, the modification method
has the same problem as the reweighting method.

Therefore, the alternative way is desired to calculate
the observable ⟨O⟩f without direct calculation of the
reweighting factor ⟨f/g⟩g, in particular, the quantity ⟨f⟩.
In the next subsection, we develop such method, namely
the multi-modification method, and demonstrate that
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FIG. 5. The reweighting factor ⟨f/g⟩g calculated in
the g-theory by the complex Langevin method with β =
3.5, 4.5, 5.5, 6.5 plotted against α.

the method works well in the Gaussian model.

B. multi-modification method

We demonstrate that the multi-modification method
discussed in Sec. II gives the correct results in the Gaus-
sian model even in the parameter-region where the sign
problem is severe.
As discussed in Sec. II, we rewrite the modification

formula (7) to the linear function as Eq. (10). We again
use the modification function g(x) defined in Eq. (21),
and each linear function (10) is determined once g(x) is
fixed. Our approach is to calculate the quantities ⟨f⟩ and
⟨O⟩f , namely x and y, as the intersection point of a set of
lines {y = agx+ bg} by calculating ag and bg for several
β.
Ideally, a set of lines {y = agx+bg} has an unique inter-

section point shown as Fig. 6. However, the coefficients
ag and bg have errors because the actual calculation for
the observables ⟨O⟩f+g, ⟨O⟩g and ⟨g⟩ are performed by
the complex Langevin method. Thus the value of y has
an error for each x due to the errors of the coefficients
and the possible values (x, y) form a band-like region in
xy-plane. We estimate the correct values of x and y,
namely ⟨f⟩ and ⟨O⟩f , from the overlap of all the band-
like regions corresponding several β.
To apply the multi-modification method, we have to

choose appropriate function g(x), namely the parameter
β here, so that the following quantities can be correctly
calculated:

1. The observables ⟨O⟩g and ⟨O⟩f+g

2. The average ⟨g⟩

Note that the 2nd condition in the multi-modification
method is weaker than the 2nd condition in the original
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FIG. 6. A set of lines defined in Eq. (10) with α = 1.5
and β = 3.5, 4.5, 5.5, 6.5. The analytic solution is substituted
for the coefficients ag and bg. The black circle denotes the
analytic solution of (x, y).

modification method while the 1st conditions are same.
In principle, the average ⟨g(z)⟩ in the quenched theory
is always calculable by the Monte Carlo method because
Sq(x) is supposed to be real. However, this quantity
becomes difficult to calculate if the modification function
g(x) has violent oscillation on its phase. Thus g(x) should
be chosen so that the sign of Re(g(x)) is not frequently
changed in the importance sampling of the Monte Carlo
simulation.

Actual condition for β is investigated as follows. From
the 1st condition, β is constrained to 3.5 ≤ β as we
already know in the previous subsection. Fortunately,
when 3.5 ≤ β, the quantity ⟨g⟩ can be correctly obtained
by the Monte Carlo method. In fact, the sign of Re(g(x))
is almost always negative in the Monte Carlo calculation
if 3.5 ≤ β. This result reflects the fact that the sign prob-
lem in the Gaussian model is not severe when 3.5 ≤ β.
Therefore, if 3.5 ≤ β, the above conditions are satisfied.
In other words, the coefficients ag and bg in Eq. (10) can
be correctly calculated when 3.5 ≤ β.

In our analysis, 6 values of β are taken from 3.5 to
8.5. With those β, the observables ⟨O⟩f+g and ⟨O⟩g
are calculated by the complex Langevin method, and the
quantity ⟨g⟩ is calculated by the Monte Carlo method.
In the complex Langevin method, we also use the Eu-
ler’s method to solve the complex Langevin equation for
the total Langevin flow time 107 with the discrete time
dt = 10−2. We take configuration every 1 Langevin time
after 102 Langevin time for the thermalization. We con-
sider O(x) = x2 as the observable, and then Re(z2) is
calculated by the multi-modification method.

In Fig. 7, we show the regions of the possible values of
(x, y) for each β when O(z) = Rez2 with α = 1.5. The
black square at (−0.8,−0.6) denotes the analytic solu-
tion of (1/⟨f⟩, ⟨Rez2⟩f ). The gray region is the overlap
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of all the regions for each β, and certainly covers the an-
alytic solution. We have performed the similar analysis
for the other α on O(z) = Rez2. In Fig. 8, we show the
numerical results of O(z) = Rez2 for each α calculated
by the multi-modification method. In addition to the
parameter-region where the sign problem is not severe,
the multi-modification method certainly reproduces the
correct results even in the parameter-region where the
sign problem is severe and the original complex Langevin
method fails to give the correct results.
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FIG. 7. The region of the possible values of (x, y) from
Eq. (10) for each β and their overlap (gray colored) when
O(z) = Rez2 and α = 1.5. The black circle at (−0.8,−0.6) is
the point of the analytic solution.
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FIG. 8. The numerical results of O(z) = Rez2 with 0 < α <
3 by the multi-modification method.

C. Discussion

The multi-modification method has some advantages
than the original modification method. In our method,
we do not have to directly calculate ⟨f⟩, which is the
average of the oscillatory function. It is difficult to cal-
culate the quantity with enough precision, in particular,
when the sign problem is severe. However, in our method,
both ⟨f⟩ and ⟨O⟩f can be simultaneously obtained with-
out direct calculation of ⟨f⟩ itself. In fact, the numerical
results of the average ⟨f⟩ obtained in our method well
reproduces the correct results, as shown in Fig. 9.

Moreover, as another advantage of the multi-
modification, we can reduce the errors of the observable
⟨O⟩f by considering more modification functions g(x). In
particular, if the coefficients ag and bg are quite different
between considered functions g(x), the overlap region is
more restricted. Then, in principle, we can improve the
numerical calculation by considering many modifications
of the theory. To that end, we have to develop more sys-
tematic ways to find an appropriate function g(x) as well
as the function defined in Eq. (21). However, it is work
in progress.
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FIG. 9. The numerical results of ⟨f⟩ for each α by the
multi-modification method.

In addition to O(z) = Rez2, we have performed sim-
ilar analysis on other observables with higher power of
z, O(z) = Rez4 and O(z) = Rez6. In Figs. 10 and
11, the numerical results for each observable are shown.
Although the results cover the analytical solutions with
their error, its errors are larger by increasing the power
of z.

From Figs. 8, 10 and 11 One can see that the numerical
error becomes larger around α = 1. This is because the
changes of the coefficients ag and bg are small even if β
changes when α ∼ 1. As a result, the overlap of the linear
functions forms a wide region, then the numerical error
for the observable ⟨O⟩f becomes larger.

In our method, the observable in the original theory
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FIG. 10. The numerical results of O(z) = Rez4 with 0 <
α < 3 by the multi-modification method.
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FIG. 11. The numerical results of O(z) = Rez6 with 0 <
α < 3 by the multi-modification method.

where the sign problem is severe is obtained from the
observables in the modified and reference theories where
the sign problem is not severe. This concept is similar to
that in the reweighting method. In fact, when we directly
apply the modification method and the sign problem is
severe, the reweighting factor ⟨f/g⟩g is small and the
modification has the same difficulty as the reweighting
method. However, the modification method is a differ-
ent method from the reweighting method. In particular,
one does not have to calculate the reweighting factor in
our method proposed in this paper. Moreover, in our
method, there is no overlap problem which appears in
the reweighting method[31].
In this study, we adopt the complex Langevin method

as a calculating tool of each observable in the theories
with the complex action. As other tools instead of the
complex Langevin method, there are some candidates

proposed in Ref. [32, 33, 34, 35, 36, 37, 38, 39, 40]. Ba-
sically, they are based on the Lefschetz thimble method
[41, 42] If one of them is adopted, the appropriate range
of β is different from the case of the complex Langevin
method, 3.5 ≤ β. It is nontrivial which method is supe-
rior as the actual calculating tool. The reason why we
adopt the complex Langevin method is that the correct-
ness of the complex Langevin method is easy to judge by
investigating the distribution of the drift term, at least
in this model.

Finally, we mention the applicable scope of the
multi-modification method. To calculate the observable
⟨O(z)⟩f in the original theory by the multi-modification

method, the 3 quantities, ⟨g(x)⟩ , ⟨O(x)⟩g and ⟨O(x)⟩f+g
should be calculated. If one can find some appropri-
ate modification functions g(x) satisfying the conditions,
the observable ⟨O(z)⟩f is always obtained by the pro-
cedure demonstrated above. Therefore, our method can
be applied the higher-dimensional theories. For example,
some interested theories such as the thirring model, chi-
ral random matrix theories and QCD have the sign prob-
lem at finite chemical potential. In those theories, there
are some parameter region where the complex Langevin
method gives the correct results. From the results in the
parameter region, one can apply the multi-modification
method and calculate the observable in the region where
the sign problem is severe and the complex Langevin
method gives the incorrect results.

IV. SUMMARY

In this paper, we have developed a way named multi-
modification method to solve the sign problem by im-
proving our previous method [25]. In our method, instead
calculating an observable in the original theory with the
fermion determinant f(x), one calculates the observables
⟨O(x)⟩g and ⟨O(x)⟩f+g in the theories with the fermion

determinants g(x) and f(x)+g(x) and the average ⟨g(x)⟩
in the quenched theory. If one can find the appropriate
functions g(x), the observable in the original theory can
be reconstructed from the overlap of the linear functions
defined in Eq. (10) for each g(x).

By applying it to a toy model, the Gaussian model, we
demonstrate how our method works when the complex
Langevin method is adopted as a computational scheme.
Although the modification function g(x) is arbitrary in
general, we consider only the function which has the same
form as f(x) and different parameter β defined in Eq.
(21). As a result, the correct results are correctly repro-
duced by our method in the parameter region where the
sign problem is severe and the direct use of the complex
Langevin method results in the wrong convergence. If
other appropriate function g(x) exists and one can find
it, the error of the observable will be smaller. To develop
more systematic ways to find an appropriate function
g(x) is work in progress.

Since it is not difficult, at least formally, to generalize
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our method to higher dimensional problem, we would like
to apply our method to the higher dimensional theories,
such as the Thirring model, the random matrix theory,
and finally QCD.
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