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Abstract

This article reviews theoretical and experimental advances in Efimov physics, an array of quantum few-body
and many-body phenomena arising for particles interacting via short-range resonant interactions, that is based
on the appearance of a scale-invariant three-body attraction theoretically discovered by Vitaly Efimov in 1970.
This three-body effect was originally proposed to explain the binding of nuclei such as the triton and the Hoyle
state of carbon-12, and later considered as a simple explanation for the existence of some halo nuclei. It was
subsequently evidenced in trapped ultra-cold atomic clouds and in diffracted molecular beams of gaseous helium.
These experiments revealed that the previously undetermined three-body parameter introduced in the Efimov
theory to stabilise the three-body attraction typically scales with the range of atomic interactions. The few- and
many-body consequences of the Efimov attraction have been since investigated theoretically, and are expected
to be observed in a broader spectrum of physical systems.

Contents

I Introduction 3

1 What is Efimov physics? 3

2 Why is it important? For which systems? 4

3 A short history of Efimov physics 4

II Three particles 7

4 Three identical bosons 7
4.1 The Efimov universal theory . . . . . . . 7
4.2 Finite-range interactions . . . . . . . . . 11
4.3 Other interactions . . . . . . . . . . . . 13

4.3.1 Coulomb interactions . . . . . . 13
4.3.2 Dipolar interactions . . . . . . . 14
4.3.3 Inverse-square interactions and

generalised Efimov effect . . . . . 15
4.4 Relativistic case . . . . . . . . . . . . . . 16
4.5 What is an Efimov state? . . . . . . . . 17

4.5.1 Energy . . . . . . . . . . . . . . . 18
4.5.2 Structure . . . . . . . . . . . . . 18

4.6 Observations in nuclear physics . . . . . 19

4.6.1 The Hoyle state of carbon-12 . . 20
4.7 Observations with atoms . . . . . . . . . 21

4.7.1 Helium-4 . . . . . . . . . . . . . 21
4.7.2 ultra-cold atoms under Feshbach

resonances . . . . . . . . . . . . . 23
4.8 Prospects for observation in condensed

matter . . . . . . . . . . . . . . . . . . . 25
4.8.1 Efimov states in quantum spin

systems . . . . . . . . . . . . . . 26
4.8.2 Universal few-body physics with

excitons . . . . . . . . . . . . . . 26

5 Three identical fermions 26
5.1 Resonant p-wave interactions . . . . . . 27
5.2 The super-Efimov effect . . . . . . . . . 27

6 Multi-component systems 28
6.1 Three distinguishable particles . . . . . 29

6.1.1 Three resonantly interacting pairs 29
6.1.2 Two resonantly interacting pairs 29
6.1.3 One resonantly interacting pair . 29

6.2 2 Identical particles + 1 particle . . . . 30
6.2.1 2 bosons + 1 particle with ` = 0 31
6.2.2 2 fermions + 1 particle with ` = 1 32
6.2.3 Trimers with higher-angular mo-

menta . . . . . . . . . . . . . . . 32
6.2.4 The Born-Oppenheimer picture . 32

1

mailto:pascal@riken.jp
mailto:shimpei.endo@monash.edu


6.2.5 Kartavtsev-Malykh universal
trimers . . . . . . . . . . . . . . 34

6.3 Particles with spin . . . . . . . . . . . . 36
6.3.1 Rotationally invariant systems . 36
6.3.2 Polarised systems . . . . . . . . . 36
6.3.3 Spin-orbit interaction . . . . . . 36

6.4 Observations in nuclear physics . . . . . 36
6.4.1 Triton . . . . . . . . . . . . . . . 37
6.4.2 Two-neutron halo nuclei . . . . . 40

6.5 Observations with atoms . . . . . . . . . 42
6.5.1 Two-component trimers . . . . . 42
6.5.2 Three-component trimers . . . . 43

III Dimensionality 45

7 Situation in 1D and 2D 45
7.1 One dimension . . . . . . . . . . . . . . 45

7.1.1 Identical bosons . . . . . . . . . 45
7.1.2 2 particles + 1 particle . . . . . . 45

7.2 Two dimensions . . . . . . . . . . . . . . 46
7.2.1 Identical bosons . . . . . . . . . 46
7.2.2 2 particles + 1 particle . . . . . . 46

8 Effects of confinement 47
8.1 From 3D to quasi-2D . . . . . . . . . . . 47

9 Mixed dimensions 48
9.1 The specificity of D = 3 . . . . . . . . . 48
9.2 Interactions with three relative coordi-

nates . . . . . . . . . . . . . . . . . . . . 50
9.3 Confinement-induced Efimov effect . . . 50
9.4 Stable Efimov trimers in bilayer or bi-

wire geometries . . . . . . . . . . . . . . 50
9.5 Observations with ultra-cold atoms . . . 51

IV The three-body parameter 52

10 What is the three-body parameter? 52
10.1 In the zero-range theory . . . . . . . . . 52
10.2 In systems with finite-range interactions 52
10.3 In systems with loss . . . . . . . . . . . 52

11 What sets the three-body parameter? 53
11.1 First calculations . . . . . . . . . . . . . 53
11.2 Van der Waals universality . . . . . . . 54

11.2.1 Three identical bosons . . . . . . 54
11.2.2 2 bosons + 1 particle . . . . . . . 59

11.3 Other types of short-range interactions . 60
11.3.1 Two-body correlation and effec-

tive range . . . . . . . . . . . . . 60
11.3.2 Deep-potential limits . . . . . . . 61
11.3.3 Classes of universality . . . . . . 61

11.4 Coupled-channel interactions . . . . . . 61
11.4.1 Feshbach resonances . . . . . . . 62
11.4.2 Broad resonances . . . . . . . . . 62
11.4.3 Narrow resonances . . . . . . . . 62
11.4.4 Intermediate resonances . . . . . 63

11.4.5 Experimental observations . . . . 64

V More than three particles 65

12 Bosons 65
12.1 Tetramers tied to Efimov trimers . . . . 65

12.1.1 Four identical bosons . . . . . . . 65
12.1.2 3 bosons + 1 particle . . . . . . . 66

12.2 Universal clusters . . . . . . . . . . . . . 67
12.2.1 Clusters below the ground-state

trimer . . . . . . . . . . . . . . . 67
12.2.2 Universal N -body clusters . . . 68

12.3 Observation with atoms . . . . . . . . . 68

13 Mass-Imbalanced Fermi mixtures 69
13.1 2 fermions + 2 fermions . . . . . . . . . 69
13.2 3 fermions + 1 particle . . . . . . . . . . 69

13.2.1 Four-body Efimov effect . . . . . 70
13.2.2 Universal four-body bound state 70
13.2.3 Five bodies and beyond . . . . . 70

VI Many-body systems 71

14 Many-body background 71
14.1 Efimov states in a Fermi sea . . . . . . . 71

14.1.1 Two bosons and a fermion in a
Fermi sea . . . . . . . . . . . . . 71

14.1.2 Three fermions in a Fermi sea . . 71
14.2 Efimov states in a condensate . . . . . . 72

14.2.1 Two impurities and a boson from
a BEC . . . . . . . . . . . . . . . 72

14.2.2 One impurity and two bosons
from a BEC . . . . . . . . . . . . 72

15 Many-body phases 73
15.1 Identical bosons . . . . . . . . . . . . . . 73

15.1.1 Three-body contact in a Bose gas 73
15.1.2 The non-degenerate unitary

Bose gas . . . . . . . . . . . . . . 73
15.1.3 The Efimov liquid phase . . . . . 74

15.2 Trimer phases in Fermi mixtures . . . . 75
15.2.1 Three-component Fermi mixtures 75
15.2.2 Two-component Fermi mixtures 76

VII Conclusion 77

2



Part I

Introduction

1 What is Efimov physics?

In 1970, Vitaly Efimov found a remarkable effect in the
quantum spectrum of three particles [1, 2]. He consid-
ered particles interacting through short-range attrac-
tive interactions that are nearly resonant. By short
range, one means interactions decaying faster than 1/r3

where r is the interparticle distance, and by nearly res-
onant, one means attractive interactions that can al-
most or just barely support a weakly two-body bound
state. The fact that, in quantum mechanics, an attrac-
tive interaction may be too weak to bind two particles
is due the quantum fluctuations of the kinetic energy
(also known as the zero-point energy) that competes
with the attractive interaction. When the interaction
is just strong enough to cancel the repulsive effect of
the kinetic energy, the interaction is said to be reso-
nant because two particles scattering at low energy are
very close to binding during their collision: they spend
a long time together (they “resonate”) before separat-
ing, which is characterised in scattering theory by an
s-wave scattering length that is much larger than the
range of the interactions.

Under these conditions, Vitaly Efimov found that
an effective long-range three-body attraction arises,
and this attraction may support an infinite family of
three-body bound states (called Efimov states or Efi-
mov trimers), in which the three particles are bound
at larger and larger distances, beyond the range of the
interactions. The Efimov effect, as it became known,
is striking in several aspects:

Induced long-range interaction Even though the
interactions are short-ranged, the three particles feel
a long-range three-body attraction. This seemingly
counter-intuitive situation can be explained by the fact
that an effective interaction is mediated between two
particles by the third particle moving back and forth
between the two. It is thus possible for the three parti-
cles to feel their influence at distances much larger than
the range of interactions, typically up to distances on
the order of the scattering length.

Discrete scale invariance Right at the resonance,
the scattering length is infinite and the effective at-
traction extends to infinite distances. Being of kinetic
origin (the exchange of a particle between two others),
the attraction scales like the kinetic energy of the par-
ticles and brings no characteristic length scale. As a re-
sult, the three-body system is scale invariant. Quanti-
sation in this attractive potential gives an infinite series
of bound states, the Efimov trimers, whose properties
such as size and energy are related to each others’ by
a scale transformation with a universal scaling factor.

The energy spectrum, for instance, forms a geometric
series with an accumulation at the zero energy thresh-
old, corresponding to infinitely weakly bound states.
This situation is referred to as the “discrete scale in-
variance” of Efimov states. Efimov states thus look like
a infinite family of matryoshka, the Russian wooden
dolls that can be nested inside each other. This image
was originally given to describe renormalisation-group
limit cycles [3, 4], which constitute a possibility among
the general classification of renormalisation-group lim-
its, originally proposed by Kenneth G. Wilson [5]. This
possibility, which exhibits discrete scale invariance, is
indeed realised in systems exhibiting the Efimov ef-
fect [6]1.

Borromean binding When the interaction is not
strong enough to support a two-body bound state, it
may nonetheless support one, up to infinitely many,
Efimov trimers. This possibility of binding N particles,
while the N−1 subsystems are unbound is called “Bor-
romean” binding2. This denomination derives from the
ancient symbol of intricated circles called “Borromean
rings”, which have been used, among others, by the
Borromeo family in their coat of arms. Borromean
rings are arranged in such a way that they cannot be
separated, although cutting one of them sets the others
free. They therefore constitute a classical example of
Borromean binding. In this case, the binding is due to
their specific topology. In the case of quantum parti-
cles, however, Borromean binding is possible even if the
interparticle interaction is isotropic and does not enjoy
such topological properties. Although it is counterin-
tuitive from a classical point of view, it may be under-
stood by considering that the number of degrees of free-
dom providing a zero-point kinetic energy scales like N
whereas the number of pairwise interactions scales like
N2, making the interactions win for sufficiently large
N . Efimov trimers are an example of this phenomenon
for N = 3.

More difficult to interpret is the fact that when the
interaction is strong enough to support a two-body
bound state, further increasing the interaction reduces
the binding of the three-body bound state with respect
to that of the two-body bound state.

In recent years, it has been realised that the Efimov
effect gives rise to a broad class of phenomena that have
been referred to as Efimov physics. Consequences and
extensions of the Efimov effect have indeed been found
in systems of various kinds of particles, from three to
many particles, with various kinds of interactions and
in various mixtures of dimensions. The denomination

1Other examples of systems exhibiting the renormalisation-
group limit cycle are systems with 1/r2 two-body interactions
[7, 3] such as an electron scattering off an excited hydrogen atom.
A more general discussion on discrete scale invariance is given in
reference [8].

2Some authors [9, 10] reserve the term“Borromean”for N = 3
and use the term “Brunnian” for larger N .
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“Efimov physics” is however not clearly defined and
somewhat subjective. Even the notion of what con-
stitutes an Efimov state has been debated and consid-
erably extended by some authors - see section 4.5. In
the strictest sense, “Efimov physics” designates physics
that is a direct consequence of the occurence of the Efi-
mov effect. More generally speaking, one may say that
a system exhibits Efimov (or Efimov-like) physics when
a three-or-more-body attraction emerges from short-
range interactions and possibly exhibits some kind of
discrete scale invariance.

The purpose of this review is to cover the recent the-
oretical and experimental advances in Efimov physics,
taken in its broadest sense.

2 Why is it important? For
which systems?

Efimov physics is not only remarkable for its distinc-
tive properties, it is also part of what is often referred
to as the universality of low-energy physics. When a
physical system with short-range interaction has a suf-
ficiently low energy, its wave function is so delocalised
that many microscopic details of the interactions be-
come irrelevant, and most of its properties can be ef-
fectively described by a few parameters. Such physics
is universal as it can be applied to many different sys-
tems, regardless of their microscopic details. Efimov
physics is an example of such a situation, as it involves
states in which the particles are on average at larger
separations than the range of their interactions. For
instance the discrete scale invariance of Efimov states
is a universal feature that depends only on a few gen-
eral properties such as the particles’ masses and quan-
tum statistics. As a result of this universality, Efi-
mov physics applies to virtually any field of quantum
physics, be it atomic and molecular physics [11, 12], nu-
clear physics [13], condensed matter [14] or even high-
energy physics [15, 16]. Interestingly, thanks to the for-
mal connection between quantum theory and statistical
physics, it may also apply to the thermal equilibrium
of classical systems, such as three-stranded DNA [17].

The universality of Efimov physics does not mean
that it occurs in any system. It means that any system
meeting the conditions for its appearance exhibits the
same universal features. These conditions turn out to
be quite restrictive, which is why it has taken around
forty years since the original theoretical prediction of
the Efimov effect to obtain convincing experimental
confirmations. Generally speaking, the Efimov effect
requires resonant short-range interactions. Such in-
teractions are rare, because they require a bound or
virtual state to exist accidentally just below the scat-
tering threshold of two particles. This situation turns
out to be common in nuclear physics, but most nuclear
particles obey Fermi statistics, and the Pauli exclusion
between fermions overcomes the Efimov attraction in

most cases, preventing the Efimov effect from occur-
ring. On the other hand, bosonic particles or excita-
tions are common in various fields of physics, but their
interaction is rarely resonant. Nevertheless, there are
now a significant number of physical systems where
Efimov physics has been observed or is expected to be
observed. In particular, with the advent of controllable
Feshbach resonances in ultra-cold atomic gases it has
become possible to fulfill at will the conditions for the
occurence of Efimov physics, and study it extensively.

Since there have been many theoretical developments
in Efimov physics recently, this review is organised
from the theoretical point of view in terms of physi-
cal situations leading to Efimov or Efimov-like physics.
For each situation, the current state of experimental
observation in different fields of physics is presented.
Although this choice of presentation requires the reader
to read different sections to know about the experimen-
tal achievements in a particular field, it should give a
comprehensive overview of what has, and what has not
yet, been observed in Efimov physics. The sections are
relatively independent, so that the reader can jump
directly to the situation of their interest. As for the
readers who desire to grasp the bare essentials of the
Efimov effect, we have included a concise derivation of
Efimov theory in section 4.1 and discussed the main
features of Efimov states in section 4.5. In addition,
we give in the following section a short history of the
development of Efimov physics underlining the land-
marks contributions.

3 A short history of Efimov
physics

In 1970, Vitaly Efimov was working as a junior re-
searcher at the Ioffe Institute in Leningrad, where he
had completed his doctoral thesis four years earlier.
Following the seminal work of Llewellyn H. Thomas in
1935 [18] and later works by G. V. Skorniakov and
Karen A Ter-Martirosian [19], he was interested in the
three-body problem in quantum mechanics to describe
nuclear systems such as the triton (the nucleus of tri-
tium, made of one proton and two neutrons). Thomas
had shown that three particles with a symmetric wave
function, unlike two particles, can be bound with arbi-
trarily large binding energy for sufficiently small range
of the interparticle attractive force. This finding, re-
ferred to as the “Thomas collapse” or “fall to the cen-
tre”seemed somewhat peculiar, but allowed Thomas to
estimate a lower bound for the range of nuclear forces
from the measured energy of tritium, before it was con-
firmed by neutron-proton scattering experiments.

Using the hyper-spherical coordinates, Efimov found
that when two of the particles can nearly bind, the
three particles actually admit an infinite series of
bound states of ever-increasing sizes, instead of just one
as previously anticipated. This was due to an effective

4



Ef
im
ov
ef
fe
ct
pr
ed
ict
ion

Pr
ed
ict
ion
fo
r
4 H
e
at
om
s

Ob
se
rv
at
ion
of
4 H
e
gr
ou
nd
tri
m
er

Re
so
na
nc
es
in
ult
ra
-c
old
at
om
s

Pr
ed
ict
ion
fo
r u
ltr
a-
co
ld
at
om
s

Ob
se
rv
at
ion
of
13
3 C
s t
rim
er

Ob
se
rv
at
ion
of
13
3 C
s t
et
ra
m
er
s

Ob
se
rv
at
ion
s
wi
th
ot
he
r u
ltr
a-
co
ld
at
om
s

Ob
se
rv
at
ion
s
of
ex
cit
ed
tri
m
er
s
in
co
ld
at
om
s

Ob
se
rv
at
ion
of
4 H
e
ex
cit
ed
tri
m
er

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

10

20

30

40

50

60

Year

P
ub
lic
at
io
ns

Figure 3.1: History of Efimov physics from the original theoretical prediction by Vitaly Efimov to the latest
experimental observations, along with the number of related publications (source: Web of Knowledge).

three-body attractive force, which gave a simple inter-
pretation for the Thomas collapse. He published his
result in both the Soviet literature [1, 20] and Western
journals [2, 21] where it became known as the “Efimov
effect”. The first publication in English did not provide
the derivation and the effect was thus met with scepti-
cism. However, it prompted some theorists to look into
the problem and soon after, the validity of Efimov’s re-
sult was confirmed both analytically and numerically
by R. D. Amado and J. V. Noble [22]. For a long time,
however, the Efimov effect was regarded by many as a
theoretical peculiarity of the formal three-body prob-
lem that would have little to virtually no observable
consequences on real physical systems. On the other
hand, some people took the effect seriously and tried
to find physical systems where it could be observed.

Vitaly Efimov proposed in his original papers that
the Efimov effect could describe nuclear systems such
as the triton and the famous Hoyle state of carbon-12.
Subsequently, it was suggested that the Efimov effect
may be revealed in some hypernuclei by T. K. Lim in
1986 [23], and in halo nuclei by Dmitri V. Fedorov, Ak-
sel S. Jensen, and Karsten Riisager in 1994 [24]. The
proposed nuclear systems indeed feature resonant two-
body subsystems, which is a requirement for the Efi-
mov effect to occur. The closer to resonance the two-
body subsystems are, the larger the number of three-
body bound states. However, having more than one
three-body bound state requires a very close tuning
near the resonance, something that happens only acci-
dentally in nature. As a result, the proposed nuclear
systems allow only one three-body bound state to exist,
and do not reveal the infinity of other states predicted
by the Efimov theory closer to resonance. Moreover, it
is difficult to show that such a single three-body bound
state originates from the Efimov effect for two reasons.
First, Efimov’s theory relies on an unknown three-body
parameter to describe the three-body states, and is
thus not quite predictive for the properties of a single

three-body state, whereas it makes definite and uni-
versal predictions (independent of the three-body pa-
rameter) for the relative properties of two three-body
states. Second, the first three-body state is the small-
est of the Efimov series and is significantly affected by
the details of the interparticle forces, to the point that
it is debatable to call it Efimov state. Because of these
ambiguities, and despite the experimental observations
of the proposed nuclear systems, it has been difficult to
prove or disprove that they are indeed Efimov states.

To obtain better experimental evidence of the Efi-
mov effect, researchers turned to other kinds of parti-
cles for which the two-body resonance condition could
be more closely fulfilled. Seven years after Efimov’s
theory, T. K. Lim already pointed out the particular
case of helium-4 atoms [25], whose interatomic interac-
tion is close enough to resonance to admit two three-
body bound states, as was checked subsequently by
many few-body theorists. This prompted a decade-
long experimental search for these two helium-4 trimer
states by the group of Jan Peter Toennies in Göttin-
gen, by analysing diffracted beams of helium-4 clus-
ters [26, 27]. While the ground-state trimer could be
observed, the excited trimer state, which is regarded
as a true Efimov trimer and an evidence of the Efimov
effect, could not be observed.

The breakthrough that established Efimov physics
came from the field of ultra-cold atoms. In the 1990s,
it was predicted [28] and demonstrated experimen-
tally [29, 30] that the interactions between atoms could
be controlled and brought to resonance by applying a
magnetic field. This led to the proposal by Brett D.
Esry, Chris H. Greene, and James P. Burke Jr [31] to
observe the signatures of Efimov states in such systems.
Such experimental signature of a three-body state near
the two-body resonance of caesium-133 atoms was ob-
tained in 2002 in the group of Hanns-Christoph Nägerl
and Rudolf Grimm in Innsbruck, and after careful anal-
ysis reported in 2006 [32]. Although it revealed only
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one trimer, as in the nuclear systems or the previ-
ous experiments on helium, its Efimovian nature ap-
peared more convincing due to its Borromean nature
(the trimer exists in a region where two-body subsys-
tems are known to be unbound). This landmark exper-
iment opened the way for a systematic investigation of
Efimov physics, because the interaction could now be
controlled. This led to many similar experimental re-
sults from various laboratories around the world using
other species of ultra-cold atoms (in particular during
the year 2009) as well as an intense theoretical activity
to understand and explore various aspects of Efimov
physics in ultra-cold atoms. In the same year, univer-
sal four-body bound states tied to Efimov states were
evidenced in the caesium experiment in Innsbruck by
Francesca Ferlaino and co-workers [33], just after be-
ing predicted by theorists [34, 35]. The year 2009 cul-
minated with the ITAMP workshop in Rome entitled
“Efimov 2009”, where the wealth of new experimental
and theoretical results was presented.

With the accumulation of experimental results in
ultra-cold atoms, the theoretically unknown three-
body parameter of the Efimov theory could be obtained
from experimental measurements for many different
Efimov states. In particular, it could be compared for
different two-body resonances in the lithium-7 exper-
iments by the group of Lev Khaykovich at Bar-Ilan
University [36], and in the caesium experiments by the
group of Innsbruck [37]. To everyone’s surprise, the
three-body parameter was found to be nearly the same
for all the resonances of a given atomic species. It even
appeared to be universally correlated to the van der
Waals of the atoms, while it was thought to depend
on many other microscopic details. This so-called “van
der Waals universality” of the three-body parameter
was later explained by theoretical works [38, 39], which
showed that a sudden deformation of the trimer config-
uration prevents the three atoms from reaching sepa-
rations smaller than the van der Waals length, making
the trimers insensitive to more microscopic features of
the interatomic interaction.

While different measurements of three-body recom-
bination and atom-dimer relaxation provided several
experimental points in the three-body spectrum con-
firming the “scenario”’ obtained by Vitaly Efimov, the
most striking aspect of this scenario, namely the dis-
crete scale invariance leading to the geometric series
of three-body bound states was not confirmed clearly
since the experiments did not reveal consecutive three-
body bound states. Observing consecutive Efimov
states is an experimental challenge since each new state
is by definition much larger in size with a much weaker
binding energy. This endeavour was ultimately success-
ful in 2014, when the experimenters in Innsbruck man-
aged to observe a second Efimov state of caesium atoms
by pushing the limits of their experiment [40], while the
groups of Cheng Chin at the University of Chicago [41]
and Matthias Weidemüller at the University of Heidel-

berg [42] independently observed up to three Efimov
states of two caesium and one lithium atoms, whose en-
ergy levels were predicted to be closer to each other due
to the large mass imbalance between these two atomic
species. The same year, outside the ultra-cold atom
community, the group of Reinhard Dörner in Frankfurt
could finally observe the long-sought second trimer of
helium-4 by the Coulomb explosion imaging technique,
a result published the following year [12]. Not only this
brought further experimental confirmation of the Efi-
mov effect, it also provided the first spatial imaging of
an Efimov state. One may say that the year 2014 con-
cluded a 44-year-long search for a full confirmation of
the Efimov effect. The history of this search is sum-
marised in figure 3.1 where landmark contributions are
indicated.
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Part II

Three particles

4 Three identical bosons

The simplest situation for which Efimov physics oc-
curs corresponds to three identical bosons interacting
via resonant short-range interactions. In section 4.1,
we briefly present the corresponding theory originally
proposed by Vitaly Efimov and its various extensions
in sections 4.2-4.4. In section 4.5, we look into the
question of what constitutes an Efimov state, before
reviewing in sections 4.6-4.8 the experimental observa-
tions and prospects for observations of bosonic Efimov
states in nuclear, atomic, and condensed matter sys-
tems.

4.1 The Efimov universal theory

We consider identical bosonic particles of mass m, with
no internal degree of freedom, interacting via short-
range two-body (and possibly three-body) interactions.
Here, short-range interactions means that the inter-
action potentials decay faster than 1/r3, where r is
the separation between two particles. In this situa-
tion, there exists a separation b, called the range of the
interaction, beyond which the relative motion of two
particles is almost free. It is in this asymptotically free
region where the particles’ energy is purely kinetic that
the Efimov effect takes its roots, and that is why it is
universal.

Although the relative motion of two particles is free
in this region, each angular partial wave of the wave
function ψ(~r) describing the two-body relative motion
has a phase shift δ` with respect to the non-interacting
wave function, as a result of the particles interacting
at shorter separation. Namely, in the partial-wave ex-
pansion of ψ(~r),

ψ(~r) = ψ(r, θ, φ) =

∞∑
`=0

f`(r)

r
P`(cos θ), (4.1)

where P` are the Legendre polynomials, the partial
wave component f`(r) has the form,

f`(r) =

{
complicated for r . b (interaction)

∝ sin(kr − `π2 + δ`) for r � b (free region)

(4.2)
where k is the relative wave number between the two
particles. In the absence of interaction, the phase shift
δ` = 0 (no scattering occurs). On the opposite, the
strongest dephasing the interaction can induce is δ` =
π/2 (modulo π), in which case the interaction is said
to be resonant in that partial wave.

Efimov physics arises when the two-body interaction
is near-resonant in the s-wave partial wave (` = 0),
which means that the phase shift δ0 of the s wave is
close to π/2 (modulo π).

The scattering length It is well-known from scat-
tering theory [43] that at low scattering energy (k �
b−1), only the s wave is scattered, i.e. has a non-zero
phase shift. Moreover, the phase shift can be written
as

δ0 ∼ − arctan(ka) for k � b−1, (4.3)

where a defines the scattering length3. Therefore, for
the two-body interaction to be resonant at low energy,
the scattering length a has to be much larger than b:

|a| � b (4.4)

In particular, the limit a → ±∞ is sometimes called
the unitary limit or unitarity, because in this limit the
factor sin2 δ0 in the expression of the scattering cross
section σ = 4π

k2 sin2 δ0, approaches its maximal value

sin2 δ0 = 1. This maximum of the scattering cross
section is the consequence of a fundamental property
of quantum mechanics, the unitarity of the S-matrix.
It can be reached precisely for resonant interactions.

Near unitarity, the scattering length a is the only
parameter that controls the physics of two particles at
low energy, either positive or negative: it determines
the cross section for scattering states (positive energy),
and the binding energy of a weakly bound state below
the break-up threshold (negative energy). This bound
state, also called dimer, exists only for a positive scat-
tering length and its binding energy is close to

~2

ma2
, (4.5)

where m is the mass of the particles and ~ is the re-
duced Planck constant. The resonance of the interac-
tion is therefore related to the appearance of the two-
body bound state from below the scattering threshold
exactly at the unitary limit a→ ±∞. It is represented
by a black line in figure 4.2.

Zero-range theory Short-range near-resonant in-
teractions at low energy constitute a limit that can
be treated by the zero-range theory. This theory as-
sumes that the short-range region where the interac-
tion directly affects the wave function can be neglected
and only the asymptotically free region that is pa-
rameterised by the scattering length is relevant. This
amounts to saying that the range b of the interaction
is vanishingly small compared to the scattering length
a or wave length k−1 of the particles. This can be
implemented in various ways.

A first way is to consider a simple interaction po-
tential with a finite range b, calculate observables, and
take the limit b → 0 for a fixed scattering length a.
Another way is to consider a zero-range pseudopoten-
tial, such as a contact interaction represented by a
Dirac delta function potential, sometimes referred to

3Despite its name, the scattering length can be positive or
negative.
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as a “Fermi pseudopotential” [44]. This introduces ul-
traviolet divergences in exact calculations which need
to be renormalised to obtain observables [45]. Renor-
malisation can be implemented by introducing a cut-
off in momentum space [46, 47, 6], or regularising the
delta function using the Lee-Huang-Yang pseudopoten-
tial [48]:

V̂ (r) =
4π~2a

m
δ3(~r)

∂

∂r
(r·) (4.6)

Yet another way is to consider the system as free
(no interaction) and impose the so-called Bethe-Peierls
boundary condition [49] on the many-particle wave
function Ψ when any two particles separated by r come
in contact:

− 1

rΨ

∂

∂r
(rΨ) −−−→

r→0

1

a
(4.7)

The essence of all these methods is to correctly re-
produce the form of the two-body wave function in the
region b� r � k−1,

ψ(~r) ∝ 1

r
− 1

a
, (4.8)

which can be obtained from equations (4.1), (4.2) and
(4.3). The zero-range methods make the simplification
that this form remains true down to r = 0, although
this is unphysical for r . b.

Such zero-range methods can be directly imple-
mented in the Schrödinger equation describing the
three-boson system [50], or alternative formalisms such
as integral equations [19], functional renormalisation
equations [51, 52], and effective field theory [53, 6].
Here, we will make use of the Schrödinger equation
along with the Bethe-Peierls boundary condition (4.7).

We should note that Vitaly Efimov’s original deriva-
tion [1] did not invoke explicitly a zero-range interac-
tion, but instead considered equation (4.8), i.e. the
effect of the resonant interaction outside its range b,
without requiring b → 0. As we shall see, the zero-
range theory for three particles is in fact ill-defined.
The more physical approach of Efimov avoids this dif-
ficulty and naturally introduces the three-body param-
eter. It should thus be referred to as a universal theory,
instead of a zero-range theory. Nevertheless, it is es-
sentially equivalent to the zero-range theory cured by
a three-body boundary condition. For the sake of sim-
plicity, we will take this path, which formally follows
very closely Efimov’s original derivation.

Derivation of the Efimov attraction For three
bosons located at ~x1, ~x2 and ~x3, one can eliminate the
centre of mass, and the system can be described by two
vectors, called Jacobi coordinates:

~rij = ~xj − ~xi (4.9)

~ρij,k =
2√
3

(
~xk −

~xi + ~xj
2

)
(4.10)

where (i, j, k) are to be chosen among (1,2,3). There
are thus three possible Jacobi coordinate sets, shown

in figure 4.1, which are related as follows:

~r23 = −1

2
~r12 +

√
3

2
~ρ12,3 (4.11)

~ρ23,1 = −
√

3

2
~r12 −

1

2
~ρ12,3 (4.12)

~r31 = −1

2
~r12 −

√
3

2
~ρ12,3 (4.13)

~ρ31,2 =

√
3

2
~r12 −

1

2
~ρ12,3 (4.14)

Choosing one set of Jacobi coordinates, the time-
independent three-body wave function satisfies the free
Schrödinger equation at total energy E = ~2k2/m:

(−∇2
r12 −∇

2
ρ12,3 − k

2)Ψ = 0 (4.15)

along with the Bethe-Peierls boundary condition (4.7)
for all pairs of bosons. Because of the bosonic exchange
symmetry, the wave function Ψ can be decomposed as
follows:

Ψ = χ(~r12, ~ρ12,3) + χ(~r23, ~ρ23,1) + χ(~r31, ~ρ31,2) (4.16)

where the function χ (known as Faddeev compo-
nent [54, 50]) satisfies the equation:

(−∇2
r −∇2

ρ − k2)χ(~r, ~ρ) = 0 (4.17)

Applying the Bethe-Peierls boundary condition (4.7)
for the pair (1,2) to equation (4.16), one obtains:[

∂

∂r
(rχ(~r, ~ρ))

]
r→0

+χ
(√

3
2 ~ρ,−

1
2~ρ
)

+χ
(
−
√

3
2 ~ρ,−

1
2~ρ
)

=
[
− r
a

(
χ(~r, ~ρ) + χ

(√
3

2 ~ρ,−
1
2~ρ
)

+ χ
(
−
√

3
2 ~ρ,−

1
2~ρ
))]

r→0

(4.18)

where ~r ≡ ~r12 and ~ρ ≡ ~ρ12,3. From the bosonic
exchange symmetry, the same equation is obtained
by applying the Bethe-Peierls boundary condition for
the other two pairs. In the right-hand side of equa-
tion (4.18), only the first term remains when r → 0,
because χ(~r, ~ρ) diverges for r → 0 but is finite else-
where. The function χ can be expanded in partial
waves, which can be shown to be independent in the
zero-range theory. The Efimov effect for bosons occurs
in the partial-wave channel with total angular momen-
tum L = 0 . In this channel, χ is independent of the
directions of ~r and ~ρ and can be written as

χ(~r, ~ρ) =
χ0(r, ρ)

rρ
. (4.19)

χ0 is finite for r → 0, consistent with the divergence of
χ, but must satisfy:

χ0(r, ρ) −−−→
ρ→0

0 (4.20)
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Figure 4.1: The three sets of Jacobi coordinates describing the relative positions of three identical particles.

to keep χ finite in this limit. Inserting equation (4.19)
into equations (4.17) and (4.18) yields the equation(

− ∂2

∂r2
− ∂2

∂ρ2
− k2

)
χ0(r, ρ) = 0

and the boundary condition for r → 0:[
∂

∂r
(χ0(r, ρ))

]
r→0

+ 2
1
√

3
4 ρ

χ0

(√
3

2 ρ,
1
2ρ
)

=−1

a
χ0(0, ρ)

(4.21)
One can finally perform a transformation of the coor-
dinates (r, ρ) to the polar coordinates (R,α) known as
hyper-spherical coordinates [55, 50]:

r = R sinα (4.22)

ρ = R cosα (4.23)

where R is the hyper-radius satisfying

R2 = r2 + ρ2 =
2

3

(
r2
12 + r2

23 + r2
31

)
(4.24)

and α is the Delves hyper-angle. In these coordinates,
one obtains the equation:(

− ∂2

∂R2
− 1

R

∂

∂R
− 1

R2

∂2

∂α2
− k2

)
χ0(R,α) = 0

(4.25)
with the boundary condition for α→ 0:[

∂

∂α
(χ0(R,α))

]
α→0

+
8√
3
χ0

(
R, π3

)
=−R

a
χ0(R, 0)

(4.26)
The problem then becomes separable in R and α,
for the case a → ±∞ corresponding to the unitary
limit. Indeed, in this limit the right-hand side of equa-
tion (4.26) vanishes and one is left with a boundary
condition at α = 0 that is independent of R. On the
other hand, the other boundary condition (4.20) corre-
sponds to χ0(R, π2 ) = 0, which is a boundary condition
at α = π

2 that is also independent of R. One can thus
find a solution of equation (4.25) in the form:

χ0(R,α) = F (R)φ(α) (4.27)

where φ satisfies − d2

dα2φ(α) = s2
nφ(α) with the bound-

ary conditions at α = 0 and α = π/2. This gives the
following solutions:

φn(α) = sin
(
sn(

π

2
− α)

)
(4.28)

where sn is a solution of the equation:

− sn cos
(
sn
π

2

)
+

8√
3

sin
(
sn
π

6

)
= 0. (4.29)

Each solution labelled by n constitutes a channel for
the hyper-radial motion. That is to say, for each so-
lution φn there is a corresponding hyper-radial func-
tion Fn(R) such that Fn(R)φn(α) is a solution of equa-
tion (4.25). It satisfies the equation:(

− ∂2

∂R2
− 1

R

∂

∂R
+
s2
n

R2
− k2

)
Fn(R) = 0 (4.30)

which can be written as a one-dimensional Schrödinger
equation:(

− ∂2

∂R2
+ Vn(R)− k2

)√
RFn(R) = 0 (4.31)

with the hyper-radial potential,

Vn(R) =
s2
n − 1/4

R2
(4.32)

All solutions of equation (4.29) are real, except one
denoted as s0 ≈ ±1.00624i which is purely imaginary.
As a result, the effective ∝ R−2 potential in equa-
tion (4.30) is attractive for the channel n = 0. This is
in contrast with the non-interacting three-body prob-
lem, where the boundary condition (4.26) is replaced
by χ0(R,α) −−−→

r→0
0, leading to equation (4.28) with

eigenvalues sn = 2(n + 1) that are all real. In this
case, the effective ∝ R−2 potential of equation (4.32)
is repulsive for all n. This repulsion is interpreted as
a generalised centrifugal barrier due to the free motion
of deformation of the three-body system. In the inter-
acting problem at unitarity however, the channel n = 0
leads to an effective three-body attraction

V0(R) = −|s0|2 + 1/4

R2
. (4.33)

This unexpected attraction is the basis for Efimov
physics and is referred to as the Efimov attraction. It
can be interpreted as the result of a mediated attrac-
tion between two particles by exchange of the third
particle.
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The existence of this attraction shows that the zero-
range theory for three bosons is not well defined. In-
deed, equation (4.30) for n = 0 is a Schrödinger equa-
tion for an attractive 1/R2 potential, which is scale
invariant since a ∝ 1/R2 potential scales as the ki-
netic energy ∝ d2/dR2 under a scaling transformation
R → λR. It is known that such an equation admits
a solution at any energy, and its spectrum is therefore
not bounded from below [56, 57]. Indeed, if the equa-
tion admits a solution at energy E < 0, making the
scaling transformation R→ λR with an arbitrary scal-
ing factor λ gives another solution at energy λ2E < 0.
This means that under the Efimov attraction the three-
boson system collapses on itself, a phenomenon discov-
ered long ago by Llewellyn H. Thomas [18] and referred
to as the “Thomas collapse” or “fall of the particles to
the centre”. The same problem was found [58] in the
formulation of the zero-range theory for three particles
by an integral equation, known as the Skorniakov and
Ter-Martorisian equation [19]. This is of course a short-
coming of the zero-range theory, since the finite-range
effects of the interaction can no longer be neglected
when the distance between the three bosons becomes
comparable with the finite range of interactions4.

A practical solution to this problem, originally sug-
gested by Vladimir N. Gribov and demonstrated by
G. S. Danilov [59], consists in imposing a condition on
the solutions of the three-body equation, or a momen-
tum cut-off on the equation [60], in order to reproduce
a known three-body observable, such as a three-body
bound state energy or particle-dimer scattering prop-
erty. For instance, fixing the triton energy to the ob-
served value, and solving the three-body equation with
that condition enables the prediction of the neutron-
deuteron scattering length [61].

In Vitaly Efimov’s formulation of the three-body
problem in terms of equation (4.30), a similar proce-
dure can be achieved by imposing a boundary condition
below some arbitrarily small hyper-radius R0. Thus, in
addition to the Bethe-Peierls two-body boundary con-
dition (4.7), the three-body problem in the zero-range
theory requires an extra three-body boundary condi-
tion. This boundary condition can be implemented
in various ways, for example setting a hard wall at
the hyper-radius R0 where F0 has to vanish, or im-
posing the value of the logarithmic derivative of F0 at
R0, by analogy to the Bethe-Peierls condition (4.7).
Note that these two implementations are not strictly
equivalent: a hard wall prevents the fall to the cen-
tre and sets a ground-state energy, whereas a logarith-
mic derivative condition only makes the spectrum dis-
crete but still unbounded from below (states below the
physically relevant energy are therefore unphysical fea-
tures). In any case, both implementations introduce a
new length scale in the problem, which is referred to
as the three-body parameter. It is this parameter that

4Throughout this article and much of the cited literature, the
expression “finite range” means a range that is not zero.

fixes the three-body observables. The necessity to in-
troduce this parameter may be regarded as a quantum
anomaly in the scaling symmetry of the system [62].
Physically, the three-body parameter encapsulates the
effects of the two-body (and possibly three-body) in-
teractions at short distance.

To see how the three-body parameter arises, let us
consider the solutions of equation (4.30) for n = 0.
Near the small hyper-radius R0, any solution with suf-
ficiently small energy |k2| � |s0|2/R2

0 is of the form:

F0(R) = αRi|s0| + βR−i|s0| for R & R0 (4.34)

Imposing a boundary condition atR0 imposes a specific
ratio β/α. From dimensional analysis, this ratio has
units of inverse length Λ to the power −2i|s0|. Thus,
we can write F0(R) = α(Ri|s0|+Λ−2i|s0|R−i|s0|), which
can be further expressed as

F0(R) ∝
R&R0

ei|s0| ln ΛR + e−i|s0| ln ΛR = cos(|s0| ln ΛR).

(4.35)
The three-body wave function therefore shows log-
periodic ocillations in the hyper-radius, and the phase
of these oscillations

Φ = |s0| ln(Λ/Λ0) (4.36)

is given by the new scale Λ (expressed in some previ-
ously fixed unit Λ0), which is a possible representation
of the three-body parameter.

One of the fundamentally new findings of Vitaly Efi-
mov is that the three-body problem with the three-
body boundary condition does not only yield just one
three-body bound state, as previously thought, but
infinitely many bound states. This is a simple con-
sequence of the effective attractive 1/R2 potential in
equation (4.30). Indeed, although the boundary con-
dition (4.35) breaks the scale invariance of the system
under arbitrary scale transformations, one can easily
check that equation (4.35) is still invariant under a dis-
crete set of scale transformations R→ λn0R, with scal-
ing factors that are integral powers of λ0 = eπ/|s0| ≈
22.7. Thus, if the boundary condition gives a solution
at some energy E < 0, it also gives solutions with ener-
gies E/λ2n

0 < 0. There is therefore an infinite number
of bound states, forming a geometric series of ener-
gies accumulating at zero energy, with scaling factor
λ2

0 ≈ 515. This situation is referred to as the discrete
scale invariance.

Remarkably, Vitaly Efimov has shown that this dis-
crete scale invariance not only holds at unitarity (a→
±∞) but also at finite scattering length a, when one
considers the spectrum in the polar coordinates (h, ξ)
of the inverse scattering length a−1 and the wave num-
ber κ = E

√
m/(~2|E|):

a−1 = h cos ξ, (4.37)

κ = h sin ξ. (4.38)
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Figure 4.2: Schematic representation of the so-called
“Efimov plot” or “Efimov scenario” showing the dis-
crete scale invariance of the three-body spectrum for
identical bosons in the zero-range theory. The wave
number κ = E

√
m/(~2|E|) associated with the energy

E of the dimer (black) and trimers (red) is plotted
against the inverse scattering length 1/a. The blue and
orange filled regions represent the three-body scatter-
ing continuum and the particle-dimer scattering con-
tinuum, respectively. Note that these continua overlap
for 1/a > 0 and E > 0. Special values of κ and 1/a
are indicated by the dots: a trimer appears from the
three-body scattering threshold at 1/a−, has a bind-
ing wave number κ∗ at unitarity, and disappears below
the particle-dimer scattering threshold at 1/a∗. Trimer
resonances in the three-body continuum are indicated
by dotted curves. The discrete scale invariance of the
spectrum is indicated by the grey arrows showing the
universal scaling ratio between consecutive levels. For
clarity, the value of the strength s0 has been artificially
set to 3, instead of 1.00624, thus reducing the spacings
between the trimer levels to make them more visible.

The spectrum along a line at a fixed angle ξ has
the discrete scale invariance with the scaling factor
λ0 = eπ/|s0| ≈ 22.7. This property can be checked
by scaling k, a−1, and R−1 by λ0 in equations (4.25-
4.26). As a result, all the three-body bound states show
the same trajectory in the (a−1, κ) plane up to a scale
transformation, as shown in figure 4.2. The infinite
series of bound-states energies E(n) can therefore be
described by the discrete scaling of a single universal
function ∆(ξ) ≡ 2|s0| lnh(ξ) through the formula

|E(n)|+ ~2

ma2
=

~2κ2
∗

m
e−2πn/|s0|e∆(ξ)/|s0|, (4.39)

where n is an integer labelling the states, and κ∗ is the

binding wave number at unitarity of the state n = 0.
The value of κ∗ is set by the three-body boundary con-
dition, so that it may be regarded as a representation
of the three-body parameter. A change in the value of
κ∗ simply scales the curves in figure 4.2 inwards or out-
wards from the accumulation point (a−1 = 0, E = 0).

The universal function ∆(ξ) has been determined nu-
merically and approximated by analytical expressions
in reference [63]. This numerical approximation has in-
accuracies on the order of 3% for ξ close to −π, and we
give here an improved version:

∆(ξ) =


−0.825− 0.05z − 0.77z2 for ξ ∈

[
− π,− 5

8π
]

+1.26z3 − 0.37z4

2.11y + 1.96y2 + 1.38y3 for ξ ∈
[
− 5

8π,−
3
8π
]

6.027− 9.64x+ 3.14x2 for ξ ∈
[
− 3

8π,−
π
4

]
(4.40)

where z = ξ + π, y = ξ + π/2, and x =
√
−ξ − π/4.

The discrete scale invariance not only holds for the
three-body bound states, but for the whole three-body
spectrum including the scattering continua [64, 65]. In
the three-body scattering continuum for a < 0, res-
onances that arise at threshold from the three-body
bound states and persist up to energies ∼ 2~2/(ma2)
also exhibit a discrete-scale-invariant pattern with the
scaling factor λ0 [65]. These Efimov resonances have
been used to evidence Efimov states in experiments
with ultra-cold atoms, as discussed in section 4.7.2.
On the other hand, for a > 0, the disappearance of
the three-body bound states below the particle-dimer
threshold does not lead to trimer resonances but trimer
virtual states, similarly to the disappearance of the
two-body bound state below the two-body threshold.

4.2 Finite-range interactions

The Efimov effect has been confirmed by many calcula-
tions using finite-range interactions [66, 67]. In partic-
ular, a series of trimer states is obtained in these calcu-
lations. One important aspect of systems with finite-
range interactions is that the discrete scale invariance
is necessarily broken below some distance comparable
with the range of interactions. As a result, the spec-
trum is bounded from below, as it should be physically:
the series of trimer states starts from a ground state.

Finite-range calculations show that in the universal
window where the scattering length a is much larger
than the range b of interactions, and the wave num-
ber k associated with the three-body energy ~2k2/m
is much smaller than the inverse range b−1, the dimer
and trimers follow closely the zero-range theory predic-
tions, in particular the energy spectrum follows the dis-
crete scale-invariant Efimov spectrum given by equa-
tion (4.39). Outside this window, however, the spec-
trum deviates from the universal predictions of the
zero-range theory. Typically, the ground-state trimer
shows marked deviations from the universal spectrum
and does not meet the particle-dimer threshold, which
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can be understood from a variational argument [68].
The first excited state may also show some deviations
near the particle-dimer threshold, which it approaches
closely, following the Efimov scenario, but does not nec-
essarily meet [69]. These features are summarised in
figure 4.3 for a three-body system whose two-body at-
tractive potential V (r) is gradually scaled by a strength
factor g, enabling to change the scattering length and
make it resonant for certain values of g.

Finite-range corrections Experimental observa-
tions often lie on the border of the universal win-
dow, where the zero-range theory may not be accurate
enough. Some efforts have therefore been devoted to
understanding the finite-range corrections to the zero-
range theory.

A first line of approach is based on the effective range
theory [70]. At the two-body level, deviations from
the zero-range theory involve the effective range re,
which appears in the low-energy expansion of the s-
wave phase shift [70]:

k

tan δ0(k)
= −1

a
+

1

2
rek

2 + o(k2) (4.41)

The effective range re is typically, but not always,
on the order of the range b of the interactions. It
is relatively straightforward to take into account this
two-body range correction into the three-body prob-
lem. In the three-body Schrödinger formalism, one
can apply a generalised Bethe-Peierls boundary condi-
tion that replaces the scattering length by the energy-
dependent quantity −k/ tan δ0(k). This quantity also
appears explicitly in the integrated Schrödinger equa-
tion of the zero-range three-body problem, known as
the Skorniakov- Ter-Martirosian equation [19]. One
can therefore use the low-energy expression of the
phase shift given by equation (4.41) into these for-
malisms [71, 72, 73, 74]. This brings out a cor-
rection ∝ re/R

3 to the Efimov attraction of equa-
tion (4.33) [71, 72, 73]. One can use more elaborate
expressions describing the energy dependence of the
phase shift over a wider range of energy [75, 76].

It would be tempting to think that such a proce-
dure regularises the Thomas collapse problem of the
zero-range theory and sets the three-body parameter
through the new length scale given by re [76]. It is in-
deed the case for a large and negative effective range, a
situation that arises in the case of narrow Feshbach res-
onances [77] - see section 11.4.3. However, in general
the procedure does not regularise the equations, and
one still has to impose a regularisation of the equa-
tions that introduces a three-body parameter. Such an
approach with a fixed three-body parameter has not
been quite successful in reproducing experimental data
and theoretical calculations with finite-range interac-
tions; an energy dependence of the three-body param-
eter is needed to reproduce these results [75, 78, 79].
A likely reason is that equation (4.41) only accounts

for the range corrections of the phase shift, i.e. the
on-the-energy-shell scattering properties, which corre-
spond to asymptotic properties of two-body systems,
but not the off-the-energy-shell properties which corre-
spond to their short-range correlations. In this respect,
separable potentials [80] are useful tools to account for
finite-range effects, since they can reproduce both on-
and off-the-energy-shell finite-range effetcs, while keep-
ing the simplicity of the zero-range theory [81, 82] - see
Appendix for details.

An alternative and more systematic approach to
range corrections is based on the effective field the-
ory [83, 84]. Effective field theory [53] is the effec-
tive theory that one can write at low energy respecting
the basic symmetries of the systems. In this frame-
work, the ratio b/|a| of the range of interaction over
the scattering length can be treated as an expan-
sion parameter. The leading order in this expansion
reproduces the zero-range theory [53]. Calculations
to the next-to-leading order have been performed in
Refs. [85, 86, 84, 87] and show the necessity to intro-
duce a second three-body parameter to renormalise the
equation at this order.

A more recent approach [88, 89, 90] based on numer-
ical calculations with model potentials has provided
an empirical way to reproduce range corrections to
the zero-range theory. These works show that finite-
range deviations from universal formulas such as equa-
tion (4.39) can be accounted for to a good accuracy
over a wide range of scattering length and energy by
simply replacing the scattering length a by a length aB ,
and shifting the three-body parameter by a quantity in-
versely proportional to a. The length aB is defined as
the value κ−1 that is the solution of tan δ0(iκ) = −i,
corresponding to the pole of the scattering amplitude
f(k) = (k/ tan δ0(k)− ik)−1, provided that an analytic
continuation to imaginary k is possible. For a > 0, the

energy − ~2

ma2B
therefore coincides with the two-body

bound-state energy, while for a < 0 it corresponds to
the energy of a virtual bound state, since there is no
physical bound state. This procedure has been used
to fit theoretical results obtained with finite-range in-
teractions, as well as experimental data obtained for
lithium-7 [90, 36]. According to this procedure, the
universal formula (4.39) for the trimer energy is modi-
fied as follows (changes are emphasised in red),

|E(n)|+ ~2

ma2
B

=
~2 (κ∗+Γn/a)

2

m
e−2πn/|s0|e∆(ξ)/|s0|.

(4.42)
Equivalently, the finite-range energy curve can be
mapped to the original Efimov curve by plotting the
renormalised energy E′(n) = λ2

nE
(n) (or wave num-

ber κ′(n) = λnκ
(n)) as a function of the renor-

malised inverse scattering length a′−1 = λna
−1
B with

the a-dependent renormalisation coefficient λn =
(1 + Γn/(κ∗a))

−1
. An example of such mapping will

be shown in the case of helium-4 in section 4.7.1.
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Figure 4.3: Schematic plot of the three-body spectrum of three identical bosons of mass m, as the strength g
of their two-body attractive interaction gV (r) is increased. For clarity, the wave number κ = E

√
m/(~|E|) is

represented instead of the energy E, and only states with zero angular momentum are shown. At a certain
interaction strength g1, an s-wave two-body bound state (solid black curve labelled as dimer 1) appears, whose
binding energy increases with increasing strength. At larger strengths g2, g3, etc., a second, third, etc., s-wave
two-body bound states (solid black curves labelled as dimer 2, etc.) appear. Just before the appearance of the
first two-body bound state, an infinite set of three-body bound states emerge, indicated by solid blue curves. Just
before the appearance of the other two-body bound states, a similar set of three-body states appear, indicated
by dotted curves. These states are not true bound states, but resonant states embedded in the continua of
scattering states between a particle and a deeper two-body bound state. These continua are indicated by the
shaded areas above the curves corresponding to the two-body bound states. Around each appearance of a two-
body bound state (the “two-body resonances”), the inverse scattering length 1/a is proportional to g− gi. As a
result, the three-body states follow the Efimov spectrum of figure 4.2, here shown in dashed red curves. These
regions of good agreement with the zero-range theory are called “Efimov windows of universality” and indicated
by red discs. Away from these regions, the two-body and three-body bound states significantly deviate from
the ideal Efimov spectrum.

The replacement a→ aB is related to the two-body
range correction given by equation (4.41). Indeed, ac-
cording to the definition of aB and to equation (4.41),
one has:

1

aB
≈ r−1

e

(
1−

√
1− 2re/a

)
(4.43)

≈ 1

a

(
1 +

1

2

re
a

+ . . .

)
(4.44)

In contrast, the shift Γn/a is a range correction to the
three-body parameter,

κ′∗ = κ∗

(
1 +

Γn/κ∗
a

+ . . .

)
that is likely associated with two- and three-body
short-range correlations. The form of this shift was
recently justified from effective-field theory [91], but
the value of Γn has so far been determined only nu-
merically for each value of n to reproduce finite-range

calculations. These results suggest that, with the in-
troduction of the parameters re and Γn characteris-
ing finite-range corrections, the universality of Efimov
physics may be extended beyond the window of validity
of the zero-range theory.

4.3 Other interactions

4.3.1 Coulomb interactions

Electrically charged particles are subjected to the
Coulomb interaction. It is a long-range interaction,
whose potential decays as 1/r, thus more slowly than
1/r3. For such interactions, there is no range be-
yond which the particles effectively cease to interact.
Therefore, there is no Efimov physics associated with
Coulomb interactions themselves. However, particles
interacting with short-range interactions may also in-
teract with additional Coulomb interactions due to
their electric charge. Such is the case of protons or
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nuclei, which interact through the short-range nuclear
forces as well as the repulsive Coulomb interaction. If
the short-range interactions are resonant, there is an
expected interplay between the 1/R2 Efimov attrac-
tion (4.33) and Coulomb forces.

To our knowledge, this interplay has not been stud-
ied explicitly, due to the technical difficulties in solv-
ing the three-body problem with Coulomb interac-
tions [92]. Nevertheless, some simple considerations
can be made, as discussed by Vitaly Efimov in his
original paper [1]. Since the Coulomb potential de-
cays as 1/r and the Efimov attraction decays as 1/R2,
the latter dominates at short distances and the former
dominates at large distances, breaking the scaling in-
variance. The distance where this transition occurs is
given by the Bohr radius

aC =
~2

mkeq2
, (4.45)

where m is the mass of particles, q is their electric
charge, and ke = 1/4πε0 is Coulomb’s constant. On
the other hand, the Efimov attraction exists only be-
yond the range b of the short-range resonant interac-
tion. Therefore, the window of existence for the Efimov
attraction is delimited by the range b of the short-range
forces and the Bohr radius aC . Within this window,
Efimov states can be bound by the Efimov attraction,
and their number scales as ln(aC/b). A necessary con-
dition for the existence of Efimov states in these sys-
tems is thus

b < aC . (4.46)

The single-particle problem in a sum of 1/r2 and 1/r
potentials was treated quantitavely in reference [93],
and corroborates these qualitative considerations.

4.3.2 Dipolar interactions

Even if particles are electrically neutral, they may
possess an electric or magnetic dipole moment that cre-
ates a dipole-dipole interaction between them. In the
ultra-cold atom research community, there has been a
growing interest in studying particles interacting via
dipole-dipole interactions. Prime examples are atoms
with a large magnetic dipole moment µ, such as 52Cr
(µ = 6µB , where µB ≈ 9.274×10−24J.T−1 is the Bohr
magneton) [94, 95], 164Dy (µ = 10µB) [96], and 168Er
(µ = 7µB) [97, 98]. Systems with dipolar interactions
can also be realised with polar molecules that possesses
a permanent electric dipole moment d [99, 100, 101].
For these atoms and molecules, the strength and the
polarisation direction of the dipole interaction can be
controlled by external magnetic or electric fields, align-
ing the dipoles in certain directions.

For two particles with dipole moments induced by an
external field and aligned along the vertical direction,
the dipole-dipole interaction potential at large distance
has the form

V (r, θ) = d2 1− 3 cos2 θ

r3
, (4.47)

where d is the dipole moment (expressed in units of

m5/2·kg1/2·s−1), r is the distance, and θ is the polar an-
gle between the two particles. It is thus an anisotropic
interaction with a long-range tail. While it is seemingly
more complicated than isotropic short-range interac-
tions discussed in sections 4.1 and 4.2, the two-body
physics of dipoles turns out to exhibit the same univer-
sal behaviour as that of short-range interactions around
the threshold regime at which two dipoles are about to
form an s-wave dominated bound state [102, 103, 104].
Close to such s-wave dominated resonances, the cou-
pling between different partial waves induced by the
dipole interaction occurs at a distance much smaller
than the spatial extent of the bound state since the
coupling decays as 1/r6. One can therefore essentially
consider a single channel scattering in the s-wave chan-
nel, in which the dipole interaction averages out to zero
and one is left with a short-range interaction in this
channel. The calculation of this interaction in second-
order perturbation theory (through the coupling of the
s wave to the d wave) shows that it decays as −C4/r

4

with C4 = 4~2`24/m and `4 ≈ 0.365`d [105]5, where `d
is the dipole length defined as

`d =
md2

2~2
. (4.48)

Because of this similarity of the dipole-dipole interac-
tion with a 1/r4 short-range attraction in the s channel,
the two- and three-body physics near an s-wave dom-
inated two-body resonance shows the same universal
behaviour as that of short-range interactions. Namely,
near an s-wave dominated resonance, the dimer en-
ergy scales with the scattering length according to
the universal formula (4.5) [104], and the Efimov ef-
fect occurs [106]. In reference [106], Yujun Wang and
co-workers have considered the three-body problem
of identical bosons with the dipole-dipole interaction
in the proximity of the s-wave dominated resonance.
They have found the appearance of Efimov states with
the same universal scaling factor 22.7 as that of systems
with short-range interactions. One notable feature of
the dipolar Efimov states is that their three-body pa-
rameter is universally set by the dipole length,

κ
(0)
∗ = 0.173(2) `−1

d , (4.49)

in the absence of other forces at distances comparable
with the dipole length. The insensitivity of the three-
body parameter to forces at shorter distances than the
dipole length is due to the strong repulsion created
by the partial wave couplings induced by the dipole
interaction. This repulsion appears at a distance on
the order of the dipole length. It prevents the three
dipoles from getting closer than the dipole length and
renders the three-body parameter universal.

5The value of `4 ≈ 0.365`d is derived from equation (34) in
reference [105], as we could not reproduce the value 2`4 = 1.09`d
given after equation (34) of the same reference.
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As we shall see in sections 11.2 and 11.3, a three-
body repulsion also appears in systems with isotropic
short-range interactions, in particular power-law de-
caying interactions, and makes in some limit the three-
body parameter universally determined by the effective
range. It would be therefore tempting to think that the
three-body universality of the dipole -dipole interaction
is related to the three-body universality of its effective
1/r4 interaction in the s wave channel. However, the
universal three-body parameter for such an 1/r4 in-

teraction has been estimated to κ
(0)
∗ ≈ 0.174 r−1

4 ≈
0.48 `−1

d [82], which is almost a factor of three differ-
ent from the value in equation (4.49). This indicates
that the dipole-dipole interaction belongs to a different
class of three-body universality that involves the ex-
plicit partial wave coupling at short distance. We will
discuss the universality classes of the three-body pa-
rameter for isotropic short-range interactions in more
detail in section 11.3.

The dipolar three-body physics leads to an even more
interesting behaviour when the particles are identi-
cal fermions. While identical fermions do not exhibit
Efimov physics (see section 5), Yujun Wang and co-
workers have found in reference [107] that there exists
a new type of three-body bound state, which is uni-
versally described by the dipole interaction. The size
of this bound state is of the order of the dipole length,
and it has a shape of an obtuse isosceles triangle, whose
longer side is parallel to the polarisation axis of the
dipoles. This particular shape originates from a com-
petition between the dipole interaction and the Pauli
exclusion principle, maximising the attraction between
the dipoles by aligning them in parallel while preserv-
ing the antisymmetrisation condition by having nodes
between them.

4.3.3 Inverse-square interactions and gener-
alised Efimov effect

The scale invariance of Efimov physics comes from the
1/r2 dependence of the Efimov attraction, which scales
like the kinetic energy. This long-range three-body at-
traction is remarkable because it originates from short-
range two-body interactions. If the two-body interac-
tions are not short-ranged but have an attractive 1/r2

dependence themselves, then the three-body system
is also expected to feature an effective scale-invariant
three-body attraction. In such systems, however, the
long-range nature of the forces is set by construction,
and does not emerge from short-range forces, as in the
Efimov effect. In this sense, they may not be considered
to be related to the Efimov effect. On the other hand,
an interesting question about these systems is whether
they exhibit a discrete scale invariance that requires an
extra length scale, as in the Efimov effect. Concretely,
the question is whether the −α/r2 two-body potentials
are strong enough to support two-body and three-body
bound states. For two-body systems, α must be larger

than α2 = ~2/(8µ), where µ is the particles’ reduced
mass. In this case, there is an infinity of two-body
bound states whose energy spectrum forms a geomet-
ric series as in the Efimov effect. This breaks the scal-
ing invariance into a discrete scaling invariance and
requires the knowledge of a microscopic length scale6.
Likewise, the three-body spectrum features an infinite
number of bound states or resonances below each two-
body bound state. The problem becomes particularly
interesting for α < α2, for which the attraction is not
strong enough to bind two particles, but may be strong
enough to bind three particles. In this case, the en-
ergy spectrum of these systems resembles that of Efi-
mov systems, in the sense that an infinity of discrete-
scale-invariant three-body states may exist despite the
absence of two-body bound states. For this reason,
Sergej Moroz, José D’Incao and Dmitry Petrov [108]
have advocated a generalised definition of the Efimov
effect, as “the emergence of discrete scaling symmetry
in a three-body problem if the particles attract each
other via a two-body scale-invariant potential”, regard-
less of the short- or long-range nature of this potential.
Situation in 3D The situation of three identical parti-
cles interacting via inverse-square potentials was stud-
ied by Nicolais L. Guevara, Yujun Wang, and Brett
D. Esry [109]. For identical bosons, they found that
the generalised Efimov effect can occur slightly below
the critical strength required for binding two particles,
namely for α3 <. α < α2, with α3 = 0.97α2. In this
range, an infinite family of three-body bound states
exists. Their energies form an almost geometric se-
ries, as the effective three-body potential turns out to
be almost but not exactly an inverse-square potential.
One must note that these states are extremely weakly
bound, and their scaling ratio is typically on the or-
der of 1010. For α > α2, an infinite number of two-
body bound states arise, and the three-body bound
states remain below the lowest two-body bound state,
while new families of three-body resonances exist be-
low each two-body bound state. Interestingly, similar
results were obtained for three identical fermions in the
1+ symmetry, with α2 = 9~2/(8µ) and α3 = 0.82α2,
whereas the standard Efimov effect with short-range
interactions does not apply to identical fermions (see
section 5).

Situation in 1D In one dimension, the problem of
three identical particles interacting via attractive in-
verse square potentials was solved analytically by F.
Calogero [110] who found that the system remains
scale-invariant for α < α2, i.e. there is no gener-
alised Efimov effect. However, the situation changes
if one considers a particle interacting via an inverse
square two-body potential with two identical particles.

6As in the Efimov effect, this length scale originates from the
short-range details of the interactions, which inevitably depart
from the inverse square form assumed at larger distance, since
the purely inverse-square potential has no ground state in this
case and is therefore unphysical.
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In this case, Sergej Moroz, José D’Incao and Dmitry
Petrov [108] found that for any value of α2/2 < α < α2,
the generalised Efimov effect occurs for a sufficiently
large mass ratio. It can also occur for smaller values
of α by a fine tuning of the short-range details of the
two-body interactions. As a possible physical realisa-
tion, the authors have proposed a system of two po-
lar molecules interacting with an electron, all confined
along a line.

Connection with the standard Efimov effect In
addition to the generalised definition of the Efimov ef-
fect, systems with 1/r2 interactions may also be inter-
esting from the point of view of the standard Efimov
effect. Indeed, N -body systems with 1/r2 pairwise in-
teractions could constitute in some limit an approx-
imation of systems of N particles undergoing a 1/r2

Efimov attraction that is induced by their resonant
(short-range) interaction with a lighter particle (see
section 6.2). This limit requires that the N + 1 sys-
tem may be treated in the Born-Oppenheimer approx-
imation (the light particle being much lighter than the
N particles) and that the resulting Born-Oppenheimer
potential between the N particles may be approxi-
mated by a sum of pairwise 1/r2 attractive potentials.
This idea was introduced in reference [109], where the
authors argued that the four-body Efimov states found
in a 3 heavy fermions + 1 particle system (see refer-
ence [111] and section 13.2) may be described by the
1/r2 interaction model of three identical fermions. As
mentioned above, this model indeed predicts the exis-
tence of a geometric series of three-body bound states
in the 1+ symmetry above a critical strength α3, which
would correspond to a mass ratio of 11.58 in the 3+1
system. This is qualitatively similar to the appearance
of four-body bound states in the 3+1 system above
the critical mass ratio 13.384 [111]. The authors thus
interpret the four-body Efimov effect found in refer-
ence [111] as a three-body generalised Efimov effect
for inverse-square interactions, that originate them-
selves from the three-body Efimov effect. It is how-
ever unclear to what extent this appealing picture is
valid, since the Born-Oppenheimer potential between
the three heavy particles is, strictly speaking, differ-
ent from the sum of pair-wise 1/r2 interaction. In
particular, applying the same approximation to the 3
heavy bosons + 1 particle system, one expects an in-
finite number of four-body bound states tied to each
Efimov trimer state, whereas numerical studies have
so far found at most two four-body bound states (see
section 12.1 and figure 12.2).

4.4 Relativistic case

The Efimov effect, seen as the infinite accumulation of
three-body bound states with smaller and smaller bind-
ing energies in the three-body spectrum, is by definition
a low-energy phenomenon. It is thus not directly af-

fected by relativity. Nevertheless, if the range of inter-
actions between particles is smaller than their Comp-
ton wave length, relativistic corrections may affect the
most deeply bound Efimov states and the three-body
parameter. In particular, when the range of interac-
tions is so small that they can be approximated by
contact interactions, there is still a length scale in the
relativistic theory, the Compton wave length, that may
prevent the Thomas collapse and set the three-body
parameter, instead of the interaction itself.

The first authors to look at the Efimov effect in a
relativistic framework were James V. Lindesay and H.
Pierre Noyer in the 1980s [112, 113]. They considered
three bosons of rest mass M , interacting with attrac-
tive contact interactions such that the total energy M2

of two particles may be less than 2M . They obtained
the following integral equation7 for the three-body en-
ergy M3:

W (k) = − 1

π

∫ M2
3−M

2

2M3

0

dk′

ε′
k′

k

√
s′

1
a −

√
M2 − s′

4

× ln

(√
M2 + (k + k′)2 + ε+ ε′ −M3√
M2 + (k − k′)2 + ε+ ε′ −M3

)
W (k′)

(4.50)

where ε =
√
k2 +M2, ε′ =

√
k′2 +M2, s′ = M2

3 +
M2 − 2M3ε

′, and the scattering length a is given by
1/a = ±

√
|M2 −M2

2 /4| where ± is the sign of 2M −
M2. For k/M � 1 and |3M −M3| �M , one retrieves
the non-relativistic integral equation. However, unlike
the nonrelativistic equation, the integral above has a
finite upper limit of integration, which comes from the
relativistic kinematics. This prevents the Thomas col-
lapse and the three-body energy is set by the rest mass
M (or equivalently the Compton wavelength h/Mc).
From this equation, the authors concluded that the Efi-
mov scenario is qualitatively unchanged. The ground-
state trimer appears for M2 ≈ 2.006M and its energy
at unitarity (M2 = 2M) is ≈ 2.988M , i.e. it is bound
by an energy ≈ 0.0122M with respect to the three-
body threshold 3M . It disappears below the particle-
dimer threshold at M2 ≈ 1.03M . The first excited
trimer is bound by 2.41 × 10−5M at unitarity, which
is about a factor 507 from the ground state, relatively
close to the non-relativistic scaling ratio e2π/|s0| ≈ 515
for excited states.

The same problem was independently addressed a
few years later by Tobias Frederico [114] in the light-
front dynamics formalism [116]. The author derived

7Note that in both references [112, 113], the equation has the
wrong factor 4π instead of 1/π. In the first paper [112], the
numerical calculations were performed with this wrong factor
and are therefore incorrect for identical bosons.
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Figure 4.4: Relativistic Efimov spectrum: mass M3 of the three-body state as a function of the mass M2 of
the two-body state in units of the particles’ mass M . The two-body state is bound for M2 < 2M . Note that
the direction of the horizontal axis is inverted with respect to that of Figs. 4.2 and 4.3. The horizontal line
shows the three-body threshold at M3 = M +M +M and the diagonal line shows the dimer-particle threshold
M3 = M2 +M . The three-body states are bound below these two thresholds. At their intersection is the unitary
point (M2 = 2M, M3 = 3M) below which the Efimov states accumulate, as shown in the insets. The curve
in red shows the results of reference [113], based on equation (4.50). The curve in purple shows the results of
reference [114], based on equation (4.51) with xmin = M2/M2

3 and qmax =
√

(1− x′)(M2
3x
′ −M2). The curve in

orange shows the result of reference [115], based on equation (4.51) with xmin = 0 and qmax =∞. In the insets,
only the excited trimer obtained from equation (4.50) is shown.

the following integral equation,

Γ(q, x) = F (M12)
1

(2π)3

∫ 1−x

xmin

dx′

x′(1− x− x′)

×
∫ qmax

0

d2q′

M2 −M2
3

Γ(q′, x′) (4.51)

where F (M12) = 8π2
(

arctan yM12

yM12
− arctan yM2

yM2

)−1

with

ym = m√
4M2−m2

and M2
12 = (1 − x)M2

3 −
q2+(1−x)M2

x ,

and M2 = q′2+M2

x′ + q2+M2

x + (~q′+~q)2+M2

1−x−x′ . Here, the

integral boundaries are set to xmin = M2/M2
3 and

qmax =
√

(1− x′)(M2
3x
′ −M2). Like equation (4.50),

this equation also reduces to the non-relativistic in-
tegral equation in the non-relativistic limit. Solving
this equation, the author reached conclusions similar
to those of Refs. [112, 113], with relatively different nu-
merical results8. In particular, the ground-state trimer
is bound by about ≈ 0.2M at unitarity and disappears
below the particle-dimer threshold at M2 ≈ 0.6M .

In a more recent work using a similar formal-
ism [115], Jaume Carbonell and V. A. Karmanov ar-
gued that for zero-range interactions the boundaries
of the integrals assumed in the previous work [114]

8Note that the numerical results of reference [114] are not
converged, as mentioned in reference [115]. We give here the
numerical values from reference [115]

should be changed to xmin = 0 and qmax = ∞. This
results in a drastically smaller binding energy at uni-
tariy ≈ 0.012M for the ground state, which is remark-
ably close to the results of Lindesay and Pierre Noyer
in reference [113]. In addition, the ground-state trimer
does not disappear below the particle-dimer threshold.
Instead, its energy vanishes at M2 ≈ 1.43M , which
the authors called the “relativistic Thomas collapse”.
For a smaller mass M2 than this critical value (i.e. a
stronger two-body attraction), the three-body energy
M3 is formally imaginary, making it unphysical.

The results of these works are summarised in fig-
ure 4.4.

4.5 What is an Efimov state?

Before we address the observations of Efimov states, we
have to ask ourselves what is an Efimov state, and what
constitutes an experimental evidence of such a state.
The answer to these questions varies somewhat from
one person to the other. The major issue is whether
the ground-state trimer, which is the most likely to
exist and most easily observable, should be included or
not in the series of Efimov states.
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4.5.1 Energy

Let us review some proposed definitions of Efimov
states based on their energy spectrum.

1. In the strictest sense, Efimov states are evidence
of the Efimov effect, i.e. an accumulation point in
the three-body spectrum at zero energy as shown
in figure 4.2. In this sense, one cannot evidence
a single Efimov state, one needs to exhibit sev-
eral (at least two) of these states and show that
they follow the predicted discrete scale invariant
pattern. In this definition, the observation of the
ground-state trimer is not an evidence of an Efi-
mov state.

2. In another definition, one may allow a single
state to qualify as an Efimov state, if it can be
shown that its variation with scattering length
follows qualitatively the universal curve obtained
in the zero-range theory and shown in figure 4.2,
sometimes referred to as the “Efimov scenario”.
Namely, the trimer has to appear from the three-
body threshold at some negative scattering length,
and disappear in (or approach closely) the parti-
cle+dimer threshold at some positive scattering
length. The ground-state trimer often remains far
below the particle+dimer threshold [68, 117, 118],
and thus does not qualify as an Efimov state in
this definition [119].

3. In their review article [4], Eric Braaten and Hans-
Werner Hammer advocated a broader definition:
“a trimer is defined to be an Efimov state if a
deformation that tunes the scattering length to
± ∞ moves its binding energy along the univer-
sal curve”. In this definition, the trimer does not
have to meet the particle+dimer threshold on the
positive scattering length side. The ground state
trimer is therefore usually an Efimov state accord-
ing to this definition.

4. The results of Refs. [88, 89] suggest a somewhat
related definition: a trimer is defined to be an Efi-
mov state if the trimer energy as a function of
aB can be fitted by the modified universal for-
mula (4.42). The authors of Refs. [88, 89] have
presented numerical evidence that close to unitar-
ity the ground state is expected to be an Efimov
state in this definition.

The first two definitions are qualitative: a given state is
either an Efimov state or not. The last two definitions
are less restrictive and can be made quantitative: by
comparing the energy with the universal or modified
universal formulas, one may quantify how much of an
Efimov state a given trimer is. The disadvantage of
definitions 2, 3, and 4 is that they require the variation
of the two-body scattering length, which is not always
possible experimentally if the interactions cannot be
controlled but are just set by nature.

From a physical point of view, it would be natural to
say that a trimer is an Efimov state if the Efimov at-
traction is present and necessary to ensure its binding,
although this point is difficult to characterise experi-
mentally, and even theoretically for real systems.

We should mention that the notion of Efimov trimer
is not restricted to bound states and can be extended to
resonant states. When the two-body interaction poten-
tial supports several two-body bound states and one of
them has zero angular momentum and is very close to
threshold, it leads to a situation similar to what the Efi-
mov theory predicts for just one two-body bound state,
except that the Efimov trimers are resonant states that
can dissociate into a particle and a deeper two-body
bound state. Such resonant states are shown as dot-
ted curves in figure 4.3. As long as this dissociation
is weak, the trimer resnonances are narrow and follow
the Efimov scenario. They can therefore be qualified as
Efimov states. In fact, it is the situation encountered
in ultra-cold atomic gases - see section 4.7.2. For very
strong losses by dissociation, the trimer resonances are
broad and a theoretical study indicates that the Efimov
spectrum is rotated in the complex energy plane [120],
where the imaginary part of the energy correspond to
the resonance width.

4.5.2 Structure

Although the peculiar energy spectrum of Efimov
states is often presented as their defining character-
istic, their spatial structure is also worth considering,
as it makes them very different from other three-body
bound states such as water or ozone molecules. Ozone
molecules, for instance, have a relatively well defined
geometry, with an O-O length of about 0.127 nm and
an O-O-O angle of about 117°. Although the electrons
are delocalised around the oxygen nuclei, the relative
positions of the nuclei are quite localised, as a result of
the strong binding interaction provided by the bonding
electrons. Efimov states, on the other hand, are very
diffuse objects without a well defined geometry.

In the intuitive picture of the Efimov attraction,
the particles keep moving back and forth between one
another, thereby inducing the Efimov attraction that
keeps them together. Thus, for an Efimov state made
of atoms, one may say that the atoms themselves play
the role of bonding electrons by performing an ex-
change motion. The electrons play a role only when
the atoms come in contact, within the radius of their
electronic cloud, which is on the order of a few tenths of
nanometre for light atoms. The motion of the atoms,
on the other hand, occurs at distances larger than the
size of their electronic cloud, around three times for the
ground state and much more for excited states. As re-
sult, Efimov states of atoms are much larger and diffuse
than usual molecules. This is shown in figure 4.5 for
the case of helium-4 trimers, whose excited state is typ-
ically fifty times or more larger than ozone molecules.

In addition to the broad distribution of sizes, there
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Figure 4.5: Ozone molecule (O3) compared to Efimov states of helium-4 atoms (He3) on the same scale. Each
molecule is represented schematically as a typical snapshot of its geometry. The ozone molecule is enlarged to
show its structure (readers of the electronic version are invited to zoom in). The nuclei are represented by small
dots (red for oxygen, blue for helium), and the electronic cloud is shown as a grey halo. For the helium trimers,
the atomic cloud formed by the motion of the helium atoms is shown as a light blue halo. The structure of the
excited helium trimer is closest to that of an ideal Efimov state, which is typically described by an elongated
triangle configuration. The structural properties of the ground helium trimer do not conform fully to those of
Efimov states, but are nonetheless very different from more compact molecules like O3.

is also a broad distribution of geometries for three par-
ticles forming an Efimov state. The most probable ge-
ometries in this distribution correspond to elongated
triangles, where two particles are relatively close and
the third one is farther away. This can be checked
at unitarity from the hyper-angular wave function in
equation (4.28), which peaks at α = 0, correspond-
ing to two particles in contact with the third particle
away. For the full wave function of equation (4.16),
one obtains the average value of α to be close to π/6,
corresponding to an elongated triangle.

These distinctive structural properties can be used
to experimentally characterise a trimer as an Efimov
state, when structural properties can be measured.
This was recently demonstrated in the Coulomb ex-
plosion imaging of helium-4 trimers [121, 12] - see sec-
tion 4.7.1. This experiment revealed that the distri-
bution of geometries for the excited trimer state of
helium-4 conforms to the distribution of an Efimov

state favouring elongated triangles, whereas the dis-
tribution for the ground state is broader and does not
seem to favour any particular geometry. This is due
to the fact that finite-range effects are more important
for the ground state and tend to push the system to
a more equilateral configuration (see a discussion of
this effect in section 11.2.1). For this reason, ground-
state Efimov trimers are in general not expected to
exhibit the distribution of geometries of an ideal Efi-
mov state. Nevertheless, the absence of a well-defined
geometry make even the ground-state Efimov trimers
very distinct from conventional molecules, as figure 4.5
illustrates.

4.6 Observations in nuclear physics

Bosonic particles in nuclear physics are compounds of
fermions. In the case of nucleons, since neutrons do not
bind, bosonic clusters have to involve protons. This in-
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Figure 4.6: Schematic picture of the conjecture that the Hoyle state of carbon-12 is bound by the Efimov
attraction. In this picture, the Hoyle state appears as a resonant state supported by the sum of two potentials
as a function of the hyper-radius between the three alpha particles. The first potential is a Coulomb repulsive
potential, here taken to be −α(2e)2keerf(R/β)/R where α = 2 and β = 1.66 fm, and represented in orange.
The second potential is an Efimov attractive potential shown in blue, asymptoting at small hyper-radius to
equation (4.33) and at large hyper-radius to the dimer energy −~2/ma2 shown by the dotted blue line), where
the alpha-alpha scattering length a = 5.4 fm. The sum of the two potential is shown in purple. A three-body
repulsive hard wall shown in red is set at R0 = 0.122 fm to fix the three-body parameter and reproduce the
energy of the Hoyle state at 0.38 MeV, shown by the dashed purple line. The energy of that state without
Coulomb repulsion is shown by the dashed blue line. Note that the value of R0 is much smaller than the range
of the alpha-alpha interaction, and thus quite unlikely.

troduces Coulomb interactions which do not qualify as
short-range interactions. Nevertheless, as discussed in
section 4.3.1, Efimov physics can survive in this con-
text: if the short-range nuclear interactions are reso-
nant, they create a three-body Efimov attraction that
competes with the Coulomb repulsion to form bound
states. Although these states do not necessary follow
the definitions of Efimov states put forward in sec-
tion 4.5.1, they could still be regarded as Efimov states
in the sense of being bound by the Efimov attraction.
A necessary condition for the Efimov attraction to sur-
vive is given by equation (4.46). This condition can
only be satisfied by light nuclei.

4.6.1 The Hoyle state of carbon-12

The Hoyle state is an excited resonant state of carbon-
12 predicted by Fred Hoyle in 1954. It plays a cru-
cial role in the stellar nucleosynthesis of carbon. In
his original papers [1, 2], Vitaly Efimov suggested that
the Hoyle state may be viewed as a trimer of alpha
particles (i.e. helium nuclei, which are bosons) bound
by the Efimov attraction. The works of Renato Higa
and Hans-Werner Hammer [122, 93] based on Effective-
Field Theory looks into the effect of the Coulomb inter-
actions on alpha systems close to unitarity. They con-
jectured that the Hoyle state is indeed a remnant of the
Efimov spectrum broken by the Coulomb interaction,
surviving as a resonance above the three-alpha scatter-

ing threshold. The corresponding picture of the Hoyle
state would be a resonant state resulting from the bal-
ance between the Efimov attraction and the Coulomb
repulsion. This picture is shown in figure 4.6.

Although this picture of the Hoyle state is quite ap-
pealing, there are two points that make it question-
able. First, excluding the Coulomb repulsion, the nu-
clear force between two alpha particles does not seem
to be resonant, as the scattering length of the model
potentials [124] for the alpha-alpha interaction is about
5 fm, which is similar to the range b and effective range
re ≈ 3.4 fm of these potentials. The resonance condi-
tion (4.4) may therefore not be satisfied. This would
suggest that the attraction between alpha particles is
directly due to the nuclear force rather than the Efi-
mov attraction. Second, even if the alpha-alpha in-
teraction is resonant, the Efimov attraction seems too
weak to overcome the Coulomb repulsion and support
a resonant state at distances larger than the range b.
Indeed, the value of the Bohr radius given by equa-
tion (4.45) for alpha particles is aC ≈ 1.8 fm. The
condition b < aC of equation (4.46) therefore does not
appear to be satisfied.

These conclusions rely on rough estimates, and only
a full treatment of the three-body problem with short-
range and Coulomb interactions can give a definite an-
swer. The three-body model calculation of the Hoyle
state by Hiroya Suno, Yasuyuki Suzuki, and Pierre De-
scouvemont [125] gives a preliminary answer. In their
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Figure 4.7: Efimov plot for three helium-4 atoms, showing the wave number k = E
(

m
|E|~2

)1/2
as a function of

the inverse scattering length 1/a artificially varied by scaling the interaction potential for two helium-4 atoms
(the potential used is the so-called LM2M2 potential of reference [123]). The dimer state is shown in solid black,
while two trimer states are shown in green (ground) and red (excited). The vertical dotted line shows the value
of the scattering length for the unscaled potential, i.e. the physical value for the true helium-4 system, and the
corresponding trimer energies are shown by the dots. They roughly follow the structure of the zero-range Efimov
spectrum, shown by the dashed curves. The dotted curves show the trimer energies obtained for a separable
interaction reproducing exactly the two-body wave function at zero energy of the scaled helium-4 potential (see
Appendix).

work, they show the contributions from the Coulomb,
nuclear and centrifugal (kinetic) energies as a function
of the hyper-radius. Although an attractive well (pre-
sumably due to the Efimov attraction) can be seen in
the centrifugal energy, it appears that it is not enough
to overcome the Coulomb repulsion, and it is the nu-
clear force that is responsible for the stability of the
Hoyle state in this model. It is therefore likely that the
Hoyle state may not be considered as an Efimov state.

4.7 Observations with atoms

Most atomic species have bosonic isotopes, and interac-
tions between neutral atoms is of the short-range type,
decaying with a 1/r6 van der Waals tail. They there-
fore appear as ideal systems for the observation of the
Efimov physics of identical bosons described previously.
However, the remaining condition that the interaction
be resonant is more difficult to satisfy.

In most cases, the scattering length is on the order of
the range of the atomic interaction. Only in accidental
cases does the scattering length happen to be much
larger than the range of the interaction. Such is the
case of helium-4 atoms discussed below. For a long
time, helium-4 appeared as the only promising atomic
species for observing Efimov states.

The situation changed drastically with the imple-
mentation of magnetic Feshbach resonances in ultra-
cold atoms experiments [126]. Thanks to these res-
onances, it has been possible to change at will the
scattering length between various species of atoms by
simply varying the strength of an applied magnetic
field. This has enabled a detailed exploration of Efi-
mov physics in these atomic systems.

4.7.1 Helium-4

Theoretical predictions Because of its simplicity,
the interaction potential of atomic helium has been
widely studied. The range of this potential can be
characterised by its van der Waals length, which is
about 0.54 nm and its scattering length turns out to
be about 20 times larger than this range, around 10
nm. This fact makes helium-4 systems close to the
resonance condition (4.4) for Efimov physics. It was
first noted by T. K. Lim and co-workers [25] who sug-
gested that helium-4 atoms may exhibit the first exam-
ple of Efimov trimer in nature, based on approximate
three-body calculations. This triggered many subse-
quent three-body calculations using refined methods
and helium potentials [127, 117, 128] (see also refer-
ences in [128]). These calculations predicted the ex-
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Figure 4.8: Same figure as figure 4.7, where the scattering a is length is replaced by the length aB , and both

axes are renormalised by the a-dependent factor λn =
(

1 + Γn
κ∗a

)−1

. The values of Γn are adjusted to Γ0 = 0.79

and Γ1 = 0.99 to best reproduce the Efimov spectrum curves (shown by the dashed curves).

istence of two helium-4 trimers. The one with lowest
binding energy (the excited trimer) was identified as
an Efimov trimer, in accordance with the definitions
of section 4.5. The ground-state one has not been re-
garded as an Efimov trimer, because its energy does
not fit well in the discrete scale-invariant pattern of
the Efimov universal theory. According to definitions
3 and 4 of section 4.5, however, the ground-state trimer
is also an Efimov state.

To appreciate how the two trimer states of helium-4
fit in the Efimov picture, one can change the scatter-
ing length between two helium atoms by scaling their
interaction potential by some variable factor, and plot
the trimer energies as a function of the varied scat-
tering length. This is represented in Fig. 4.7. When
the scattering length is tuned to infinity, the Efimov
effect occurs and an infinite number of trimer states
exist. At the physical value of the scattering length,
only two trimer states remain, below the atom-dimer
threshold. As the scattering length is varied, these two
trimer states roughly follow the Efimov scenario, al-
though none of them dissociate into the atom-dimer
threshold for the helium potential used in figure 4.7.
As expected, the ground-state trimer shows the most
marked deviations. The excited trimer energy comes
very close but always remains below the dimer energy,
which cannot be seen in figure 4.7.

The significant deviations of the dimer and trimer
energies with respect to the ideal Efimov spectrum can
be accounted for by finite-range corrections. One can

for instance replace the zero-range interaction by a sep-
arable interaction parameterised to reproduce exactly
the scattering length and effective range of the helium
potential (see Appendix for details). This interaction
indeed reproduces the scattering length dependence of
the deviations, although the trimer energies are off by
a small shift that can be removed by adding a three-
body force [81]. Alternatively, one can use the finite-
range corrected universal formula (4.42). This formula
allows one to map the helium trimer energies to the
ideal Efimov spectrum by plotting the renormalised
wave number κ′ = λnκ as a function of the renor-
malised inverse scattering length 1/a′ = λn/aB , where
λn = (1 + Γn/(κ∗a))−1. The resulting plot is shown in
figure 4.8.

Experimental observations The first experimen-
tal investigation was carried out by the group of Jan
Peter Toennies in Göttingen [27]. A beam of he-
lium clusters was generated by cryogenic expansion and
diffracted through a nanostructured transmission grat-
ing. The mass and spatial extent of diffracted clusters
were measured, revealing the existence of the ground-
state helium trimer with spatial extent of 〈r〉 = 1.1+0.4

−0.5

nm, in agreement with theoretical predictions. The
excited trimer was not observed in that experiment.
Both trimers were eventually observed in the group of
Reinhard Dörner in Frankfurt [121, 12] by Coulomb
explosion imaging. Although the trimer energies have
not been measured, the Coulomb explosion imaging
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technique enables to measure structural properties of
the trimers and to some extent reconstruct their wave
functions, in very good agreement with the theoreti-
cal calculations. From these observations, the authors
concluded that the ground trimer’s structural proper-
ties are very different from those of an ideal Efimov
trimer, whereas the excited trimer conforms relatively
well to the structure of an Efimov trimer.

4.7.2 ultra-cold atoms under Feshbach reso-
nances

The field of ultra-cold atomic gases has developed from
laser-cooling experiments in the 1980s. It consists
in magnetically or optically trapping inside a vacuum
chamber a cloud of atoms cooled to ultra-low tempera-
tures, from microkelvins down to a few nanokelvins. In
this setting, it was realised that the scattering length
between the atoms could be changed through a Fes-
hbach resonance by applying a magnetic field to the
cloud [28, 126].

A Feshbach resonance [129, 130, 131] is a general
resonance phenomenon of particles with different pos-
sible internal states (for instance, hyperfine states in
the case of atoms). The various pair combinations
of internal states constitute different two-body scat-
tering channels. These channels are in general cou-
pled at short distance by some interactions (for exam-
ple, the hyperfine interaction in the case of atoms). If
the scattering threshold of some incoming channel (the
“open” channel) is close to the energy level of a two-
body bound state in another or several other channels
(the ”closed” channel), the coupling between these two
channels makes the scattering in the open channel reso-
nant, i.e. the scattering length can become much larger
than the range of the interaction potentials in these
various channels. If the spacing between the threshold
and bound-state energy can be controlled (for instance
by applying a magnetic field and shifting by the Zee-
man effect the threshold and bound-state energy by
different amounts), the resonance condition and there-
fore the scattering length can be tuned. This technique
has been extremely successful for controlling interac-
tions in ultra-cold atomic gases, and studying Efimov
physics in particular.

Observation through loss Atomic Efimov
trimers arise when the scattering length of the in-
teratomic potentials is tuned to a large value. This
corresponds to the presence of an s-wave two-body
bound state or virtual state near the two-body scat-
tering threshold. However, for atoms commonly used
in ultra-cold gases, these potentials also support many
other two-body bound states that are more deeply
bound, i.e. diatomic molecular states of various rota-
tional symmetries. This introduces two complications
with respect to the ideal Efimov scenario.

The first one is that the many diatomic molecular
levels experience different Zeeman shifts as the mag-

netic field is varied to tune the scattering length. This
can result in a second molecular state reaching the
threshold and creating a Feshbach resonance overlap-
ing with the resonance of interest, thus complicating
the relationship between the magnetic field and the
scattering length. This situation is illustrated by the
many overlapping Feshbach resonances of caesium-133
ground-state atoms [132]. However, when the two res-
onances have very different widths, the Efimov physics
associated with one resonance may not be significantly
affected by the presence of the other. A second con-
sequence of the different Zeeman shifts of the molecu-
lar levels is that there can be many avoided crossings
between these levels. Sometimes such a crossing may
strongly affect the s-wave two-body bound state as-
sociated with the Feshbach resonance, resulting in a
quick departure from the zero-range picture. This is
the case, for instance, for the caesium dimer associated
with the Feshbach resonance near 800 G, which remains
very close to the threshold due to an avoided crossing
with a weakly bound molecular level of the open chan-
nel [119]. Nevertheless, the Efimov effect still occurs
close to resonance.

The second complication is that Efimov trimers are
not true bound states, since they have a much smaller
binding energy than the many diatomic molecular
states. Instead, these trimers exist as resonances em-
bedded in the continua formed by the scattering of one
atom and one diatomic molecule, as shown by the dot-
ted curves in figure 4.3. As a result, these trimers have
a finite lifetime as they can decay in these continua by
dissociating into an atom and diatomic molecule. This
situation is different from that of helium-4, for which
the potential supports only one two-body bound state
and Efimov trimers are true bound states that are in-
finitely long lived. Nevertheless, the dissociation pro-
cesses are weak enough to allow to resolve the trimer
resonances, which were found to conform to the gen-
eral Efimov scenario. It is for this reason that these
resonances are thought to be a good approximation of
Efimov states, even though they are not true bound
states.

Ultra-cold atom experiments typically start with a
gas of unbound atoms, dimers, or atom-dimer mix-
tures. Three-body bound states can be formed through
inelastic collisions [133] but these states are difficult to
observe in the standard setups. Nevertheless, these col-
lisions tend to deplete the gas of atoms and this loss can
be monitored by imaging the gas. This can be used to
indirectly observe the three-body bound states through
their influence on inelastic collisions. For example,
when three atoms collide in an ultra-cold gas, two of
them may recombine into a diatomic molecule. The
energy gained by this binding is then redistributed as
kinetic energy between the formed molecule and third
atom. This inelastic process can be strongly enhanced
at the low collisional energy of ultra-cold atoms by Efi-
mov resonances that occur whenever an Efimov trimer
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lies just below the three-body scattering threshold. As
one varies the scattering length through the values a−
shown in figure 4.2, one therefore expects to see peaks
in the loss rate. The existence of these peaks were first
predicted in 1999 by Brett D. Esry, Chris H. Greene,
and James P. Burke Jr in reference [31]. Eric Braaten
and Hans-Werner Hammer subsequently derived from
the zero-range theory a simple analytical formula for
the three-body recombination loss rate coefficient L3

at zero temperature [134, 135]:

L3 =
C sinh(2η)

sin2[|s0| ln(a/a−)] + sinh2 η

~a4

m
, (for a < 0)

(4.52)
as a function of the scattering length a, the three-
body parameter characterised by a−, and an inelas-
ticity parameter η describing the decay to diatomic
molecules. C ≈ 4590 is a numerical constant. This
formula shows that L3 has a local maximum when the
sin2 term vanishes, corresponding to scattering lengths
that are multiples of a− with the Efimov scaling factor,
i.e. a = eπn/|s0|a− ≈ (22.7)na−.

Such a peak was seen in the early experiments
on Feshbach resonances and subsequently interpreted
as an Efimov resonance. The first observation was
made in 2002 and the final results were reported in
2006 [32] by the group led by Hanns-Christoph Nägerl
and Rudolf Grimm in Innsbruck for an ultra-cold gas
of caesium-133 atoms in their hyperfine ground state
|F = 3,mF = 3〉, where F and mF designate the hy-
perfine quantum numbers. The Feshbach resonance
used to tune the scattering length in this experiment is
a bit particular, because it occurs at a “negative value
of the magnetic field”B ≈ −10 G, which physically cor-
responds to the excited hyperfine state |F = 3,mF =
−3〉 of caesium-133. This excited state is not stable
against two-body decay, so the experiment was limited
to the positive values of B. Although the dimer causing
the resonance exists only for B ≤ −10 G, the resonance
makes the scattering length very large and negative for
0 ≤ B . 10 G, making it possible to observe Efimov
physics. In this range, however, only the ground Efi-
mov state exists [119], and was revealed by a peak in
the measured three-body loss rate.

This allowed not only to prove the existence of an
Efimov trimer, but also measure the value a− which is
related to Efimov’s three-body parameter. Since the
ground-state Efimov trimer does not completely fol-
low the Efimov universal scenario, some objections on
the terminology of “Efimov state” were raised [119].
Indeed, the caesium trimer evidenced in the experi-
ment, when followed to the negative side of magnetic
field values where the dimer appears from the two-body
threshold, is not expected to approach the atom-dimer
threshold, and therefore does not conform to definition
2 given in section 4.5. However, it is expected to be
an Efimov state according to definition 3 and 4. More-
over, unlike the ground-state trimer of helium-4, which
occurs in the region of positive scattering length where

deviations from the Efimov scenario are significant, the
loss peak observed for caesium corresponds to the re-
gion of negative scattering length, where the ground-
state trimer is borromean and follows more closely the
Efimov scenario. For these reasons, this experiment
may be thought to constitute the first experimental
demonstration of a borromean Efimov state.

In the following years, many similar observations of
Efimov resonances were made with various kinds of
atomic species. For positive scattering lengths, the
trimer energy is below the dimer energy. At some value
a∗ of the scattering length, the trimer energy can reach,
or approach closely, the atom-dimer threshold, creat-
ing a low-energy resonance in atom-dimer scattering,
which can be seen as a peak in the rate of losses asso-
ciated with inelastic atom-dimer scattering. Efimov
physics can also be seen in the three-body inelastic
scattering for positive scattering length. In this case,
recombination to dimers can take two paths, and as a
result of quantum interference between the two paths,
a minimum in the three-body recombination loss rate is
expected for a value a+ of the scattering length9. The
zero-range theory for these Efimov features in the loss
measurement at zero temperature were done in several
theoretical contributions [134, 135, 11] (see references
in [11]). The influence of temperature has appeared
to play an important role for the identification and in-
terpretation of the resonance position, and was treated
theoretically in Refs. [136, 137].

Studying the inelastic collisions between weakly
bound dimers and unbound atoms of caesium-133 [138],
the Innsbruck group observed an atom-dimer resonance
as predicted by the Efimov scenario and measured the
value of a∗ of figure 4.2. The group of Giovanni Mod-
ugno and Massimo Inguscio in Florence [139] observed
both a local maximum and local minima in the three-
body recombination rate of potassium-39, thus deter-
mining the values of a− and a+, as well as inferring
the atom-dimer resonance position a∗ from a small
peak of the three-body loss rate appearing on the pos-
itive scattering length side. A similar experiment was
performed for lithium-7 atoms by the group of Ran-
dall G. Hulet at Rice University [140]. From these
experiments, the following measured ratios were re-
ported: a−/a+ = −6.7 ± 0.6 [39K], −2.5 ± 0.2 [7Li]
and a−/a∗ = −50 ± 3 [39K], 10.4 ± 1.5 [7Li]. These
results were later modified in 2013 in Refs. [141] and
[142] due to a misassignment of the three-body loss
peak10 and to a recalibration of the Feshbach res-

9Such mininum was already seen in the original experiment
of reference [32], although it is located at higher magnetic fields,
accross a zero of the scattering length; it therefore corresponds
to an adjacent Feshbach resonance, i.e. a different window of
universality than that of the observed peak

10In reference[139], two peaks were found at a =
−1500a0,−650a0, which were interpreted as signatures of an Efi-
mov trimer (a− = −1500a0) and an associated tetramer. Later
however, the same group could not find the peak at a = −1500a0
[141], and reassigned the other peak to a trimer, with the up-
dated value a− = −690(40)a0.
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onance parameters, respectively. The updated val-
ues a−/a+ = −3.1 ± 0.3 [39K], −2.8 ± 0.3 [7Li] and
a−/a∗ = −22 ± 2 [7Li] are in fair agreement with
the values predicted by the universal Efimov theory
a−/a+ ≈ −4.9 and a−/a∗ ≈ −22.0 [4]. The group
of Lev Khaykovich [143] performed a similar experi-
ment using lithium-7 atoms, and measured a− and a∗.
The ratio a∗/a− = −1.01(15) obtained in the experi-
ment agrees with the theoretical value above if a− and
a∗ are interpreted as corresponding to the ground and
first-excited Efimov trimers and the universal scaling
factor 22.7 is multiplied. The groups from Florence
[139] and Rice University [140] have both reported the
observation of two dips in the loss rate for positive scat-
tering lengths, i.e. two values of a+ corresponding to
a ground-state and an excited Efimov trimers. They
found the ratio between these two values to be 25(4)
and 22.5(3) respectively, roughly confirming the dis-
crete scale invariance of Efimov trimers with the uni-
versal ratio 22.7. The universal scaling was reported
to be observed for negative scattering lengths as well
in reference [140], although a subsequent recalibration
of the scattering length with respect to the magnetic
field dismissed the second value of a− and corrected
the values of a+, giving a updated ratio 16(2) [142].

More recently, the second Efimov trimer could be
observed for negative scattering lengths with caesium-
133 atoms near a 800 G Feshbash resonance [40], as
originally proposed in reference [119]. The scaling fac-
tor between the ground state Efimov trimer and second
Efimov trimer was found to be 21.0(1.3), close to the
universal ratio 22.7. The experimental data for the two
Efimov resonances are shown in figure 4.9. This is so
far the most convincing experimental evidence of Efi-
mov states of identical bosons, according to definition
1 of section 4.5.

Bound-state spectroscopy Before the evidence
of Efimov states through three-body and two-body
losses, the association of three colliding atoms in an
Efimov trimer was theoretically proposed [144]. Such
an association, although different from the original
proposal, could be achieved experimentally and al-
lowed the direct spectroscopy of Efimov trimers. Al-
though the first demonstration was done with three
distinguishable atoms (see section 6.5), the associa-
tion of three bosons into an Efimov trimer was later
achieved with lithium-7 atoms in the group of Lev
Khaykovich [145]. The experiment consists in driv-
ing a transition between three colliding atoms and the
underlying Efimov trimer state by applying a radio-
frequency (rf) modulation of the magnetic field. When
the frequency of the modulation matches the energy
difference between the energy of the colliding atoms
and the trimer energy, the three atoms are associated
in trimers, resulting in a loss of the atoms from the im-
aged cloud. The resonance could be seen as a small dip
in the number of atoms as the frequency of the mod-

ulation is varied, on the shoulder of a broader dip due
to the association of two atoms into a dimer.
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Figure 4.9: Efimov resonances in an ultra-cold gas
of caesium-133 atoms in their lowest hyperfine state,
whose scattering length is varied by applying a mag-
netic field on the order of 800 gauss (adapted from
reference [40]). The resonances appear as peaks in the
three-body recombination rate as a function of scatter-
ing length. The experimental data of reference [40] is
shown with different colours corresponding to different
data sets, all taken at a temperature of about 10 nK.
The data around the first resonance is fitted by the
zero-temperature universal formula (4.52) with a− =
−51.0(0.6) nm and η = 0.10(1). The formula predicts a
second resonance at a = 22.7×−51 = −1158 nm. The
second resonance was observed at a = −1068(63) nm,
corresponding to a factor 21(1.3) indicated by the ar-
row. The height of the peak is much smaller than the
zero-temperature prediction, due to the saturation ef-
fect of finite temperature [136, 137], indicated by the
horizontal dotted line for 10 nK.

4.8 Prospects for observation in con-
densed matter

Most studies of Efimov physics have been done in the
fields of nuclear physics and atomic physics, but re-
cently there have been works seeking the possibility
of Efimov physics in other physical systems. Here, we
present the current prospects for quantum spin systems
[146, 147] and excitons [148].
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4.8.1 Efimov states in quantum spin systems

Quantum spin systems have constituted an important
and active field of research in condensed matter physics
for more than 70 years. They have been been used
with some success to explain and predict various mag-
netic phenomena in insulating solids. A quantum spin
system is a system of spins fixed on the sites of a lat-
tice, which can interact with each other through an ex-
change interaction. Depending on the geometry of the
lattice, spatial dimension, and the sign and the spa-
tial extent of the exchange interaction, quantum spin
systems can exhibit various magnetic phases.

When the ground state of a quantum spin system
shows a non-trivial magnetic phase, such as the fer-
romagnetic or anti-ferromagnetic phases, the symme-
try of the Hamiltonian is spontaneously broken. The
Nambu-Goldstone theorem dictates that there must
exist gapless low-energy excitations, called magnons,
in such broken-symmetry systems. For a ferromag-
net system, the magnons have the dispersion relation
ε(k) ∝ k2 [149]. This dispersion is similar to that of a
non-relativistic particle in the vacuum.

From this similarity between the magnons and
the non-relativistic particles, Yusuke Nishida and co-
workers [14] have sought the possibility of finding Efi-
mov states in a ferromagetic quantum spin system. To
achieve the resonant-interaction condition (4.4) neces-
sary for the appearance of the Efimov states, they con-
sidered the Heisenberg model in three spatial dimen-
sions with an anisotropic exchange coupling and the
single-ion anisotropy. These terms originate from the
anisotropy in the lattice and the crystal field effect that
are present in real materials described by quantum spin
systems. In the presence of these terms, the magnons
no longer behave as independent quasi-particles, and
start to interact. This interacting problem is greatly
simplified from the fact that the number of magnons
is a conserved quantity in the anisotropic Heisenberg
model. It is therefore justified to consider the few-
body problem for magnons with a well-defined number
of magnons. Y. Nishida and co-workers have shown by
analytically solving the two-body problem of magnons
that the magnons can form a bound state when the
anisotropies are increased. As a result, the scattering
length between the magnons diverges at some critical
values of the anisotropies at which the bound state of
magnons appears, a necessary condition for the onset
of Efimov physics. Y. Nishida and co-workers have
solved numerically the three-magnon problem at the
resonant point. For different values of the spin quan-
tum number and critical anisotropies, the three-body
energy spectrum of magnons is found to be in good
agreement with the universal Efimov spectrum, and to
exhibit a discrete scale invariance with a scaling factor
close to 22.7

It is important to note that the following features of
the anisotropic Heisenberg model are the same as the
resonantly interacting non-relativistic particles V. Efi-

mov considers in his original argument: (a) magnons
have a low-energy dispersion ε(k) ∝ k2, (b) the num-
ber of magnons is conserved, (c) the interaction be-
tween magnons is short-ranged. These sufficient condi-
tions seem to be a useful guideline for searching Efimov
states in other systems.

To achieve the Efimov states of magnons, one needs
a fine tuning of the parameters of the system close to
the resonantly interacting regime. In the above case,
one needs to increase the anisotropy of the exchange
interaction or the single-ion anisotropy term, such that
the bound state of two magnons is about to appear.
Although such a fine tuning is rather challenging, it
is known that in organic crystals, the exchange cou-
pling can be modified by applying an external pressure.
This may be one route to realise Efimov states in quan-
tum spin systems. Once one finds a suitable system,
Y. Nishida and co-workers [14] have argued that the
appearance of Efimov states can be tested experimen-
tally from the electron spin resonance signal [146].

4.8.2 Universal few-body physics with exci-
tons

An exciton is a bound state of an electron and a hole
which appears in a semiconductor excited by a laser.
Because it is an association of two fermions, it behaves
as a boson. While there has been a long history of
exciton studies since its first theoretical prediction [150,
151], there has been a revival of interest recently by
the realisation of the Bose-Einstein condensates of the
excitons [152], which had been one of the holy grails in
the research on excitons.

Recently, a possible signature of Efimov physics in an
excitonic system has been claimed to be observed [148].
In reference [148], N -body bound states of excitons,
called poly-excitons, have been observed up to N = 6
by a photoluminescence measurement in a diamond
crystal. The binding energies of these poly-exciton
states were measured, and compared with those found
in other crystals [153, 154]. They have been found to
agree excellently between different crystals if normal-
ized by the binding energy of an exciton, suggesting
that the poly-exciton states behave universally, i.e.,
they are independent of the details of the crystal and
the energy scale of the system. The binding energies
are reminiscent of the series of universal binding ener-
gies for the N -body clusters of resonantly interacting
bosons discussed in section 12.2, although it is not clear
whether they are related since the exciton-exciton in-
teraction is typically non-resonant.

5 Three identical fermions

Identical fermions (i.e., fermions in the same internal
state) cannot interact in the s-wave channel due to the
antisymmetrisation, so that the conventional Efimov
physics appearing for the s-wave resonance (see sec-
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tion 4) does not occur for such Fermi systems. Two
identical fermions can only scatter in the odd angu-
lar momentum channels, and among them, the most
dominant channel at low energy is the p-wave channel.
Therefore, the scattering amplitude at low energy is
written as

f(k, θ) =
k2 cos θ

−1/ap + 1
2rpk

2 − ik3
, (5.1)

where ap is the p-wave scattering volume, rp is the p-
wave inverse effective range. Note that, although the
notations are similar to those of equation (4.41), ap is a
volume and rp is the inverse of a length. A natural step
is to investigate universal three-body physics of identi-
cal fermions in the vicinity of resonant p-wave interac-
tion, i.e., when the moduli of p-wave scattering volume
becomes divergently large. Although such p-wave res-
onances are experimentally challenging because they
are much narrower than the s-wave ones and subject
to larger atomic number losses, they have been success-
fully realised in ultra-cold atom experiments with Fes-
hbach resonances [155, 156, 157, 158]. In this section,
we review the recent theoretical progress on the few-
fermion physics in the vicinity of a p-wave resonance
in three dimensions (see 5.1), and two dimensions (see
5.2).

5.1 Resonant p-wave interactions

In three dimensions, the possibility of Efimov trimers
has been investigated for three fermions with p-wave
resonant interactions [159, 160, 161]. If one takes
1/ap = 0 and rp = 0 simultaneously in equation (5.1),
the moduli of the scattering amplitude takes its max-
imum value allowed by the unitary bound and the
system becomes scale invariant, similarly to the uni-
tary limit in the s-wave case: 1/a = 0 and re = 0.
In this unitary limit 1/ap = 0 and rp = 0, Macek
and Sternberg have shown, using a pseudo-potential
method, that the Efimov effect occurs for the identical
fermions for a spin 1/2 system (i.e., among three iden-
tical fermions, two are in the same internal state, while
the other is in another internal state) [159]. The same
conclusion was obtained in reference [160].

However, this unitary limit is unphysical, violating
the positivity of probability [160, 161, 162, 163]. In-
deed, if one believes the p-wave form of the scattering
amplitude in equation (5.1) for any k < Λ, where Λ is a
cutoff momentum Λ� |ap|−1/3, |rp|, then the probabil-
ity of the bound-state wave function outside the range
b of the potential exceeds unity, suggesting a negative
probability at short distance [160, 161, 162, 163]. The
positivity of the probability thus dictates the inverse
range rp to have a finite negative value, satisfying the
Wigner bound [164, 165].

rp < −
2

b
(5.2)

Equivalently, the scattering amplitude equation (5.1)
is valid only for k � |rp| at the p-wave resonance, with
rp < 0 satisfying the Wigner bound.

In Refs. [162, 166], spin-polarised three identical
fermions around the p-wave resonance have been stud-
ied, keeping the Wigner bound. Three-body bound
states with threefold rotational degeneracy have been
found, one state for each channel in L = 1− chan-
nel [162, 166] and in L = 1+ channel [162]. Both
three-body bound states have larger binding energies
than that of the p-wave dimer around the p-wave res-
onance. This suggests that the p-wave molecular BEC
phase predicted in the studies of the p-wave resonant
two-component Fermi system [167, 168, 169] is not a
genuine ground state, but can be subject to trimer
formation instability. The recombination rate to the
trimers in a gas of p-wave dimers has been estimated
in Refs. [166, 170], while the three-body recombination
to the p-wave dimer state in a gas of identical fermions
has been studied in Refs. [162, 171]. The trimer states
found here are Borromean states [162]: they have finite
binding energies at the p-wave resonance 1/ap = 0, and
they persist for 1/ap < 0, where no p-wave dimer ex-
ists. As one moves further away from the resonance to-
wards the negative scattering volume side, the trimers
finally dissociate into three fermions at three-body con-
tinuum E = 0. On the positive scattering volume side,
the trimer energy becomes equal to the dimer energy,
so that the trimers dissociate into a particle plus a p-
wave dimer.

5.2 The super-Efimov effect

In two dimensions, more exotic few-body states
emerge. In reference [147], Yusuke Nishida and co-
workers have found that there exists an infinite series
of three-body bound states in ` = ±1 channels with
discrete scale invariance. These states, unlike the Efi-
mov states, show a double exponential scaling of their
energies

E(n) = E∗ exp

[
−2 exp

(
3πn

4
+ θ

)]
. (5.3)

For this reason, they have been dubbed “super-Efimov
states”. Here, θ is a parameter determined by the short-
range part of the interaction (see the final paragraph of
this section for more details). The super-Efimov states,
in addition to a non-super-Efimovian ` = 0 ground
state, have been found to be Borromean [172, 173], i.e.,
they remain bound even in the absence of a two-body p-
wave dimer. We note that the three-fermion problem in
two dimensions at the p-wave resonance was also solved
in reference [170] before the super-Efimov states have
been found by Yusuke Nishida and co-workers in refer-
ence [147], and the on-shell T -matrix at the threshold
energy was found to show the same double exponential
scaling behavior as equation (5.3).

While Yusuke Nishida and co-workers have found
the super-Efimov states with the renormalization group
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analysis, as well as by solving a momentum-space inte-
gral equation for a separable potential [147], they can
also be found by other formalisms [172, 173, 174, 175].
A rigorous mathematical study based on a spectral
analysis has proved the presence of the super-Efimov ef-
fect [174]. The super-Efimov states can also be demon-
strated by the hyper-spherical formalism, but some re-
marks are in order. In the hyper-spherical formalism,
the diagonal adiabatic potential in the super-Efimovian
channel ` = ±1 is found to be (Vn here has the same
notation as in equation (4.31)) [172, 175]

V0(R) = − 1

4R2
− Y

R2 ln(R/R0)
− 16/9

R2 ln2(R/R0)

+O

(
1

R2 ln3(R/R0)

)
(5.4)

where R0 is the range of the interaction, and
Y is a parameter dependent on the short-range
part of the interaction. If Y = 0 and one
can neglect the second term, one arrives at the
super-Efimov states with a double exponential scal-

ing E(n) ∝ exp

[
−2 exp

(
πn

/√
16

9
− 1

4

)]
, which is

slightly different from equation (5.3) [172]. However,
Y turns out to be positive definite [172, 173], and the
second term is relevant at large R. Due to the sec-
ond term, equation (5.4) leads to a different scaling be-

havior E(n) ∝ exp

(
−π

2n2

2Y

)
at low energy [175]. The

discrepancy between these results can be ascribed to
the non-adiabatic term Qnm(R) [172, 173]. The diago-
nal non-adiabatic term in the super-Efimovian channel
Q00(R) has been found to behave in the leading order
as [172]

Q00(R) =
Y

R2 ln(R/R0)
+O

(
1

R2 ln2(R/R0)

)
. (5.5)

One can see that the first term cancels the second term
in equation (5.4). In reference [173], Chao Gao and
co-authors have studied this system numerically for
various classes of potentials, and the next leading or-
der of Q00(R) has been found to be consistent with

− 1

4R2 log2(R/R0)
. One thus obtains a correct hyper-

radial potential in the super-Efimovian channel as

V0(R) +Q00(R) = − 1

4R2
− 16/9 + 1/4

R2 ln2(R/R0)

+O

(
1

R2 ln3(R/R0)

)
, (5.6)

which reproduces the double exponential scaling of
equation (5.3) found in reference [147].

While the double exponential scaling
ln |E(n+1)|/ ln |E(n)| = exp

(
3π
4

)
≈ 10.6 seems

too large to be observed in a realistic system, it
can be reduced significantly for mass-imbalanced

two-component systems [176]. It has been found that
the super-Efimov effect also occurs in a 2 identical
fermions + 1 particle system or 2 identical bosons
+ 1 particle system when the inter-species p-wave
interaction is resonant. The scaling factor of the
super-Efimov states decreases as the inter-species
mass ratio is increased towards a 2 heavy + 1 light
configuration. For instance, for a mixture of 6Li and
133Cs atoms, corresponding to the mass ratio 22.1, it
reaches a reasonable value ln |E(n+1)|/ ln |E(n)| ≈ 1.3.
Note that the adiabatic approximation, i.e., the
Born-Oppenheimer approximation, also fails for
the mass-imbalanced system even for large mass
ratios [176], leading to a similarly wrong energy
spectrum as mentioned above [177].

Interestingly, Chao Gao and co-authors have found
that the three-body parameters E∗ and θ are univer-
sal for the class of van der Waals potentials [173], in
similarity with the van der Waals universality of the
three-body parameter found for the Efimov states of
three identical bosons (see section 11.2). This simi-
larity is reinforced by the fact that four-body bound
states (` = ±2 channels) exist and are tied to each
super-Efimov states, showing the same double expo-
nential scaling, in the same way four-body bound states
are associated with the Efimov trimers (see section 12).
Although the super-Efimov trimers have yet to be ob-
served in experiments, it is of interest to investigate
the universality of the super-Efimov states in the N -
body sector (N ≥ 4) and understand differences and
similarities with the conventional Efimov physics for
three bosons in three dimensions. We also note that a
Borromean three-body bound state, possibly related to
the super-Efimov states, has also been found in a two
dimensional Hubbard model in the S = 3/2 channel,
which corresponds to a spin-polarised three-fermion
system [178]. It is an interesting avenue to search
for super-Efimov physics in such condensed-matter sys-
tems.

6 Multi-component systems

Systems with different kinds of particles, or parti-
cles with different internal states (either referred to as
“components”) exhibit an even richer Efimov physics
than systems of identical particles. These systems have
more parameters: the different kinds of particles may
have different masses, quantum statistics, and different
interactions between them. This situation introduces
a few general facts:

� For a given three-particle system, there are three
inter-particle interactions. At least two of these in-
teractions should be resonant for the Efimov effect
to occur. This can be understood simply from the
picture of mediated interaction: in order for one
particle to mediate an effective long-range interac-
tion between two other particles, it must interact
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resonantly with these two particles. If it interacts
resonantly with only one particle, then the medi-
ation to another particle is not possible.

� Generally speaking, bosonic particles are
favourable to the Efimov effect, whereas fermionic
particles tend to prevent the Efimov effect, since
their Pauli exclusion may overcome the Efimov
attraction.

� The lighter a particle is, the better it medi-
ates interaction between other particles. Thus,
mass-imbalanced systems tend to enhance the Efi-
mov attraction, and enable the Efimov effect in
fermionic systems.

In the following, we review various situations.

6.1 Three distinguishable particles

The general treatment of three different kinds of par-
ticles with different masses and interacting with differ-
ent scattering lengths was first addressed by Amado
and Noble [22] and Efimov [20, 21]. Here, we consider
the simpler case of three different particles with equal
masses but different scattering lengths a12, a23, a31. A
concrete example of this situation is given by particles
of the same kind, polarised in three different internal
states - see section 6.3.2.

The general form of the Faddeev decomposition used
in equation (4.16) involves three different Faddeev com-
ponents:

Ψ(1, 2, 3) = χ(1)(~r23, ~ρ23,1)+χ(2)(~r31, ~ρ31,2)+χ(3)(~r12, ~ρ12,3)
(6.1)

Following the derivation of section 4.1, we apply the
Bethe-Peierls condition (4.7) for each pair and obtain:

∂χ
(i)
0

∂α
(R, 0)+

4√
3

(
χ
(j)
0 (R, π

3
) + χ

(k)
0 (R, π

3
)
)

= − R

ajk
χ
(i)
0 (R, 0)

Using the expansion χ
(i)
0 (R,α) =

∑
n F

(i)
n (R)φ

(i)
n (α;R)

where φ
(i)
n (α;R) has the form:

φ(i)
n (α;R) = sin

(
sn(R)

(
π
2 − α

))
,

the conditions can be written in a matrix form [4]:

[
− cos(sn

π
2

)

 1 0 0
0 1 0
0 0 1

+
4√
3

sin(sn
π
6

)

sn

 0 1 1
1 0 1
1 1 0


+

sin(sn
π
2

)

sn
R

 a−1
23 0 0
0 a−1

31 0
0 0 a−1

12

] ·
 F

(1)
n

F
(2)
n

F
(3)
n

 = 0

(6.2)

To obtain a non-trivial solution F
(i)
n 6= 0, the determi-

nant of the matrix should be zero.

6.1.1 Three resonantly interacting pairs

For three resonantly large scattering lengths |aij | � b
and hyper-radius b � R � |aij |, the terms Ra−1

ij can
be neglected and the determinant becomes:(
cos(sn

π
2 ) +

4√
3

sin(sn
π
6 )

sn

)2(
cos(sn

π
2 )− 8√

3

sin(sn
π
6 )

sn

)
,

whose second factor admits the same imaginary root
s0 as that of equation (4.29) for three identical bosons.
This could be anticipated from the fact that the form of
the wave function in equation (6.1) can reduce to the
bosonic case of equation (4.16) with χ(i) = χ, when
all scattering lengths are equally large. Therefore, the
same Efimov effect that occurs for three bosons also
occurs for three distinguishable particles. In partic-
ular, this systems exhibits discrete scaling invariance
with the same scaling ratio eπ/|s0| ≈ 22.7 at unitarity
a12 = a23 = a31 = ±∞. As in the bosonic case, the
discrete scaling invariance persists away from unitar-
ity. However, it requires the simultaneous scaling of all
scattering lengths. It may therefore not be apparent if
only one or two scattering lengths are scaled.

6.1.2 Two resonantly interacting pairs

We now consider only two resonantly large scattering
length, say |a23|, |a31| � b, and one non-resonant scat-
tering length a12 on the order of the interaction range
b. In the region of hyper-radius b � R � |a23|, |a31|,
the terms Ra−1

23 , Ra−1
31 ∼ 0 in equation (6.2) can be

neglected, whereas the term Ra−1
12 is large and imposes

F
(3)
n ≈ 0. We are thus left with the equations for F

(1)
n

and F
(2)
n . The determinant of the corresponding ma-

trix is(
cos(sn

π
2 ) +

4√
3

sin(sn
π
6 )

sn

)(
cos(sn

π
2 )− 4√

3

sin(sn
π
6 )

sn

)
,

whose second factor admits an imaginary root s0 ≈
i0.4137. The Efimov effect therefore occurs in this case
as well, although it is weaker. The corresponding dis-
crete scaling invariance ratio is eπ/|s0| ≈ 1986.12, im-
plying a very sparse Efimov spectrum.

6.1.3 One resonantly interacting pair

Finally, if there is only one resonantly large scattering

length, say a23, only F
(1)
n contributes in equation (6.2)

and one is left with:

cos(sn
π
2 ) = 0,

which admits only real roots sn. There is therefore no
Efimov effect in this case. This is consistent with the
physical picture that the Efimov effect is due to the
exchange of a particle resonantly interacting with two
other particles, which is not possible if only one pair is
resonantly interacting.
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6.2 2 Identical particles + 1 particle

We now consider the case when two of the three par-
ticles are identical, either identical bosons or identi-
cal fermions. Here, “identical particles” means that
they are in the same internal states (for a treatment
of identical particles with different internal states, see
section 6.3). The mass M of these two particles is in
general different from the mass m of the third particle.

The two identical particles are located at ~x2 and ~x3

and the light particle at ~x1. The three sets of Jacobi
coordinates for this system read:

~r1i = ~xi − ~x1

~ρ1i,j =
1

cos γ

(
~xj −

M~xi +m~x1

M +m

)
for {i, j} = {1, 2}, and

~r23 =
1

2 sin γ′
(~x3 − ~x2)

~ρ23,1 =
1

cos γ′

(
~x1 −

~x2 + ~x3

2

)
,

where the angles γ ∈ [0, π/2] and γ′ ∈ [0, π/4] are
defined by:

γ = arcsin
M

M +m
,

γ′ = arcsin

√
m

2(M +m)
.

The three sets are shown in figure 6.1. They all sat-
isfy r2

ij + ρ2
ij,k = R2, where R is the hyper-radius, and

they are related to each other by the following rotation
transformations:

~r13 = sin γ ~r12 + cos γ ~ρ12,3

~ρ13,2 = cos γ ~r12 − sin γ ~ρ12,3

~r32 = sin γ′ ~r12 − cos γ′ ~ρ12,3

~ρ32,1 = − cos γ′ ~r12 − sin γ′ ~ρ12,3

Using the general Faddeev decomposition of equa-
tion (6.1), and taking into account the symmetry or
antisymmetry of the wave function under the exchange
of the identical particles 2 and 3, one obtains the fol-
lowing form of the wave function:

Ψ(1, 2, 3) =χ(1)(~r32, ~ρ32,1)

+ χ(2)(~r13, ~ρ13,2)± χ(2)(~r12, ~ρ12,3)

The sign ± corresponds to a plus sign in the case of
identical bosons, and to a minus sign in the case of
identical fermions.

Following the derivation of section 4.1, we apply the
Bethe-Peierls boundary condition (4.7) for pair 12 and

32, and obtain:[(
∂

∂r
+

1

a12

)
χ
(2)
0 (~r, ~ρ)

]
r→0

± 2
χ
(2)
0 (cos γ~ρ,− sin γ~ρ)

sin 2γρ

+2
χ
(1)
0 (− cos γ′~ρ,− sin γ′~ρ)

sin 2γ′ρ
= 0

[(
∂

∂r
+

1

a32

)
χ
(1)
0 (~r, ~ρ)

]
r→0

+ 2
χ
(2)
0 (− cos γ′~ρ,− sin γ′~ρ)

sin 2γ′ρ

±2
χ
(2)
0 (− cos γ′~ρ,− sin γ′~ρ)

sin 2γ′ρ
= 0

(6.3)

where χ
(k)
0 (~r, ~ρ) = χ(k)(~r, ~ρ)/(rρ). The Faddeev com-

ponents can be expressed as a function of the hyper-
spherical coordinates,

R =
√
r2
ij + ρ2

ij,k,

αk = arctan
rij
ρij,k

,

and the orientations r̂ij and ρ̂ij,k of ~rij and ~ρij,k. Since
the particles interact in the s wave, we consider the

case when χ
(k)
0 is independent of the orientation r̂ij .

In these new coordinates, the Bethe-Peierls boundary
conditions (6.3) become:[(

∂

∂α
+

R

a12

)
χ

(2)
0 (R,α, ρ̂)

]
α→0

± 2
χ

(2)
0 (R, π2 − γ,−ρ̂)

sin 2γ

+2
χ

(1)
0 (R, π2 − γ

′,−ρ̂)

sin 2γ′
= 0

[(
∂

∂α
+

R

a32

)
χ

(1)
0 (R,α, ρ̂)

]
α→0

+ 2
χ

(2)
0 (R, π2 − γ

′,−ρ̂)

sin 2γ′

±2
χ(2)(R, π2 − γ

′,−ρ̂)

sin 2γ′
= 0

(6.4)

One can then expand χ
(k)
0 as follows:

χ
(k)
0 (R,α, ρ̂) =

∑
n,`,m

F
(k)
n,`,m(R)φ

(k)
n,`(α;R)Y`m(ρ̂)

where Y`m are the spherical harmonics, and φn,` are
the solutions of the eigenvector equation:(
− ∂2

∂α2
+
`(`+ 1)

cos2 α

)
φ

(k)
n,`(α;R) = s2

n,`(R)φ
(k)
n,`(α;R)

(6.5)

with the boundary conditions φ
(i)
n,`(

π
2 ) = 0 and the

Bethe-Peierls boundary conditions from equation (6.4).

The eigenvalues s
(k)
n,`(R) and eigenvectors φn,`(α;R) de-

termine a set coupled of coupled equations satisfied by

F
(k)
n,`,m(R), from which the three-body problem can be

solved.
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Figure 6.1: The three sets of Jacobi coordinates for two identical particles (dark) plus one particle (pale).

Figure 6.2: Efimov scaling ratio λ0 = eπ/|s0| as a func-
tion of the mass ratio for Efimov states of two iden-
tical particles and another particle. The lower curve
(green) corresponds to two identical bosons and one
particle resonantly interacting with each other. The
middle curve (blue) corresponds to two identical bosons
interacting resonantly only with the other particle.
The upper curve (orange) corresponds to two identi-
cal fermions resonantly interacting with another parti-
cle. The dashed curves show the results obtained from
the Born-Oppenheimer approximation for large mass
ratios.

6.2.1 2 bosons + 1 particle with ` = 0

If the two identical particles are bosonic, then ± = +.
For ` = 0, the solutions of equation (6.5) are given

by φ
(k)
n,0(α;R) = sin

(
sn
(
π
2 − α

))
. The conditions re-

sulting from equation (6.4) can be written in a matrix

form[
− cos(sn

π
2 )

(
1 0
0 1

)
+

2

sn

(
sin(snγ)

sin 2γ
sin(snγ

′)
sin 2γ′

2 sin(snγ
′)

sin 2γ′ 0

)

+
sin(sn

π
2 )

sn
R

(
a−1

12 0
0 a−1

32

)]
·

(
F

(2)
n

F
(1)
n

)
= 0

(6.6)

Three resonantly-interacting pairs We first con-
sider the case when all scattering lengths are reso-
nant, |a12|, |a32| � b. In the region of hyper-radius
b � R � |a12|, |a32|, the terms Ra−1

12 , Ra−1
32 ∼ 0 in

equation (6.6) can be neglected, and the determinant
of the matrix in that equation is:(

cos(sn
π
2 )− 2

sn

sin(snγ)

sin 2γ

)
cos(sn

π
2 )−2

(
2

sn

sin(snγ
′)

sin 2γ′

)2

.

As in the case of three identical particles, this determi-
nant admits an imaginary root s0. Hence, the Efimov
effect occurs in this case, and the scaling ratio between
Efimov states at unitarity (a12, a32 → ±∞) is shown
in figure 6.2. In the case of equal mass M = m, one
retrieves the scaling ratio eπ/|s0| ≈ 22.7 obtained for
three identical bosons. This ratio is decreased by ei-
ther decreasing the mass ratio M/m (it tends to 15.74
in the limit M/m→ 0) or increasing the mass ratio (it
tends to 1 in the limit M/m→∞).

Two resonantly-interacting pairs We now con-
sider the case when only the interaction between the
particles of mass M and mass m is resonant, |a12| � b,
while the interaction between identical particles is non-
resonant, |a32| ∼ b. In the region of hyper-radius
b � R � |a12|, the term Ra−1

12 in equation (6.6) may
be neglected, whereas the term Ra−1

32 is very large and

imposes F
(1)
n ≈ 0 11. The remaining condition reads:

− cos(sn
π
2 ) +

2

sn

sin(snγ)

sin 2γ
= 0,

11The corrections due to the non-zero scattering length a32
and the effective range between the non-identical particles were
recently addressed in the framework of effective-field theory by
Bijaya Acharya and co-workers [179]. It was shown that both
corrections can be accounted for by a single additional three-
body parameter.
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which admits one imaginary solution s0. The Efimov
effect occurs in this case too, and the scaling ratio be-
tween Efimov states at unitarity (a12 → ±∞) is shown
in figure 6.2. Since there are only two resonant pairs,
the Efimov attraction is weaker than for three resonant
pairs, and for equal masses M = m, one retrieves the
scaling ratio eπ/|s0| ≈ 1986.12 obtained in section 6.1.

For large mass ratios, the scaling ratio of trimer ener-
gies becomes the same as in the case of three-resonantly
interacting pairs. This large-mass-ratio limit is in-
teresting because the trimer spectrum is denser than
that of identical bosons, allowing to more easily ob-
serve several Efimov trimers. These trimers may be
evidenced from the change in particle-dimer scattering
length and relaxation rate, or three-body recombina-
tion rate [180, 181, 182].

6.2.2 2 fermions + 1 particle with ` = 1

If the two identical particles are fermionic (± = −),
there cannot be any s-wave interaction between the
two, which can be seen from the boundary condi-
tion (6.3), which imposes φ(1) = 0. For ` = 0, the

solutions of equation (6.5) are given by φ
(2)
n,0(α;R) =

sin
(
sn
(
π
2 − α

))
, with the following condition resulting

from equation (6.4),

− cos(sn
π
2 )− 2

sn

sin(snγ)

sin 2γ
= 0.

This equation only admits real solutions, and thus
there is no Efimov attraction in this case.

For ` = 1, however, solutions of equation (6.5) are
given by [183]

φ
(2)
n,0(α;R) = sn cos

(
sn
(
π
2 − α

))
−tanα sin

(
sn(π2 − α)

)
,

with the following condition resulting from equa-
tion (6.4)

1− s2
n

sn
tan(sn

π
2 )− 2 cos (snγ)

sin 2γ cos
(
sn

π
2

) − sin (snγ) /sn

sin2 γ cos
(
sn

π
2

)
This condition admits one imaginary solution s0 for

a mass ratio M
m > κc, where the critical mass ratio

κc ≈ 13.6069657. Although there is no Efimov effect
for mass ratios smaller than κc (in particular no Efi-
mov effect in the equal-mass case), it occurs for mass
ratios larger than the critical mass ratio κc. The corre-
sponding scaling ratio at unitarity (a12 = a13 → ±∞)
is shown in figure 6.2. It is infinitely large at the critical
mass ratio and rapidly decreases to approach the scal-
ing ratio for two bosons and one particle as the mass
ratio is increased.

6.2.3 Trimers with higher-angular momenta

From the preceding discussion, it appears that there
is in general a competition between the Efimov attrac-
tion and the centrifugal repulsion due to the angular

momentum `. For large enough mass ratios, the Efi-
mov attraction can overcome the centrifugal repulsion,
gradually allowing the binding of Efimov trimers with
higher angular momentum [21, 184, 185, 186, 187]. Us-
ing the same approach as in the preceding discussion,
one can determine from equation (6.4) the critical mass
ratios for the appearance of Efimov trimers of increas-
ing angular momenta. In the case of bosons, trimers
with even angular momentum appear at the following
critical mass ratios [188, 186]:

` = 2, κ > 38.630...

` = 4, κ > 125.765...

. . .

In the case of fermions, trimers with odd angular
momentum appear at the following mass ratios:

` = 1, κ > 13.607...

` = 3, κ > 75.994...

. . .

6.2.4 The Born-Oppenheimer picture

In all three cases presented above and shown in fig-
ure 6.2, the Efimov effect is strengthened as the mass
ratio M/m is increased. This can be simply understood
from the Born-Oppenheimer approximation [189]. This
approximation exploits the fact that M is much larger
than m in this limit: the heavy particles of mass M
can thus be treated as slow particles, and the particle
of mass m as a fast particle.

The Born-Oppenheimer approximation consists in
first solving the motion of the fast particle, for fixed
positions of the heavy particles. Let us call ~R the rel-
ative position between the two heavy particles, and ~r
the relative position between their centre of mass and
the light particle. The three-body wave function is ap-
proximated by the form:

Ψ(~R,~r) = F (~R)φ(~r; ~R)

where φ(~r; ~R) is a solution of the problem for the light
particle in presence of the heavy particles at a fixed
separation ~R. In the zero-range theory, this solution is
a free wave satisfying

− ~2

2m
∇2
rφ(~r; ~R) = εφ(~r; ~R) (6.7)

with the Bethe-Peierls boundary condition (4.7) be-
tween the heavy and light particles. The solution with
the lowest energy ε < 0 is obtained with the following
linear combination of two free waves originating from
two sources at the locations of the heavy particles:

φ(~r; ~R) =
exp(−κ|~r − ~R/2|)
|~r − ~R/2|

+
exp(−κ|~r + ~R/2|)
|~r + ~R/2|

(6.8)
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Figure 6.3: Bonding potential ε(R) in the Born-
Oppenheimer approximation between two heavy par-
ticles separated by R and both resonantly interacting
with a light particle, with scattering length a > 0. At
separation much smaller than the scattering length a
between the heavy and light particles, the heavy par-
ticles experience an Efimov R−2 attraction.

where κ = 1
~
√
−2mε. Applying the Bethe-Peierls

boundary condition (4.7) to equation (6.8), one gets
an equation for κ:

κ− e−κR

R
=

1

a
. (6.9)

The wave number κ, and thus the energy ε, are there-
fore functions of the separation R = |~R| between the
two heavy particles. The R-dependent energy ε(R)
constitutes a potential energy for the relative motion
of the two heavy particles, which obeys the following
Schrödinger equation,(

− ~2

M
∇2
R + ε(R)

)
F (~R) = E F (~R). (6.10)

In addition to the potential ε(R) induced by the light
particle, there should also be a short-range interaction
potential between the two heavy particles, but it is ne-
glected here. The potential energy ε(R) can be calcu-
lated analytically from equation (6.9) using the Lam-
bert function and is shown in figure 6.3 for a positive
scattering length. It is an attractive potential, whereas
the potentials obtained for larger eigenvalues ε of equa-
tion (6.7) are repulsive. For this reason, the lowest-
eigenvalue solution given by equation (6.8) is called a
bonding orbital, to reflect the fact that the light parti-
cle in such a state acts as a glue between the two heavy
particles.

For large R� a, one finds from equation (6.9) that

κ ∼ 1

a
+
e−R/a

R
,

showing the bonding potential ε(R) asymptotes to the

energy − ~2

2ma2 corresponding to a two-body bound
state of light and heavy particles scattering with a free
heavy particle at zero energy. Moreover, the tail of the

potential is as an attractive Yukawa potential whose
range is the scattering length a.

For small R� a, on the other hand, one finds from
equation (6.9) that κR approaches the Omega constant
Ω ≈ 0.567143, solution of the equation Ω = e−Ω. The

bonding potential is therefore ε(R) ∼ − ~2

2m
Ω2

R2 . This
reproduces the 1/R2 Efimov attraction. Hence, the
Born-Oppenheimer approximation shows that the Efi-
mov attraction can indeed be interpreted as resulting
from the exchange of the light particle between the two
heavy particles. Moreover, since ε(R) is proportional
to 1/m and the relative kinetic energy of the two heavy
particles is proportional to 1/M , one can see from equa-
tion (6.10) that the Efimov attraction is more effective
for large mass ratios M/m.

More precisely, for a given partial wave FLM (~R) =
R−1fL(R)YLM (R̂) with angular quantum number L,
this equation can be rewritten in a form similar to
equation (4.31),(

− d2

dR2
+ V (R)− ME

~2

)
fL(R) = 0,

with the potential

V (R) =
L(L+ 1)

R2
+
M

~2
ε(R). (6.11)

Identification of this potential at small R� a with the
form of equation (4.33) gives

|s0|2 =
M

2m
Ω2 − L(L+ 1)− 1

4
(6.12)

from which one can calculate the scaling factor λ0 =
eπ/|s0| associated with the 1/R2 attraction.

If the two heavy particles are distinguishable or iden-
tical bosons, one can take L = 0. The corresponding
potential V (R) ∝ ε(R) is purely attractive, as shown
in figure 6.3. If the two heavy particles are identical
fermions, there should be at least one unit of angu-
lar momentum between the two heavy particles to re-
spect the antisymmetry of their wave function. There
is therefore a competition between the Efimov attrac-
tion and the centrifugal repulsion. The resulting po-
tential V (R) is represented in figure 6.4 for different
values of the mass ratio. According to equation (6.12),
the Efimov attraction wins for large enough mass ra-
tio M/m. For |s0| = 0, one obtains the critical mass
ratio κc ≈ 13.990296 at which the potential becomes
purely attractive, which is very close to the exact result
κc ≈ 13.6069657 presented in section 6.2.2. Above this
critical mass ratio, the potential is dominated by the
R−2 Efimov attraction for R � a, which leads to the
Efimov effect.

The Efimov scaling factor λ0 obtained from equa-
tion (6.12) is shown by dashed curves in figure 6.2 for
both the bosonic L = 0 and fermionic L = 1 cases,
and is in good agreement with the exact results for
large mass ratios. The Born-Oppenheimer approxima-
tion thus gives a simple account of the Efimov effect
for 2+1 particles.
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Figure 6.4: Effective potential V (R) in the Born-
Oppenheimer approximation between two identical
fermions separated by R and resonantly interacting
(with a scattering length a > 0) with a light particle,
for various values of their mass ratio. This potential
results from the competition between the bonding po-
tential ε(R) and the centrifugal repulsion with one unit
of angular momentum - see equation (6.11). At short
separations R � a, the potential exhibits the ∝ R−2

Efimov attraction for a mass ratio larger than the crit-
ical value κc ≈ 13.99 (corresponding to the red curve),
while it is repulsive for smaller mass ratios.

6.2.5 Kartavtsev-Malykh universal trimers

As we saw in the preceding sections, a system of two
identical fermions resonantly interacting with a light
particle can be bound by the Efimov effect when the
mass ratio between the fermions and the light parti-
cle is larger than a critical value κc. Nevertheless,
even below the critical mass ratio, it is possible for
the system to form universal three-body bound states
with the same quantum numbers for a > 0. This fact
was pointed out by Oleg I. Kartavtsev and Anasta-
sia V. Malykh [183]. It can be seen from the Born-
Oppenheimer potential V (R) between the two fermions
shown in figure 6.4. For a mass ratio smaller than
κc, even though the centrifugal repulsion wins over the
Efimov attraction, making the potential repulsive at
short separation, there can nonetheless be an attrac-
tive part at larger distances, thereby creating a poten-
tial well. This potential well can be seen in the curve
corresponding to a mass ratio of 10 in figure 6.4. The
potential well deepens as the mass ratio increases, un-
til it becomes purely attractive at the critical mass ra-
tio. Kartavtsev and Malykh have shown by solving the
three-body problem exactly (using the hyperspherical
formalism sketched at the beginning of this section)
that a ground three-body bound state appears at the
critical mass ratio κ1 ≈ 8.17260, and an excited one ap-
pears at the mass ratio κ2 ≈ 12.91743. Since there is
no Efimov attraction at short distance for these states,
there is no need to introduce a three-body boundary
condition, and thus the states are universally deter-
mined by the scattering length a > 0 between a fermion

and the light particle. Unlike Efimov trimers, the en-
ergy of these trimer simply scales with the universal
dimer energy. For this reason, they are called “uni-
versal trimers”. Similar states appear for higher an-
gular momenta at some critical mass ratios [188, 186],
connecting to the non-zero angular-momentum Efimov
trimers of section 6.2.3 appearing at larger mass ratios.

The existence of these states have important conse-
quences for inelastic three-body collisions by recombi-
nation into dimers [190] and the scattering of dimers
of fermions with another fermion [191], even at mass
ratios slightly lower than κ1, as was confirmed exper-
imentally [192]. However these states have not been
directly observed yet. It should be noted that the uni-
versality of these states is in practice limited to very
large scattering lengths [193, 194]. Although there is
formally no need to introduce a short-range three-body
boundary condition for the universal states, such con-
dition exists physically at a separation of the particles
on the order of the interaction range b. Even when the
scattering length is more than ten times that range, the
trimers may be significantly affected by the three-body
boundary condition.

In reference [193] the 2+1 fermions problem was
solved with a three-body boundary condition imple-
mented by imposing a cutoff at some momentum ∼
b−1. For mass ratio κ1 < κ < κ2, a trimer was found
to exist on the positive scattering length side and shows
the universal features predicted by Kartavtsev and Ma-
lykh when the scattering length is very large a/b � 1
(see figure 6.5). As the scattering length is tuned
away from unitarity, however, the binding energy of the
trimer gets smaller than that of the universal trimer,
due to the three-body boundary condition. A similar
behaviour is found for mass ratios κ2 < κ < κc, where
two universal trimers appear near unitarity (see the
central column of figure 6.5) but gradually turn into
what the authors of reference [193] called “crossover
trimers”, which end up dissociating into a fermion and
a fermion-light-particle dimer as the scattering length
is varied further. The crossover trimers depend on the
three-body parameter set by the three-body bounary
condition and smoothly connect the universal trimers
to the Efimov trimers appearing at larger mass ratio
κ ≥ κc: as the mass ratio is increased from below with
a fixed positive scattering length, the universal trimers
become more and more sensitive to the three-body pa-
rameter, turning into the crossover trimer states, and
then at κ ≥ κc turn into the ground and first excited
states of the Efimov trimers (the second and higher ex-
cited Efimov trimers start to appear at κ > κc ). This
scenario illustrated in figure 6.5 describes how the two
universal trimers for κ < κc smoothly connect to an
infinite series of Efimov states for κ > κc.

The 2+1 fermions problem was subsequently stud-
ied by Arghavan Safavi-Naini and co-workers in refer-
ence [194] with a general three-body boundary condi-
tion implemented by setting the logarithmic derivative
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Figure 6.5: Schematic three-body energy spectrum (scaled as a wave number k) of two identical heavy fermions
resonantly interacting with a light particle, as a function of inverse scattering length 1/a between the heavy and
light particles, and mass ratio M/m between heavy and light particles. The three-body boundary condition is
set by a cutoff in momentum. A trimer appears above the critical mass ratio κ1 = 8.17260..., and a second trimer
appears above the critical mass ratio κ2 = 12.91743.... The wave number k of these trimers universally scales
with the inverse scattering length 1/a near the unitarity limit 1/a → 0 (as shown in black) but deviates from
this ideal behaviour for larger 1/a (as shown in green). Above the critial mass ratio κc = 13.6069..., the Efimov
occurs and there is an infinite number of trimers. These trimers exhibit the Efimov discrete scale invariance
in the region where the trimer curves are red. The trimer curves shown in green break the discrete scale
invariance but are characterised only by the scattering length and a three-body parameter. They are referred
to as “crossover trimers” because they dominate at the critical mass ratio κc and make a smooth connection
between the universal and Efimov trimers. The trimer curves shown in grey depend on other microscopic details
and are referred to as non-universal.

of the hyper-radial wave function at distance on the
order of b. While this work confirmed that the trimers
behave universally when a/b� 1 and that they tend to
become more sensitive to the three-body parameter as
the mass ratio is increased towards κc, there are some
notable differences compared to the above work [193].
In addition to the universal trimers, an additional“non-
universal” trimer may exist. Here, non-universal means
that it strongly depends on the three-body boundary
condition in addition to the scattering length a. As the
value of the three-body boundary condition is varied,
the non-universal trimer makes avoided crossings with
the universal trimers, and shifts their energies away
from the universal predictions. In contrast to the mo-
mentum cutoff method of reference [193], the shift can
be either positive or negative depending on binding
energy of the non-universal state. When it is bound
deeper than the universal trimers, it pushes up their
energies. On the contrary, it pushes down the energies
of the universal trimers when it lies above them.

In the limit where the scattering length a is much

larger than b, the three-body boundary condition can
be implemented as a zero-range boundary condition pa-
rameterised by a three-body parameter Λ (as in equa-
tion (4.35)) for mass ratios larger than κr ≈ 8.619,
because both the regular solution (which vanishes at
small hyper-radius) and the irregular solution (which
diverges at small hyper-radius) are square-integrable
in this case [195, 194, 196]. The precise energy spec-
trum in this limit for all possible values of Λ|a| and all
mass ratios κr < κ < κc has recently been calculated
by Kartavtsev and Malykh [196] for both a > 0 and
a < 0. In some range of Λ|a|, the trimers may appear,
like Efimov states, at a negative scattering length in-
stead of being restricted to a > 0. For Λ−1 � a, one
retrieves the universal results.

To answer which kind of three-body boundary con-
dition should be taken for a given physical system, one
needs further knowledge on the microscopic details of
the system in question. Indeed, recent works on the
microscopic origin of the three-body parameter suggest
that pairwise interactions inducing a significant drop of
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probability at short pair separation create an effective
repulsive barrier that serves as a three-body boundary
condition. This subtle effect is discussed in detail in
section 11. Whether it is also relevant here is an open
question.

6.3 Particles with spin

In many systems occurring in nature, particles have an
internal spin that complicates somewhat their descrip-
tion.

6.3.1 Rotationally invariant systems

In many cases, the interaction between two particles
1 and 2 is rotationally invariant, and thus does not
depend on the spin projection numbers but only on
the spin quantum number s for the total spin of the
two particles. For example, for particles with spin 1/2,
there are two interaction potentials: the singlet poten-
tial (for s = 0) and the triplet potential (for s = 1). A
general treatment of the resonantly-interacting three-
body problem with spin has been given by Bulgac and
Efimov [197]. In general, for a given total spin S of
the three-body system, one can generalise the Faddeev
decomposition of equation (4.16) as follows [4]:

ΨS(1, 2, 3) =
∑
s

χ(1)
s (~r23, ~ρ23,1)|s〉23 (6.13)

+
∑
s

χ(2)
s (~r31, ~ρ31,2)|s〉31

+
∑
s

χ(3)
s (~r12, ~ρ12,3)|s〉12.

The states |s〉ij denote three-spin states of total spin
quantum number S and spin quantum number s for
the pair ij. For a given pair ij, these states form a
basis of the three-spin space of total spin S. One can
thus express the states for the other pairs as a linear
combination of the states for that particular pair. In
section 6.4.1, we illustrate this by treating the specific
example of the triton.

6.3.2 Polarised systems

In some other cases, such as in the presence of a mag-
netic field that strongly breaks the rotational invari-
ance, the pairwise interaction can be assumed to de-
pend only on the spin projections (magnetic quantum
number m) of the two particles. Then, each spin pro-
jection can be regarded as a different kind of particle,
and the situation is equivalent to the cases discussed in
sections 6.1, 6.2.1, and 6.2.2. For instance, in the ex-
periments discussed in section 6.4 of lithium-6 atoms
in a magnetic field, polarised in three different hyper-
fine states |a〉, |b〉, and |c〉, the pairwise interaction
just depends on the hyperfine states of the pair [79].
Although the atoms are fermionic, the fully antisym-

metrised wave function for three atoms in three differ-
ent spin states reads:

Ψ(1, 2, 3) = φ(1, 2, 3)|a, b, c〉 − φ(1, 3, 2)|a, c, b〉
+φ(2, 3, 1)|b, c, a〉 − φ(2, 1, 3)|b, a, c〉
+φ(3, 1, 2)|c, a, b〉 − φ(3, 2, 1)|c, b, a〉,

and therefore is equivalent to a single wave function
φ describing a system of three distinguishable parti-
cles, with identical masses but three different scatter-
ing lengths a12, a23, and a31 - see section 6.1 for the
derivation of the Efimov effect in this system.

6.3.3 Spin-orbit interaction

Spin-orbit interaction is the coupling between a parti-
cle’s spin and its motion. It occurs for charged particles
such as electrons in atoms and solids, as well as nucle-
ons inside a nucleus. In the recent years, it has also
been possible to create artificial spin-orbit interaction
for neutral atoms using laser techniques [198]. The in-
fluence of the spin-orbit interaction on Efimov physics
was addressed by Zhe-Yu Shi, Xiaoling Cui, and Hui
Zhai [199, 200]. They considered a system of two heavy
fermions resonantly interacting with one light particle,
in which the light particle is a spin-1/2 particle sub-
ject to an isotropic spin-orbit interaction of the form
λ~p · ~σ, where ~p is the particle’s momentum and ~σ its
spin. From their calculations, some general conclusions
can de drawn.

First of all, the spin-orbit interaction lowers the en-
ergy of the heavy-light dimer and heavy-heavy-light
trimers. However, the spin-orbit interaction competes
with the Efimov attraction and reduces the binding
energy of Efimov trimers with respect to the particle-
dimer threshold. Since the spin-orbit interaction only
affects large distances, while the Efimov attraction per-
sists at shorter distances, the critical mass ratio κc for
the onset of Efimov states, the discrete scale invari-
ance and scaling ratio λ0 remain unchanged. The dis-
crete scale invariance is however broken below a cer-
tain energy scale associated with the coupling strength
λ, making the number of trimers finite, as the excited
trimers are pushed into the particle-dimer threshold.

On the other hand, below the critical mass ratio,
the spin-orbit interaction favours the appearance of
Kartavtsev-Malykh-like universal trimers in a broader
range of scattering lengths and mass ratios. In the
presence of spin-orbit coupling, these universal trimers
not only exist for positive scattering lengths but in a
range of negative scattering lengths as well, and the
ground-state trimer appears at mass ratio 2.68 (for the
state with total angular momentum J = 1/2) and 5.92
(for J = 3/2).

6.4 Observations in nuclear physics

So far, all known multicomponent systems in nuclear
physics related to Efimov physics involve two neutrons
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as two of the three particles. Neutrons are favourable
for the following reasons:

� First of all, the interaction between two neu-
trons is resonant, the basic requirement for Efi-
mov physics, since the neutrons can almost form
a two-body bound state.

� Second, they carry a spin 1/2, and can therefore
be in two distinguishable states, or more precisely
they can form a spin singlet state. This particular
configuration is free of the centrifugal repulsion
that is otherwise present for fermions in a triplet
state (such as two identical fermions) and would
suppress the Efimov attraction.

� Third, neutrons having no electrical charge, un-
like protons, they do not have any Coulomb repul-
sion between themselves and other particles, that
would compete with the Efimov attraction.

6.4.1 Triton

The simplest case is the third particle being another
nucleon. It cannot be a neutron, since it would have
to be in the same spin state as one of the two others,
and the resulting Fermi repulsion would suppress the
Efimov attraction. As seen in section 6.2.2, the Efimov
attraction for two identical fermions and one particle of
equal mass is not strong enough to overcome the Fermi
repulsion. As a matter of fact, there is no bound state
of three neutrons. The third nucleon therefore has to
be a proton, and the three-body system corresponds to
the triton, the nucleus of tritium 3H.

The triton was considered in Vitaly Efimov’s original
work as a possible candidate for Efimov state. Here, we
show how the Efimov attraction explains the binding of
the triton and roughly reproduces its binding energy.
We first derive the Efimov attraction in the zero-range
theory of two neutrons and one proton, and show that
is the same as for three identical bosons. Then, we take
into account the finite-range corrections, and show how
the triton fits in the Efimov spectrum.

Efimov attraction in the triton Systems of nu-
cleons are often described as identical particles with
an internal property called isospin, which distinguishes
between the neutron state and proton state as differ-
ent projections of a formal spin 1/2. This is possible
because protons and neutrons have nearly the same
mass, and nuclear interactions are approximately the
same for protons and neutrons, and thus nearly isospin-
symmetric. The isospin symmetry has been further
confirmed to originate from the symmetries of quan-
tum chromodynamics (QCD) describing nucleons as
made of quarks. In the zero-range theory, however,
the isospin formalism is not essential, as the nuclear
interactions turn out to depend only on spin at this
simple level of description. For the sake of readers
unfamiliar with isospin, we shall simply describe the

triton as two identical fermions (two neutrons) and a
distinguishable fermion (proton), and assume that the
pairwise nuclear interaction depends only on the total
spin quantum number of two nucleons. We also assume
the neutron and the proton to have the same mass m.
For a treatment with isospin, we refer the readers to
Refs. [19, 201].

Each nucleon carries a spin 1/2, whose projection
on a fixed axis can be either up | ↑〉 or down | ↓〉.
The triton is characterised by a total spin S equal to
1/2, and a projection Sz = 1/2. Therefore, its wave
function can be expressed on the spin basis states,

|0〉23 = | ↑〉1
1√
2

(| ↑〉2| ↓〉3 − | ↓〉2| ↑〉3) (6.14)

|1〉23 =
1√
3
| ↑〉1

1√
2

(| ↑〉2| ↓〉3 + | ↓〉2| ↑〉3)

−
√

2

3
| ↓〉1| ↑〉2| ↑〉3 (6.15)

which are obtained by standard summation of spins us-
ing Clebsh-Gordan coefficients. Here, we assume that
particle 1 is the proton, and particles 2 and 3 are the
two neutrons. As can be seen from the above expres-
sions, |0〉23 corresponds to a spin singlet state of the two
neutrons, whereas |1〉23 corresponds to a spin triplet
state. The total wave function of the triton is thus:

Ψ(123) = ψS |0〉23 + ψA|1〉23

and has to be antisymmetric under the exchange of the
two neutrons, particles 2 and 3. Since the singlet and
triplet states are respectively antisymmetric and sym-
metric under such exchange, as can be checked from
equations (6.14-6.15), ψS and ψA have to be symmetric
and antisymmetric, respectively. The Faddeev decom-
positions of ψS and ψA that preserve their symmetries
are:

ψS = χ(~r23, ~ρ23,1) + φ(~r12, ~ρ12,3) + φ(~r13, ~ρ13,2) (6.16)

ψA = ξ(~r23, ~ρ23,1) + ζ(~r12, ~ρ12,3)− ζ(~r13, ~ρ13,2) (6.17)

where χ and ξ are respectively even and odd functions
of ~r23. One can see that the spin singlet configuration
allows the spatial configuration ψS to have the bosonic
exchange symmetry when φ = χ, as in equation (4.16),
which in turn allows the Efimov effect to occur.

In the zero-range theory, ψS and ψA each satisfy the
free Schrödinger equation - see equation (4.15) - with
the Bethe-Peierls boundary conditions for the contact
of two nucleons, either in the singlet or triplet spin
state. In the case of the neutron-neutron interaction,
these conditions are readily expressed as:(

∂

∂r23
r23ψS

)
r23→0

= − 1

as
(r23ψS)r23→0 (6.18)(

∂

∂r23
r23ψA

)
r23→0

= − 1

at
(r23ψA)r23→0 (6.19)
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where as and at are the nucleon singlet and triplet
s-wave scattering lengths. One can then proceed as
in section 4.1, retaining only the zero-angular momen-
tum contribution of the Faddeev components of ψS and
ψA, i.e. assuming the form of equation (4.19), and us-
ing the hyper-spherical coordinates of equations (4.22-
4.23). This gives a boundary condition analogous to
equation (4.26) for the singlet interaction,[

∂

∂α
(χ0(R,α))

]
α→0

+
8√
3
φ0

(
R, π3

)
=−R

as
χ0(R, 0)

(6.20)
For the triplet interaction, equation (6.19) gives no con-
straint on ψA because it is antisymmetric under the ex-
change of the two neutrons, i.e. ψA → 0 when r23 → 0.
This expresses the fact that for zero-range interactions
neutrons interact only in the singlet state. For this
reason, we can simply set ξ = 0.

In the case of proton-neutron interactions, we first
have to rotate the spin basis to obtain states that are
singlet and triplet states of the proton-neutron subsys-
tem (say, particles 1 and 2):(

|0〉23

|1〉23

)
=

(
−1/2 −

√
3/2√

3/2 −1/2

)(
|0〉12

|1〉12

)
This gives

Ψ = ψ0|0〉12 + ψ1|1〉12

with

ψ0 = −1

2
ψS +

√
3

2
ψA ; ψ1 = −

√
3

2
ψS −

1

2
ψA.

The boundary conditions are then expressed as:(
∂

∂r12
r12ψ0

)
r12→0

= − 1

as
(r12ψ0)r12→0(

∂

∂r12
r12ψ1

)
r12→0

= − 1

at
(r12ψ1)r12→0

This gives[
∂

∂α

(
φ0 −

√
3ζ0
)]

α→0

+
4√
3

(
χ0 + φ0 +

√
3ζ0
)

(R, π
3

)

= − R
as

(
φ0 −

√
3ζ0
)

(R, 0),

(6.21)

[
∂

∂α

(
φ0 +

ζ0√
3

)]
α→0

+
4√
3

(
χ0 + φ0 −

ζ0√
3

)
(R, π

3
)

= −R
at

(
φ0 +

ζ0√
3

)
(R, 0).

(6.22)

Combining equations (6.20) and (6.21), one obtains a
closed condition[

∂

∂α
(χ̃0(R,α))

]
α→0

− 4√
3
χ̃0

(
R, π3

)
=−R

as
χ̃0(R, 0)

for the quantity χ̃0 = χ0 − φ0 +
√

3ζ0. Unlike equa-
tion (4.26) for the bosonic case, this condition itself
only yields real eigenvalues sn which do not lead to
the Efimov effect. However, unlike the bosonic case,
this condition admits the extra solution χ̃0 = 0, which
does not set the total wave function to zero. In the
language of isospin symmetry, this corresponds to con-
sidering states with total isospin T = 1/2. Making this
choice, the two remaining conditions are:[

∂

∂α
χ0

]
α→0

+
8√
3
φ0(R, π3 ) = −R

as
χ0(R, 0),

[
∂

∂α
(−4φ0 + χ0)

]
α→0

+
4√
3

(−4χ0 − 2φ0) (R, π3 )

= −R
at

(−4φ0 + χ0) (R, 0).

Setting χ0 = f − ϕ and φ0 = f + 1
2ϕ, one obtains

∂f

∂α
(R, 0) +

8√
3
f(R, π3 ) = −R

(
1

a+
f +

1

a−
ϕ

)
(R, 0)

(6.23)
∂ϕ

∂α
(R, 0)− 4√

3
ϕ(R, π3 ) = −R

(
1

a−
f +

1

a+
ϕ

)
(R, 0)

(6.24)
where a−1

± = 1
2 (a−1

t ± a−1
s ). These equations were

first presented in Efimov’s original work [1], although
their integral version in momentum space had been
derived thirteen years earlier by Skorniakov and Ter-
Martirosian [19]. As shown in section 4.1, the advan-
tage of this form is that one can immediately conclude
that the system features the Efimov attraction. Indeed,
as anticipated from the symmetry of equation (6.16),
when both the singlet and triplet scattering lengths are
infinite, equation (6.23) reduces to equation (4.26) for
bosons at unitarity. Therefore, there occurs an Efi-
mov attraction of the same strength as that of identical
bosons, leading to the same scaling ratio eπ/|s0| ≈ 22.7
in the energy spectrum.

Finite-range corrections The above zero-range
theory predicts the existence of a two-body bound state
of neutron and proton (the deuteron), since at > 0, as
well as possible Efimov three-body bound states of two
neutrons and one proton. Using the deuteron energy
Ed ≈ 2.224 MeV and neutron-deuteron spin-doublet
scattering length a2 ≈ 0.65 fm as experimental inputs
to determine respectively the values of at and the three-
body parameter in the zero-range theory, one finds one
Efimov trimer, and its energy 8.1 MeV [202, 203, 204]
is within 5% that of the triton, Et ≈ 8.48 MeV. How-
ever, this theory is only qualitative. For instance, using
the value at = 5.4112 fm [205], the predicted binding
energy from equation (4.5) for the deuteron is

~2

ma2
t

≈ 1.416 MeV,
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Figure 6.6: (Left) Energy spectrum of two neutrons and one proton, as a function of the inverses of the singlet
and triplet scattering lengths 1/as and 1/at. The energy E (vertical axis) is scaled as a binding momentum
κ = −

√
m|E|/~. The lowest dimer energy (white transparent surface), the ground-state trimer energy (blue

surface), and the first excited trimer energy (green surface) are obtained from a separable model (See Appendix
for details). The blue arrow indicates the unitarity point 1/as = 1/at = κ = 0 where the Efimov series of trimers
accumulate. The physical value of as is indicated by the red plane, and the physical value of at is indicated
within that plane by the red line. The red dots on that line indicate the experimental values for the energies of
the deuteron and the triton.
(Right) Section of left figure in the red plane. The excited trimer is barely visible. The dashed curves show the
results for the zero-range theory with a three-body parameter set to match the highly-excited states.

which significantly differs from the experimental value
2.224 MeV. This means that non-zero range corrections
are important.

The effective range theory is more quantitative.
From equation (4.41), with the triplet effective range
re,t = 1.7436 fm [205], one obtains the binding energy
in the effective range approximation

~2

m

(
1−

√
1− 2re,t/at
re,t

)2

≈ 2.223 MeV, (6.25)

which is remarkably close to the experimental value.
Taking the effective range correction to first order only,
one finds:

~2

ma2
t

(
1 +

re,t
at

)
≈ 1.909 MeV (6.26)

which differs by 15% from the experimental value.
As discussed in section 4.2, the first-order effective-

range correction may also be taken into account in the
three-body calculations [71]. Using a2 as the three-
body input, and as = −23.7 fm [205] and re,s as two-
body inputs, V. Efimov and E. G. Tkachenko [203]
obtained 8.8 MeV for the energy of the trimer (using
re,t = 1.75 fm and re,s = 2.67 fm), while P. .F. Be-
daque and co-workers [204] obtained 8.3 MeV (using

re,t = 1.764 fm and re,s = 2.73 fm) in the framework
of effective field theory. Thus, once the effective-range
corrections are taken into account, the predicted trimer
energy remains just a few percent away from the triton
energy. That is because the main effect of range correc-
tions is to shift both the dimer and trimer energies by
a similar amount. These results show that the binding
of the triton is consistent with the Efimov scenario.

Explanation of the Phillips line The zero-range
theory, with or without finite-range corrections, re-
quires a three-body input to set the three-body energy,
such as the neutron-deuteron spin-doublet scattering
length a2. It therefore implies a correlation between
the trimer energy and that scattering length. Such
correlation was observed numerically for three-nucleon
systems and known as the Phillips line [206]. If one
plots the results for the triton energy Et and neutron-
deuteron scattering length a2 obtained from various
nucleon-nucleon potential models, one finds that the
points (Et, a2) tend to form a line. V. Efimov and E. G.
Tkachenko [202, 203] pointed out that the zero-range
theory gives a natural explanation for this fact. Since
different nucleon-nucleon potentials lead to slightly dif-
ferent scattering lenths and three-body parameters,
their results sample a small portion of the curve re-
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lating Et to a2 in the zero-range theory, thus forming a
small line. The fact that they do so shows the relevance
of the zero-range picture for these systems.

Triton and deuteron in the Efimov spectrum
To visualise how the triton and deuteron fit into the
Efimov spectrum, we have represented in figure 6.6 the
energy spectrum of two neutrons and one proton as
a function of 1/as and 1/at. To take into account the
effect of the effective range, the energy is calculated us-
ing a separable interaction model [207] (see Appendix
for details), which is parameterised to reproduce the
values [205] of the effective ranges re,t = 1.7436 fm
and re,s = 2.750 fm at the physical values of at and
as. Such a model accurately reproduces the effective-
range approximation of dimer energy given by equa-
tion (6.25). Moreover, it determines the trimer energy
without requiring to set a three-body parameter from
a three-body input. The trimer energy depends on the
particular form of the separable interaction [207], but
as we shall see in section 11.3, it is roughly determined
by the effective ranges only.

The energy surfaces shown in figure 6.6 are the
ground and excited trimers and the singlet and triplet
dimers. Near the unitarity point (1/as, 1/at) = (0, 0),
the spectrum is discrete-scale-invariant by simultane-
ous scaling of as and at by a factor of eπ/|s0| ≈ 22.7.
The physical values of as and at correspond to a verti-
cal line in that figure, where the experimental energies
of the deuteron and the triton are indicated. From
this figure, one can conclude that the deuteron is the
triplet dimer, and the triton connects to the ground
state of an Efimov series of trimers which accumulates
at (1/as, 1/at, κ) = (0, 0, 0).

To reproduce the experimental properties of the
deuteron and the triton with a higher accuracy, it is of
course necessary to construct more sophisticated mod-
els building in the details of nuclear interactions (three-
body force in particular), coupling of partial waves, the
difference of mass between the proton and the neutron,
etc. Nonetheless, the Efimov scenario gives a simple
understanding of the deuteron and the triton.

6.4.2 Two-neutron halo nuclei

Other candidates for Efimov physics in nuclear sys-
tems are halo nuclei [13, 15, 16, 208]. Halo nuclei are
exotic nuclei discovered from the 1980s, which have
an anomalously large mean radius and small binding
energy. They usually correspond to neutron-rich or
proton-rich nuclei, or excited states of normal nuclei,
which means that their lifetime is usually short, on the
order of a few up to hundreds of milliseconds. Light
halo nuclei are shown in figure 6.7. Numerous experi-
ments and analyses have determined that they can be
described as a compact core nucleus surrounded by one
or few loosely bound nucleons forming a diffuse halo
around the core [209]. Examples of one-neutron ha-

los are beryllium-11 and carbon-19. Examples of two-
neutron halo nuclei are helium-6, lithium-11, boron-17,
boron-19 and carbon-22. Helium-8 is considered to be
a four-neutron halo nucleus.

At first sight, halo nuclei look very similar to the
situation described by the zero-range theory of section
4.1. The one-neutron halos can be recognised as the
universal dimer supported by a resonant short-range
interaction, assuming that the effective interaction be-
tween the neutron and the core is resonant in the s
wave. It is thus tempting to identify the two-neutron
halo nuclei with Efimov states composed of a core and
two neutrons, in accordance with the discussion at the
beginning of section 6.4. This identification would nat-
urally explain a number of features such as the large
extent of halo nuclei and the borromean nature of some
of them.

However, there may also be significant differences
preventing the identification of halo nuclei with Efimov
states. For instance, the two-neutron halo nucleus of
helium-6 is known to feature a p-wave resonance be-
tween the core and one neutron, in addition to their
s-wave interaction. As seen in section 5.1, p-wave res-
onances do not lead to the discrete scale invariance of
Efimov physics. Therefore, halo nuclei such as helium-
6 cannot be considered as Efimov states, although they
may be described by universal models [210]. Another
difficulty is that one would expect to find Efimov states
by adding one neutron to the one-neutron halo nu-
clei 11Be and 19C, but 12Be and 20C are not currently
recognised as two-neutron halo nuclei. It is usually
thought that for these systems, the second neutron
forms a Cooper pair with the first neutron, which con-
denses with the other pairs of the core, making the
nucleus more compact. However, it is not excluded
that 12Be and 20C may constitute Efimov ground states
nonetheless. Indeed, the experimental characterisation
of halo nuclei relies on the measurement of anomalously
large cross sections and narrow momentum distribu-
tions of neutrons. While such features are expected for
a ground Efimov state close to the two-body or three-
body thresholds where its size becomes very large, the
ground Efimov state for interactions near unitarity is
relatively compact, with a typical size only marginally
larger than the range of interactions. This situation
could explain why the nuclei obtained by adding one
neutron to a one-neutron halo nucleus are more com-
pact and not recognised as halo states. The assumption
that the core remains inert in such compact states is
however questionable.

On the other hand, there exist two-neutron halo nu-
clei, such as 11Li and 22C, with no corresponding one-
neutron halo nucleus. These nuclei could therefore cor-
respond to borromean Efimov states of a core and two
neutrons, for which the core-neutron subsystems are
unbound but have a virtual state close to threshold
(such as 10Li which is observed as a resonance). Such
Efimov states are typically much larger in size than
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Figure 6.7: Table of nuclides, as a function of the number of protons and number of neutrons, showing stable
elements (grey) and observed light halo nuclei: one-proton halo (orange), one-neutron halo (blue), two-neutron
halo (green), and four-neutron halo (purple). For each halo nuclei, a schematic representation of their structure
is given, where red spheres represent protons and blue spheres represent neutrons. Note that 14Be has been
argued to be a four-neutron halo nucleus [13]. Note also that the 17B core of the two-neutron halo of 19B
does not have the same structure as the halo nucleus of 17B. The red circles indicate possible candidates for
ground-state Efimov trimers. The double circle indicates the candidates for excited Efimov trimers. The solid
circle denotes a rather established one, while the dashed circles are more conjectural.

the range of interactions, which would explain the halo
structure of these nuclei.

In summary, although not all two-neutron halo nu-
clei are manifestations of Efimov states (6He is not),
some halo nuclei (such as 11Li and 22C) are pos-
sibly ground-state Efimov trimers in the borromean
regime, and other nuclei which are not experimentally
regarded as halo nuclei (such as 12Be and 20C) could
be ground-state Efimov trimers close to the unitary
limit. For these nuclei, all interactions (core-neutron
and neutron-neutron) are assumed to be resonant, and
the neutrons can be in a symmetric state (spin singlet).
If the core has spin zero, the situation is equivalent
to that of two identical bosons and one particle with
three resonantly-interacting pairs, as described in sec-
tion 6.2.1 and illustrated in Fig. 6.2. Since the core
is at least nine times heavier than the neutron, the
Efimov scaling ratio λ when both the neutron-neutron
and core-neutron scattering lengths are infinite should
be close to the limiting value ≈ 15.74 for small mass
ratios, which is marginally smaller than the scaling ra-
tio for identical bosons ≈ 22.7. As discussed in sec-
tion 4.5, the ground state of an Efimov series, though
more easily observable, is difficult to characterise as an

Efimov state due to important finite-range corrections.
The excited states, on the other hand, conform more
clearly to the universal properties of Efimov states, but
are less likely to exist and more difficult to observe.

Efimov models of nuclei The first theorists to con-
sider the possibility of Efimov nuclei made of a core
plus two neutrons under these assumptions are Dmitri
V. Fedorov, Aksel S. Jensen, and Karsten Riisager [24]
in 1994. They solved the Faddeev equations for such
three-body system, assuming Gaussian potentials for
the neutron-neutron and neutron-core interacions, and
concluded that 14Be, 18C and 20C are possible can-
didates for Efimov states. The Efimov character of
nuclei such as 11Li, 14Be, and 22C was also investi-
gated using three-body models with separable interac-
tions [211, 212, 213, 214].

In 1997, A. E. A. Amorim, Tobias Frederico, and
Lauro Tomio [215] solved the same three-body prob-
lem for zero-range interactions, and plotted the region
of existence of the (N+1)th Efimov state, which is uni-
versally determined by the core-neutron and neutron-
neutron scattering lengths normalised by the Nth Efi-
mov state’s energy. Assuming that nuclei such as 12Be,
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18C, 20C are ground-state Efimov trimers (N = 0),
and using the measured energies of core-neutron bound
states (or virtual states) and neutron-neutron scatter-
ing length, the authors could represent the locations
of these nuclei in this plot. Only one nucleus, carbon-
20, enters the region of existence of the first excited
Efimov state (N = 1). Carbon-20 lies in fact just at
the region boundary, and the large uncertainty on the
core-neutron bound state energy (the one-neutron halo
nucleus of carbon-19) makes it possible for an excited
Efimov trimer state to exist either as a bound state or
a virtual state [216, 217].

In 2008, David L. Canham and Hans-Werner Ham-
mer [218] refined the zero-range calculations of Amorim
and co-workers in the framework of effective-field the-
ory and estimated the errors due to finite-range correc-
tions. The same authors included the finite-range cor-
rections explicitly in a later work [219]. They reached
the same conclusion that among the nuclei 11Li, 12Be,
14Be, 18C, and 20C, carbon-20 is the only candidate for
the existence of an excited Efimov state. As mentioned
before, this analysis assumes that the ground state of
these nuclei is a ground Efimov state, i.e. the three-
body parameter of the zero-range theory is adjusted
to reproduce the ground-state energy of these nuclei12.
Even if the ground state of 20C turns out to be a com-
pact nucleus that has no connection with the Efimov
attraction, it could be that an excited state features
two neutrons sufficiently far from the core to conform
to the structure an Efimov excited state. In this case,
however, the ground-state energy of 20C cannot be used
to predict the energy of that excited state.

In 2010, carbon-22 was experimentally identified as
a two-neutron halo nucleus, exhibiting a root-mean-
square matter radius of 5.4± 0.9 fm [220] - recently re-
fined to 3.44±0.08 fm [221]. Although its two-neutron
separation energy has not been measured, the radius
value could be used to parameterise three-body models
[222, 223], constraining the two-neutron separation en-
ergy to be smaller than 100 keV (400 keV with the lat-
est radius value [224]). This small two-neutron separa-
tion energy imposes the core-neutron scattering length
to be very large (corresponding to a virtual state en-
ergy well below 1 keV) in order to allow an excited
Efimov state. Experimental data indicates that this is
not the case [225], and it is thus likely that carbon-22,
like all other borromean two-neutron halo nuclei, does
not admit an excited Efimov state.

Comparison with experiments The fitting of a
single observable such as the energy or the radius of
the nucleus does not of course demonstrate the validity
of the three-body models. To confirm the assumption
that the ground state of the considered nuclei is an Efi-
mov trimer, the authors of the above-mentioned works
have calculated various structural properties from their

12or more precisely, the energy required to separate two neu-
trons, since the core is considered inert in the three-body model

three-body model, in order to compare them with ex-
perimental data for these nuclei. In particular, they
considered the root mean square radii rn and rc of
the neutrons and core from the centre of mass, the
root mean square rnn and rnc of the neutron-neutron
and neutron-core distances, as well as the opening an-
gle θnn between the two neutrons [226, 219]. For 11Li,
the three-body models (with and without range correc-
tions, as they turn out to be small) give rn ≈ 6.5 fm,
in fair agreement with the experimental values rn =
6.6±1.5 fm and rn = 6.1 fm reported in Refs. [227, 228].

These results show that the basic properties of the
candidate halo nuclei look indeed consistent with Efi-
mov states. The question whether these nuclei can
be considered as Efimov states will be answered more
clearly in the coming years as more experimental
data becomes available, and more comparison between
three-body models and more microscopic models like
shell models are developed.

6.5 Observations with atoms

6.5.1 Two-component trimers

Potassium-Rubidium mixtures Efimov states of
a mass-imbalanced system have been observed as atom-
dimer resonances in ultra-cold mixtures of potassium
and rubidium atoms [229, 230, 231, 232], in which the
external magnetic field is tuned close to a Feshbach res-
onance between the potassium and rubidium atoms. If
both potassium and rubidium atoms are bosonic, as
is the case for 39K, 41K, and 87Rb atoms, two kinds
of Efimov trimers are possible: KRbRb and KKRb,
corresponding respectively to two heavy bosons plus
one light particle, and two light bosons plus one heavy
particle. Therefore, the ground-state trimers of these
two Efimov series should appear at the three-body
threshold at some negative scattering length aKRbRb−
and aKKRb− . As the inverse of the potassium-rubidium
scattering length is continuously varied from negative
to positive values, these trimers may break up into an
atom and a dimer at some positive scattering lengths
aKRbRb∗ and aKKRb∗ . This implies that atom losses in
the mixture due to recombination into deeper states are
enhanced when the scattering length is tuned around
one of these scattering lengths, i.e. one expects to
observe peaks in three-body recombination loss rate
at aKRbRb− and aKKRb− for the atomic mixture, and
peaks in the atom-dimer relaxation loss rate at aKRbRb∗
(aKKRb∗ ) for a mixture of rubidium (potassium) atoms
and KRb dimers.

A three-body calculation using potentials with a
van der Waals tail [233] has shown that |aKRbRb− | >
3 × 104 a0 and |aKKRb− | > 1 × 106 a0 (where a0 is the
Bohr radius). It is currently not possible to observe the
three-body loss peaks associated with these negative
scattering lengths13, since it is experimentally difficult

13In 2009, the group of Massimo Inguscio and Francesco Mi-
nardi in Florence [234] claimed to observe the first signatures
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to tune the magnetic field to such large values of the
scattering length and reach a temperature that is low
enough to resolve the peaks [236]. On the other hand,
the positive scattering lengths aKRbRb∗ and aKKRb∗ take
experimentally accessible values.

In 2013, the group of Deborah Jin at JILA measured
the three-body loss rate and the atom-dimer relaxation
rate in a mixture of potassium-40 and rubidium-87
atoms. Note that potassium-40 is fermionic, so that
the Efimov effect only occurs for KRbRb in this system.
While they could not find any evidence of three-body
loss peaks for −3000a0 < a < −200a0 [229, 235, 230],
they observed a peak in the atom (87Rb) - dimer
(40K87Rb) relaxation rate at the positive scattering
length a∗ = 230(30) a0 [229, 230]. More recently,
the group of Shin Inouye at the University of Tokyo
has also found a peak in the atom-dimer relaxation
rate in a 41K −87 Rb mixture at a similar position
a∗ = 348(49) a0 [231, 232]. This agreement can be
naturally explained if we interpret these peaks as in-
duced by the Efimov states: since the atoms in both
experiments are of the same atomic species with nearly
the same mass, and the interatomic interactions should
have almost the same van der Waals tail, one natu-
rally expects on the basis of van der Waals universality
(see section 11.2 and reference [233]) that both exper-
iments would yield essentially the same results for the
KRbRb Efimov physics. Indeed, both peak positions
are found to be consistent with aKRbRb∗ obtained by a
multi-channel three-body calculation using a van der
Waals type of potential [233, 232]. The Efimov states
of RbKK, corresponding to the “Efimov-unfavoured”
case of one heavy and two light particles, have yet to
be observed.

Lithium-caesium mixtures In 2014, in two in-
dependent experiments, one led by Cheng Chin at
the University of Chicago [41] and the other led by
Matthias Weidemüller at the University of Heidel-
berg [42], experimentalists investigated mixtures of
caesium-133 and lithium-6, taking advantage of the
large mass ratio to more easily observe Efimov states
since the scaling ratio is only 4.88 (compared to 22.7
for bosons of equal mass). Both groups were able to
observe three peaks in the atom losses, corresponding
to three Efimov states, when the intensity of the exter-

of mass-imbalanced Efimov trimers in a mixture of potassium-
41 and rubidium-87 atoms. The group found two peaks in the
atom loss measurement at the scattering lengths −246(14) a0 and

−22(
+4
−6

)×103 a0 which they assigned to aKRbRb− and aKKRb− ,

respectively. These values, however, turned out to be too small
in magnitude compared to the theoretical values. Furthermore,
no three-body loss peak has been observed in any potassium
(39K,40K,41K) rubidium-87 mixture by any of the subsequent
experiments in the groups of Deborah Jin at JILA [229, 235, 230],
Shin Inouye at the University of Tokyo [231, 232], and Jan Arlt
at Aarhus University [236]. The work of reference [236] actually
reported a three-body loss peak, but attributed it to a p-wave
two-body resonance (as predicted by theory) rather than an Efi-
mov resonance.

nal magnetic field is tuned near a Feshbach resonance
at B = 842.75 G, although the authors of reference [42]
could not confirm the validity of the third peak after a
careful analysis of the three-body loss rate. The mea-
sured ratio of scattering lengths between the first and
second peak was found to be 5.1(2) in reference [41]
and 5.07(6)(13)(2) in reference [42], close to the theo-
retical value 4.88. The ratio for the second and third
peaks in reference [41] was found to be 4.8(7). This
is so far the most relevant experimental demonstration
of the Efimov effect in its strictest sense (definition 1
of section 4.5), which is the geometric accumulation of
trimer states below the three-body threshold.

Lithium-Rubidum mixtures In 2015, the group of
C. Zimmermann in Tübingen [237] reported the signa-
ture of a heavy-heavy-light ground-state Efimov trimer
in an ultra-cold mixture of lithium-7 and rubidium-87.
The loss peak associated with that trimer was found
at a− = −1870(121) a0, which is consistent with the
value expected from van der Waals models, providing
further experimental support for the van der Waals uni-
versality of the three-body parameter discussed in sec-
tion 11.2.

6.5.2 Three-component trimers

Three experimental groups working on ultra-cold
lithium-6 have independently evidenced the presence of
Efimov states made of three distinguishable atoms near
broad Feshbach resonances: the group of Selim Jochim
in Heidelberg [238, 239, 240], the group of Kenneth M.
O’Hara at the Pennsylvania State University [241, 242],
and the group of Takashi Mukaiyama at the University
of Tokyo [75, 78]. In all experiments, the atoms were
prepared in three different hyperfine sublevels, making
it possible for three distinguishable particles to form
Efimov trimers, as detailed in section 6.1. This also
makes the system more unstable by three-body recom-
bination, since nothing prevents three distinguishable
particles from approaching each other, unlike the two-
component Fermi systems where two of three particles
are in the same state and therefore undergo Fermi ex-
clusion that limits the three-recombination processes.
The experimentalists thus found the first indications
of Efimov physics in the strong variation of the three-
body losses with external magnetic field. As the in-
tensity of the magnetic field is varied, the scattering
lengths between each pair of states is strongly altered,
due to the presence of a broad Feshbach resonance for
each scattering length. These broad resonances over-
lap in the range 600− 1200 gauss (region 1), where all
three scattering lengths are much larger than the range
of atomic interactions, but also make the three scatter-
ing lengths relatively large in the range 100−500 gauss
(region 2). Efimov physics is therefore possible in these
two regions. If the three scattering lengths diverged at
the same intensity of the magnetic field, one could ex-
pect an infinity of Efimov trimers in principle, as in the
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case of identical bosons. However, since the scattering
lengths diverge at different intensities of the magnetic
field, only a finite number of trimers is expected. As it
turns out, the scattering lengths in region 1 are large
enough to support two Efimov trimers, while region 2
exhibits only a ground-state Efimov trimer.

Observations through three-body losses The
experimentalists first reported the observation of a
plateau of strong three-body losses in region 2 (larger
than the background losses by three orders of magnti-
tude), delimited by a loss peak at around 130 gauss and
a much softer peak around 500 gauss. They suggested
that Efimov physics could be behind these strong
losses. Using the zero-range theory and fitting the
three-body parameter to the experimental data, theo-
rists could indeed reproduce qualitatively the observed
plateau [243, 244] and attributed it to the presence of
a single Efimov trimer appearing from the three-body
scattering threshold at around 130 gauss and dissociat-
ing back into that threshold at 500 gauss [244]. The fit-
ted three-body parameter also made it possible to pre-
dict a loss peak in region 1, at around 1160 gauss [243].
Such a peak was indeed observed very soon afterwards
at lower temperatures by the group of K. O’Hara, but
it was located at a smaller intensity of 900 gauss. The
experimentalists identified this peak with the appear-
ance of an excited Efimov trimer, and showed that its
location, along with those of the peaks previously ob-
served in region 2, were consistent with roughly the
same three-body parameter. This was the first experi-
mental report of an excited Efimov trimer.

Observations through atom-dimer losses
Subsequent experiments in Heidelberg and Tokyo [239,
240, 75, 78] confirmed this interpretation by first
preparing a gas of dimers of atoms in two different hy-
perfine states, by sweeping the magnetic field near one
of the Feshbach resonances. These large dimers could
then relax into deeper states by inelastic collisions with
the remaining atoms in the third hyperfine state. By
measuring the relaxation rate as a function of the exter-
nal magnetic fields, the experimentalists found two loss
peaks around 600 gauss and 680 gauss. The zero-range
theory [245, 79] showed that, qualitatively, these peaks
correspond to a ground and excited Efimov trimers dis-
sociating in the atom-dimer scattering threshold. This
confirmed the existence of the excited trimer previously
observed at the three-body threshold.

Bound-state spectroscopy Finally, both groups
in Heidelberg and Tokyo were able to perform a radio-
frequency spectroscopy of the excited trimer below the
atom-dimer threshold [240, 78]. This was the first
bound-state spectroscopy of an Efimov trimer, i.e. the
measurement of its binding energy below a scatter-
ing threshold rather than its effects at the scattering
threshold.

Although the zero-range theory could unambigously
interpret the features observed in lithium-6, it could re-
produce them only semi-quantitatively. To reproduce
all features quantitatively the three-body parameter
has to vary with energy [75, 78, 79] by about 10%, and
the inleasticity parameter η describing recombination
to deep dimers (see section 10.3) has to be magnetic-
field dependent [246] or energy-dependent [247]. To
avoid these extra fitting assumptions, the work of [79]
incorporated two-body range corrections and the pres-
ence of deeper dimers via a two-channel model with
Gaussian separable potentials. While the overall agree-
ment with experiment is good, the model could not re-
produce the precise locations of all features with a sin-
gle set of parameters. Bo Huang and co-workers [248]
recently used an updated two-body model of the Fes-
hbach resonances in lithium-6 [249] to extract more
accurately the three-body parameter from the data,
using a three-body zero-range model. The three-body
parameters obtained from regions 1 and 2 still differ by
5%, and deviate by 20% from the van der Waals univer-
sal value observed in other species (see section 11.2). It
would be worthwhile to revisit this problem with three-
body models that properly incorporate van der Waals
physics and the more accurate description of the Fesh-
bach resonances of reference [249].
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Part III

Dimensionality
The dimensionality of space is crucial for the Efimov
effect to occur. For three identical bosons in d dimen-
sions, Esben Nielsen and co-workers [184] have shown
that the Efimov effect can occur only when

2.3 < d < 3.8.

As a result, for integral dimensions, only d = 3 leads
to the Efimov effect. In principle, the Efimov effect
may also happen for fractional dimensions in the al-
lowed range, although this has not been demonstrated
explicitly yet.

7 Situation in 1D and 2D

According to Nielsen’s dimension criterion, there is no
Efimov physics in one and two dimensions [250, 251].
Still, one- and two-dimensional three-body systems ex-
hibit universal states when their interaction is tuned
near the appearance of two-body bound states. How-
ever, because of the absence of Efimov attraction, no
three-body parameter needs introducing, and these
universal states depend only the scattering length, as
the universal two-body states. As a result, in the
universal region, the energies of three-body and two-
body states are proportional to each other, since they
both scale with the scattering length, and there are no
Borromean states. Moreover, because of the absence
of long-range Efimov attraction, the number of three-
body bound states is finite. This is consistent with
the theorem by S. A. Vugal’ter and G. M. Zhislin [252]
stating that few-body systems with finite-range inter-
actions in one or two dimensions can only support a
finite number of bound states.

Even though Efimov physics does not occur, we
briefly review the situation for these dimensions to con-
trast them with the Efimov regime, and understand the
connection with Efimov physics in confined geometries.

7.1 One dimension

In one dimension, for a short-range pairwise interaction
of range b, the even-parity two-body wave function has
the form

ψ(x) ∝ |x| − a1D (7.1)

for b � |x| � k−1, where a1D is the one-dimensional
scattering length and k is the relative wave num-
ber. The zero-range theory reproducing equation (7.1)
can be obtained by setting the following Bethe-Peierls
boundary condition at x = 0,

− 1

ψ

dψ

dx
−−−→
x→0

1

a1D

(7.2)

or by replacing the interaction by a contact potential

λδ(x) of strength λ = − ~2

µa1D
where and µ is the two-

particle reduce mass. Unlike in 3D, no renormalisation
or regularisation of the delta function is needed here.

In the one-dimensional zero-range theory, there is
one two-body bound state of energy

E2 = − ~2

2µa2
1D

(7.3)

for positive a1D (attractive interactions) and no bound
state for negative a1D (repulsive interactions).

7.1.1 Identical bosons

For identical bosons in one dimensions, the problem
admits analytical solutions [253, 254]. For a1D > 0,
a system of N particles admits exactly one N -body

bound state of energy E
(0)
N = N(N2−1)

6 E2, therefore
the three-body bound state energy is

E
(0)
3 = 4E2. (7.4)

In fact, there is also a virtual three-body bound state

at zero energy (E
(1)
3 = 0) [255], which can be seen

by the fact that the particle-dimer scattering length is
infinite. It can also be seen by considering particles
with different masses, which can exhibit more than
one bound state, and see that in the limit of equal
masses, the second bound state vanishes at the three-
body threshold. In this sense, the case of identical
particles is a critical point for the appearance of the
second three-body bound state.

7.1.2 2 particles + 1 particle

The more general situation of two identical bosonic
particles A of mass M and one extra particle X of mass
m was extensively studied by Oleg Kartavtsev and col-
laborators [255]. If the coupling strength λAX between
two different particles is positive (repulsive interaction)
then there is no three-body bound state, irrespective of
the coupling λAA between the identical particles. For
negative λAX (attractive interaction between different
particles), the results depend on the mass ratio M/m
and the interaction strength λAA between the two iden-
tical particles.

Effect of the mass ratio For mass ratios M/m ≤ 1,
there is at most one three-body bound state. Larger
mass ratios favor the existence of an increasingly larger
number of three-body bound states.

Effect of the interaction between identical par-
ticles When the identical particle interaction is more
attractive than the attraction between different parti-
cles (λAA ≤ λAX), there is a strongly bound AA dimer,
and only one trimer with lower energy, for any mass
ratio. For similar attractions λAA = λAX and equal
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masses M = m, we retrieve the case of three identical
particles. The trimer energy is given by equation (7.4),
where E2 = EAX = EAA. When λAA is reduced to zero
(non-interacting identical particles), the trimer energy
is reduced to

E
(0)
AAX ' 2.087719EAX (7.5)

As one would expect, repulsion between identical
particles (λAA > 0) tends to further reduce the trimer
energy and the number of trimers. In the limit of
strong repulsion (λAA → ∞), there is no trimer for
mass ratio M/m ≤ 1. Interestingly, this situation
also describes the case of two non-interacting identi-
cal fermions and one extra particle, due to the one-to-
one correspondence in one dimension between strongly
interacting bosons and non-interacting fermions estab-
lished by Marvin D. Girardeau [256].

Five-body Efimov effect in one-dimension So
far our consideration has been restricted to two-body
short-range interactions. It is worthwhile to note that
low-dimensional systems with many-body interactions,
although unlikely to be realised, may in fact exhibit a
many-body Efimov effect. In reference [257], Yusuke
Nishida and Dam T. Son found that five identical
bosons in one dimension resonantly interacting through
a four-body short-range interaction, but without three-
and two-body interactions, exhibit a five-body Efimov
effect with scaling factor 12.4. The effect survives, al-
though weakened, for four-component bosons, but dis-
appears for fermionic particles.

7.2 Two dimensions

In two dimensions, the s-wave scattering length a2D is
always positive. When it is much larger than the range
of the interaction, the interaction can be described by
the following contact condition on the two-body wave
function ψ(r):

ψ(r) ∝ ln

(
r

a2D

)
+O(r), (7.6)

which plays the role of the Bethe-Peierls condition (4.7)
for two dimensions. Such zero-range model supports
exactly one two-body bound state of energy E2 given
by

E2 = −4e−2γ ~2

2µa2
2D

. (7.7)

where γ is Euler’s constant and µ is the reduced mass
between the two particles. Thus, unlike in 3D and 1D,
there always is a two-body bound state in two dimen-
sions.

7.2.1 Identical bosons

For identical bosons in two dimensions with zero-range
interactions, one finds two three-body bound states,

with energies [250, 184, 258, 259]:

E
(0)
3 = 16.522688(1)E2, (7.8)

E
(1)
3 = 1.2704091(1)E2. (7.9)

The four-body spectrum has also been calcu-
lated [260], and it is found that there are two four-body
bound states, with energies:

E
(0)
4 = 197.3(1)E2, (7.10)

E
(1)
4 = 25.5(1)E2. (7.11)

7.2.2 2 particles + 1 particle

The case of two non-interacting identical particles A
of mass M , each interacting resonantly with one ex-
tra particle X of mass m was studied by Ludovic
Pricoupenko and Paolo Pedri [261], as well as Fil-
ipe F. Belloti and co-workers [262]. The interaction
between particles A and X is described by the scatter-
ing length a2D, through the boundary condition (7.6).
Three-body bound states are characterised by a princi-
pal quantum number n corresponding to excitations of
the hyper-radial motion, and an internal angular mo-
mentum with a projection quantum number `.

When the two identical particles are bosons, the in-
ternal angular momentum has an even projection quan-
tum number ` = 0, 2, 4, . . . etc. The ground-state
trimer exists for any mass ratio and has the quantum
numbers n = 0 and ` = 0. In the limit M/m → 0, its
energy is given by

EAAX ' 2EAX , (7.12)

and for M = m, it is given by

EAAX ' 2.36EAX . (7.13)

Excited trimer states appear as the mass ratio is fur-
ther increased, and their number presumably grows
indefinitely. The first trimers appear at the follow-
ing mass ratios: M/m = 1.770 (n = 1, ` = 0),
M/m = 8.341 (n = 1, ` = 0), M/m = 12.68 (n =
0, ` = 2), M/m = 18.27 (n = 3, ` = 0), M/m = 23.76
(n = 1, ` = 2).

When the two identical particles are fermions, the in-
ternal angular momentum has an odd projection quan-
tum number ` = 1, 3, 5, . . . etc. For a mass ratio M/m
smaller than 3.34014, there is no three-body bound
state. For larger mass ratios, there is a ground-state
trimer with quantum numbers n = 0 and ` = 1. As
in the bosonic case, the trimer energy and the number
of trimer states increase as the mass ratio is increased.
Excited trimer states appear at the following mass ra-
tios: M/m = 10.41 (n = 1, ` = 1), M/m = 20.85 (n =
2, ` = 1), M/m = 26.89 (n = 0, ` = 3), M/m = 34.59
(n = 3, ` = 1), M/m = 41.98 (n = 1, ` = 3).

14The main text of reference [261] reports the value 3.33, but
the value 3.340 given in Table I is more accurate.
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Figure 7.1: Schematic three-body energy spectrum as a function of inverse scattering length, under harmonic
confinement in one direction. The three-body bound-state energies are represented by red curves, and the
dimer-particle continuum is represented by the dark shaded area. The threshold of this continuum is shifted
by ~ω with respected to the free-space three-body threshold. The free-space three-body threshold, along with
the free-space dimer and the free-space Efimov trimers are represented in dotted lines for reference - compare
with figure 4.2. The left panel corresponds to strong confinement l ∼ a. In this case there are only two trimers
that connect smoothly to the two trimers of the quasi-2D limit (shown in dashed blue curves) for small binding
energies. For gradually weaker confinement (middle and right panels), new trimers appear from below the
continuum at around a ∼ a−, exhibiting an avoided crossing structure between free-space states and quasi-2D
states. In the limit of weak confinement, one retrieves the free-space spectrum with many Efimov trimers.

8 Effects of confinement

In ultra-cold atom experiments, it is possible to create
lower-dimensional systems by confining the atoms in a
narrow plane or tube by means of laser light. The tech-
nique is called optical lattice [263] and consists in shin-
ing counter-propagating laser beams onto the atomic
cloud. The interference of the beams results in a sinu-
soidal pattern of light, which creates a one-body po-
tential for the atoms proportional to the light intensity
through the Stark effect. Atoms are thus attracted to
the nodes of the interference pattern, and repelled by
the maxima for a blue-detuned light. With sufficiently
strong lasers and appropriate layout of the beams, it is
thus possible to confine the atoms in quasi-2D or quasi-
1D geometries. This also gives the interesting possibil-
ity of going continuously from a three-dimensional to
a lower-dimensional systems. From a theoretical point
of view, since the Efimov effect occurs only in three
dimensions, it is natural to wonder how the infinity of
Efimov states continously transform into a finite num-
ber of trimer states at lower dimensions. This problem
is reminiscent of the crossover that happens in sys-
tems with two heavy fermions and one light particle
discussed in section 6.2.5.

8.1 From 3D to quasi-2D

In reference [264], Jesper Levinsen, Pietro Massignan,
and Meera Parish have looked theoretically into the
case of confining Efimov trimers in one direction, thus
going from 3D to quasi-2D. They modelled the inter-

action by a three-dimensional zero-range interaction of
scattering length a, and the confinement by a harmonic
trap of trapping frequency ω. A harmonic trap is a
good approximation of a strongly confining optical lat-
tice when the atoms reside at the bottom of a well in
the lattice. It also offers the theoretical advantage of
decoupling the centre of mass from the relative motion.
Jesper Levinsen and co-workers obtained a version of
the Skorniakov and Ter-Martirosian equation for this
problem, which they solved numerically.

The two-body spectrum of such a system had
already been investigated by Dmitry Petrov and
Georgy Shlyapnikov [265] in 2000. The 3D two-body
bound state for positive scattering length a is un-
changed as long as its extent, given by a, is smaller
than the confinement length l =

√
~/mω. However,

when a & l, the dimer acquires a two-dimensional char-
acter. Unlike the free space case, it continues to exist
even for negative scattering length a, where it becomes
a low-energy quasi-2D dimer, whose energy is given by
equation (7.7) plus the zero-point energy 1

2~ω, which
constitutes the energy of the two-body threshold for
particles whose motion along the confinement direc-
tion is in the ground-state of the harmonic trap. Here,
the two-dimensional scattering length is given by:

a2D = 2

√
π

B
e−γ l exp

(
−
√
π/2

l

a

)
, (8.1)

where B ≈ 0.915 is a numerical constant and γ is Eu-
ler’s constant. Thus, unlike the free space case, a dimer
exists for any value of the 3D scattering length.
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Figure 8.1: All possible cases of N scattering particles in mixed dimensions, whose relative motion is described
by exactly three coordinates. The number of coordinates

∑
iDi −D∩ is obtained by summing the dimensions

Di of subspaces where each particle lives and subtracting the dimension D∩ of the intersection of all subspaces,
where the centre of mass coordinates can be eliminated. The first case is the familiar situation of two scattering
particles in three dimensions, for which D1 = D2 = 3 and D∩ = 3. The cases involving Di = 0 are not
represented, as they correspond to the trivial problems of fixed scatterers.

Similarly to the dimer case, it is clear that as soon
as the system is confined, the trimers’ size cannot ex-
tend beyond the confinement length l. Thus, among
the infinity of Efimov trimers, only those which can
fit within the confinement region can exist. It would
seem natural that the last two Efimov trimers, which
are the largest in size, and thus the most sensitive to
confinement, would turn into 2D trimers in the limit
of strong confinement. However, the calculations of
Levinsen and collaborators show that the situation is
slightly more sophisticated. It is the ground-state and
first-excited Efimov states which continuously turn into
quasi-2D trimers as their binding energy is lowered by
tuning the (3D) scattering length to negative values.
These states thus never dissociate into the three-body
threshold, unlike in free three-dimensional space (the
a− point). This happens, however, through avoided
crossings between the 3D Efimov trimers and 2D uni-
versal trimers, as shown in figure 7.1. The other trimer
states are pushed up by these avoided crossings. For
strong enough confinement, they do not exist all, and
there are just two trimers. For weaker confinement,
they appear from the dissociation threshold at values
of the scattering length that get closer to the value of
a− in 3D as the confinement is reduced. In the limit of
weak confinement, one retrieves the free-space Efimov
spectrum with many trimers.

The authors of reference [264] conjecture that a
similar picture should hold for systems confined in
two directions, going from 3D to quasi-1D. Similar

crossover behavior may also be expected for the mass-
imbalanced two-component Fermi systems discussed in
sections 6.2.2 and 6.2.5 [266].

We also note that the crossover between three-
dimensional bosonic trimers and their two-dimensional
counterparts was also studied in two works [267, 268]
in the case when one of the three dimensions is com-
pacted to a radius with periodic boundary conditions.
The resulting crossover is qualitatively similar to that
of [264].

9 Mixed dimensions

Although the Efimov effect is restricted to particles in
three dimensions, Yusuke Nishida and Shina Tan have
found that Efimov physics can extend to particles mov-
ing in subspaces of different dimensions, a situation
called mixed dimensions [269] that can be realised by
confining only certain particles instead of all three par-
ticles. In an article entitled “Liberating Efimov physics
from three dimensions” [270], they explained the gen-
eral arguments to identify such favourable situations.

9.1 The specificity of D = 3

First of all, Yusuke Nishida and Shina Tan gave an in-
tuitive interpretation of the absence of Efimov physics
in other dimensions than D = 3. They argued that
a necessary condition for Efimov physics is that the
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Two particles A

3D2 2D2 2D×2D 1D2 1D×1D

3D
Bosons: X Bosons: X Bosons: X Bosons: X Bosons: X

Fermions: mA
mB

> 13.6 Fermions: mA
mB

> 6.35 Fermions: X Fermions: mA
mB

> 2.06 Fermions: X

2D
Bosons: X Bosons: X Bosons: X Bosons: X Bosons: X

Fermions: mA
mB

> 28.5 Fermions: mA
mB

> 11.0 Fermions: X Fermions: X Fermions: X

1D
Bosons: X Bosons: X Bosons: X Bosons: X Bosons: X

Fermions: mA
mB

> 155 Fermions: X Fermions: X Fermions: X Fermions: X

Table 1: Various systems of two particles A of mass mA resontantly interacting with one particle B of mass
mB in mixed dimensions, which are expected to exhibit the Efimov effect. These systems are constructed by
requiring that at least two two-body subsystems correspond to a case listed in figure 8.1. The first case in the top
left corner is the familiar situation where all particles move in three-dimensional space. While the Efimov effect
always occurs if the two particles A are identical bosons or distinguishable particles, it may depend on the mass
ratio mA/mB if the two particles A are identical (polarised) fermions. For each case, it is indicated whether
the Efimov effect occurs (X) or not (X), or the mass ratio mA/mB beyond which the Efimov effect occurs.
In the case of bilayer (3rd column) and biwire (5th column) geometries, the two particles are by construction
distinguishable, and their statistics does not matter.

dimensionless two-body wave function at unitarity ex-
hibits a scale-invariant attraction. At short separations
r, the two-body wave function at unitarity is the singu-
lar solution of the Laplace equation. In D-dimensions,
it is thus

ψ(r) ∝ 1

rD−2
+O(r4−D, r2). (9.1)

For D ≥ 4, this wave function cannot be normalised
due to the divergence at the origin r = 0, which means
that unitarity does not exist in the zero-range limit.
Physically, this implies that particles form tight dimers
at separations on the order of the range b of the inter-
action [271]. This tight binding prevents the binding
of a third particle at large separations, and thus the

Efimov effect. On the other hand, for D = 2, the uni-
tarity wave function of equation (9.1) is constant near
the origin (this can also be seen from equation (7.6):
when a2D � b, the wave function is nearly constant
around r ∼ b). This implies that the two particles are
effectively non-interacting, which prevents any bind-
ing of the particles - indeed, the two-body bound state
disappears for a2D → ∞. For D = 1, the unitarity
wave function of equation (9.1) vanishes at the origin
as r (this can also be seen from equation (7.1) when
a1D → 0), which corresponds to a hardcore repulsion,
equivalent to the Pauli repulsion (node in the wave
function) between non-interacting fermions [256]. This
repulsion also prevents particles from binding. There-
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fore, only the case D = 3 presents a unitary two-body
wave function that is scale-invariant and exhibits an
attractive effect.

9.2 Interactions with three relative co-
ordinates

In a second step, Nishida and Tan point out that what
matters in general is not the dimension D = 3 of space
itself, but the dimensionality of the relative motion.
For two particles moving in the same space, the di-
mensionality of the relative motion is equal to that of
the space, because the locations of the two particles
are described by two D-vectors, and after elimination
of the centre of mass which is also described by a D-
vector, there remain exactly D coordinates. However,
the situation is different for particles moving in sub-
spaces of different dimensions Di. The dimensionality
is given by the sum of the dimensions of the subspaces
in which each particle moves, minus the dimension of
the intersection of all sub-spaces, in which the centre-
of-mass coordinates can be separated from the relative
motion. Figure 8.1 shows all the possible combinations
of scattering particles in mixed dimensions such that
the relative motion is described by exactly three coor-
dinates. In all cases, the equation of relative motion
is therefore the same Laplace equation, assuming that
the particles interact through an N -particle contact in-
teraction specified at unitarity by the scale-invariant
boundary condition:

ψ(x1, x2, x3) ∝ 1

r
+O(r) with r =

√
x2

1 + x2
2 + x2

3

(9.2)

Hence, by analogy with the purely three-dimensional
case, one can expect that the addition of an extra parti-
cle in these systems will lead the Efimov effect as well.
According to Yusuke Nishida and Shina Tan, this is
indeed true, although they have postponed the actual
demonstration in the general case to a future publica-
tion. Nevertheless, they give results for several cases
involving two identical particles A and a particle B.
The cases are shown in Table 1.

9.3 Confinement-induced Efimov effect

For each case, Nishida and Tan have numerically calcu-
lated the scaling strength |s0| as a function of the mass
ratio mA/mB . As in the pure 3D case (see section 6.4),
|s0| monotonically increases with the mass ratio, and
in the case of fermions cancels at a critical mass ra-
tio, below which the Efimov effect does not occur. The
critical mass ratios are given in Table 1. Interestingly,
the strength |s0| also increases when the dimension of
space for one or two particles is reduced. Thus confin-
ing one or two particles into lower-dimensional spaces
makes it easier to observe Efimov states. In particular,
in the case of particles including identical fermions for

which the mass ratio is not enough to yield Efimov at-
traction, the Efimov effect may occur by confining one
or two particles [272]. Yusuke Nishida and Shina Tan
call this effect the confinement-induced Efimov effect.

9.4 Stable Efimov trimers in bilayer or
biwire geometries

Another remarkable situation is the case of particles
separated in disjoint subspaces, such as parallel lay-
ers [273] or wires, as shown in the third and fifth col-
umn of Table 1. Of course, for a two-body contact in-
teraction to take place, these disjoint subspaces must
intersect the space of the third particle. This way, both
particles can interact with the third particle, and thus
the third particle can mediate interaction between the
two particles. Yet, the two particles are always spa-
tially separated and cannot come in contact. This has
two major consequences.

First, the statistics of the particles does not mat-
ter any more, because they can be regarded as dis-
tinguishable particles, being with certainty in different
locations. Thus, the Pauli repulsion between identical
fermions that limits the Efimov effect to sufficiently
large mass ratios, does not play a role any more. In
such mixed-dimensional settings, fermions always ex-
hibit the Efimov effect.

Second, even though two of the three particles
can come in contact, the three particles can never
come closer than the separation between the two dis-
joint subspaces. In systems undergoing loss by three-
recombination (such as ultra-cold atoms), this fact can
completely suppress the loss, by preventing the three
particles from coming all three at distances where re-
combination occurs. It is thus a clever way to realise
Efimov states that are inherently stable, unlike their
counterpart in free space.

Since the separation d between the two subspaces
constitutes the smallest distance that the three parti-
cles can come to, it is the length scale that breaks the
discrete scale invariance and determines the ground-
state energy and three-body parameter of the trimers.
In particular, at unitarity,

E(0) = −~2κ
(0)2
∗

2µ
and E(n�1) = −~2κ2

∗
2µ

e−2nπ/|s0|

with κ
(0)
∗ =

α0

d
and κ∗ =

α

d

The constants α0 and α have been calculated nu-
merically by Yusuke Nishida and Shina Tan for
both the bilayer-free (2D×2D×3D) and biwire-free
(1D×1D×3D) geometries, for the two mass ratios 40/6
and 6/40. The strength |s0| is the same as for the
single-layer (2D2×3D) and single-wire (1D2×3D) ge-
ometries, because in the limit of weakly bound Efimov
trimers, the separation between the layers or wires is
vanishly small compared with the size of the trimers,
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and can be regarded as a single layer or wire in the
calculation of s0.

Explicit calculations of the trimer energies as a
function of the scattering length for bilayer-free and
biwire-free geometries were performed by Tao Tin,
Peng Zhang, and Wei Zhang [274], using the Born-
Oppenheimer approximation. The authors also calcu-
lated the ground-state tetramer energy for the triwire-
free geometry. They found that the trimers and
tetramers exist in a range of negative and positive scat-
tering lengths, as in the 3D case, and the binding en-
ergy reaches a maximum when the scattering length is
close to the separation between the layers or wires.

9.5 Observations with ultra-cold atoms

The mixed dimension setting has been studied experi-
mentally in only one group so far. The group of Mas-
simo Inguscio and Francesco Minardi in Florence have
realised a 2D-3D mixed-dimensional system by con-
fining potassium atoms in the 2D layers of an opti-
cal lattice, and let them interact with rubidium atoms
[275]. The interactions between the two species can be
changed by a magnetic Feshbach resonance. This way,
the researchers could explore the variation of the effec-
tive mix-dimensional scattering length, and observed
through recombination loss spectroscopy the location
of mix-dimensional two-body resonances that are re-
quired for Efimov physics to set in [276]. However, Efi-
mov features predicted in the preceding sections have
not been revealed yet.
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Part IV

The three-body
parameter

10 What is the three-body pa-
rameter?

10.1 In the zero-range theory

As explained in section 4.1, the three-body parameter
is a parameter that needs to be introduced to regularise
the zero-range theory of three particles. This param-
eter can be introduced in several ways depending on
the formalism used: a three-body short-range bound-
ary condition or a three-body short-range phase [1], a
two- or three-body momentum cut-off [60], or a three-
body contact interaction [6]. Therefore, there is not a
single formal definition of this parameter, and it can
take the form of a length or an energy, etc.

In any case, it is associated with three-body observ-
ables, such as the trimer energy or the particle-dimer
scattering length. When the three-body parameter is
changed, the value of these observables is rescaled ac-
cordingly. In the Efimov spectrum as a function of
inverse scattering length shown in figure 4.2, this cor-
responds to a radial rescaling of the curves with respect
to the accumulation point at the centre. The follow-
ing observables (shown in figure 4.2) are often taken
as convenient references to characterise the three-body
parameter:

1. the binding wave number κ∗ associated with the
trimer energy −~2κ2

∗/m at unitarity (the scatter-
ing length a→ ±∞).

2. the dissociation scattering length a− at which
the trimer vanishes in the three-body scattering
threshold.

3. the scattering length a+ at which the three-body
recombination rate has a minimum (for lossy sys-
tems).

4. the scattering length a∗ at which the trimer van-
ishes at the particle + dimer scattering threshold.

These observables are related to each other by universal
relations in the zero-range theory. Namely, for identical
bosons [4, 277],

a− ' −1.50763κ−1
∗ (10.1)

a+ ' 0.32κ−1
∗ (10.2)

a∗ ' 0.0707645086901κ−1
∗ (10.3)

Note that because of the discrete scale invariance, these
quantities are defined up to a factor enπ/|s0|, with n ∈
Z. In other words, κ∗ and κ∗e

nπ/|s0| represent the same
three-body parameter.

10.2 In systems with finite-range inter-
actions

The zero-range theory is of course an idealisation, since
in reality interactions do have a finite (i.e. non-zero)
range. In reality, the zero-range theory is applicable
in the universal window of very large scattering length
and very small energy. In this window, the above ob-
servables can be used to determine the three-body pa-
rameter. In this sense, the three-body parameter, al-
though originally a parameter of the zero-range the-
ory, can also be determined from finite-range calcula-
tions or experimental data provided they can access
the universal window of highly-excited states or low-
energy scattering. In general, it might be better to
talk about the three-body phase, as in equation (4.36),
which is a physical quantity independent of the model,
and reserve the expression three-body parameter for the
parameter of zero-range theories that fixes that phase.
Nevertheless, the expression three-body parameter is
commonly used in the sense of three-body phase, even
in experimental contexts.

In a realistic system, it is often experimentally or
computationally difficult to access the universal win-
dow corresponding to highly excited trimers. From
the first few trimers of the Efimov series of a realistic
(finite-range) system, one may extract quantities κ

(i)
∗ ,

a
(i)
− , a

(i)
+ , a

(i)
∗ for each trimer i = 0, 1, 2 . . . , and con-

sider them as approximate measures of the three-body
parameter. Strictly speaking, only in the large i limit
do they tend to values representing the three-body pa-
rameter (up to a factor enπ/|s0|), and the universal re-

lations (10.1-10.3) hold only approximately for κ
(i)
∗ ,

a
(i)
− , a

(i)
+ , a

(i)
∗ with small i. On the other hand, the

finite-range system quantities κ
(i)
∗ , a

(i)
− , a

(i)
+ , a

(i)
∗ can

help remove the ambiguity over the factor enπ/|s0| in
the definition of κ∗, a−, a+, a∗. For instance, one can

restrict the definition of κ∗ such that κ∗
(
eπ/|s0|

)i
cor-

responds approximately to the binding wave number

κ
(i)
∗ of the i-th Efimov state. However, this definition

still depends on what is considered to be the first Efi-
mov state. For simplicity, and in view of the recent
definitions of “Efimov state” (see section 4.5), we will
always label the ground-state trimer as the first Efimov
state i = 0.

10.3 In systems with loss

When the Efimov effect occurs in systems supporting
several two-body bound states, the Efimov states are
trimer resonances that can decay by recombining into a
lower two-body bound state scattering off a third par-
ticle. In the zero-range theory, such lower two-body
bound states are not present, yet Eric Braaten, Hans-
Werner Hammer, and Masaoki Kusunoki have shown
that their combined effect can be described in the zero-
range theory by introducing an inelasiticity parameter
η > 0 [63, 4, 120]. Physically, e−4η represents the prob-
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ability of an incoming hyper-radial flow to be reflected
back to large hyper-radii, the rest being lost at short
distance by recombination. Formally, this amounts
to giving the three-body parameter a complex value
κ∗e

i2η/|s0|. This makes the energy of the Efimov states
complex, E+ i

2Γ, where the imaginary part corresponds
to the energy width associated with their finite lifetime.
In the limit of small η, one finds Γ = 4η

|s0|E.

11 What sets the three-body pa-
rameter?

A natural question that arises is what in the micro-
scopic details of the finite-range interactions of real
systems determines the three-body parameter. At first
glance, two different views can be proposed:

1. The three-body parameter is roughly deter-
mined by the range of interaction The first view
is that the scale of the three-body parameter is roughly
determined by the range b of the interaction, i.e. the
length beyond which the interaction can be taken as
null or negligible. Indeed, this range constitutes the
length scale below which the zero-range theory ceases
to be valid. It is when the three particles approach this
range that the three-body boundary condition deter-
mining the three-body parameter is set. It is therefore
a natural guess that the resulting three-body parame-
ter, expressed as a length scale, is on the order of this
range.

This idea is supported by the early work of Llewellyn
H. Thomas [18], although the Efimov effect was not
known at the time. In this work, it was found that
the ground state of the three-body problem depends
on the range of the interaction. Namely, its energy
becomes deeper as the range of interaction is reduced;
in the limit of zero-range interaction, the energy goes
to minus infinity, in other words the spectrum is un-
bound from below, a phenomenon later known as the
Thomas collapse. Llewellyn Thomas used this finding
to estimate the triton binding energy from the range
of nuclear forces.

2. The three-body parameter can take any
value The second view is that the three-body pa-
rameter is a three-body boundary condition for the
free wave, in the same way as the two-body scattering
length being a two-body boundary condition for the
free wave - see the Bethe-Peierls condition (4.7). It is
known that the scattering length is in general difficult
to predict from the details of the two-body interac-
tion. For a purely repulsive interaction, the scattering
length is on the order of the interaction range, but for
an attractive interaction, it can be very different. Al-
though on average (over many interaction potentials)
the scattering length is on the order of the interaction
range, it may be much larger as well as positive or

negative [278], and one is often required to solve the
two-body Schrödinger equation to obtain the value of
the scattering length for a given interaction potential.
Especially for interaction potentials with a deep well,
the scattering wave function accumulates a large phase
inside the well, and a minute change in the short-range
details of the potential can completely change the value
of the scattering length.

By analogy, in the three-body problem at unitar-
ity, one can view the three-body body parameter as
the result of the short-range boundary condition for
the hyper-radial problem with the Efimov attractive
potential of equation (4.33). The short-range bound-
ary condition arises from the complicated three-body
dynamics at short range where all hyper-angular chan-
nels are coupled. To get some insight, though, one can
model this dynamics by an effective short-range hyper-
radial potential.

As in the two-body case, if this short-range po-
tential is purely repulsive (such as a hard wall at
R = R0) the three-body parameter is set by the
range of the repulsion. On the other hand, if the
short-range potential is attractive, it can take very
different values. For instance, if an attractive −1/R6

potential well (van der Waals type) is used as a
short-range boundary condition, one finds that the
three-body parameter can take any value with sub-
stantial probability - see the left panel of figure 11.1.
From these simple calculations, one concludes that
in general the three-body parameter, like the two-
body scattering lengh, can take on any value and
is sensitive to the short-range details of the interaction.

The above two views 1 and 2 can be conciled by
saying that in general the three-body parameter can
take any value depending on the short-range details of
the interaction, but on average (over many interaction
potentials) it scales with the range of the interaction.

While it is true that the three-body parameter may
in general take any value, there are some notable cases
presented in the following sections for which it is simply
related to a length scale of the two-body interaction.

11.1 First calculations

There have been many calculations of the three-body
problem with finite-range interactions near unitarity,
from which one can extract the Efimov three-body pa-
rameter, at least approximately. For example, the work
of Moszkowski and co-workers [279] has investigated,
for many shapes of two-body potential, the strength
required to bind three particles with respect to the
strength required to bind two particles - such a calcu-

lation is equivalent to the determination of a
(0)
− , which

is an approximate measure of the three-body parame-
ter. Their calculation indicates that the strength ratio
could vary from 2/3 to 1, although it is often close
to 0.8, which suggests a nominal value for the three-
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Figure 11.1: Three-body phase of equation (4.36) for the solution of the hyper-radial equation (4.31), where
the hyper-radial potential V (R) (represented in the insets) consists of the Efimov long-range attraction V0 of
equation (4.33) at large distance, and an attractive well of range b setting the boundary condition at short
distance. Left panel: the attractive well is a van der Waals potential with a van der Waals length b, and a
repulsive wall at some variable hyper-radius R0, i.e. V (R) = V0(R)− (2b)4/R6 for R > R0 and V (R) =∞ for
R ≤ R0. Right panel: the attractive well is a square-well potential of radius b and variable depth. The reference
length scale Λ−1

0 of equation (4.36) has been set to b.

body parameter, supporting view 1.

Later, motivated by the experimental development
of Efimov physics in ultra-cold atomic gases, José
D’Incao and co-workers [280] investigated more specif-
ically the variation of the three-body parameter from
one two-body resonance to another, as the strength of
the same two-body potential is increased (the Efimov
states in this case are resonances -see the end of sec-
tion 4.5). They concluded that the value of the three-
body parameter changes significantly, and is further
modified by the presence of a three-body force, sup-
porting view 2.

11.2 Van der Waals universality

11.2.1 Three identical bosons

Until Efimov states could be observed in ultra-cold
atomic gases, there was no experimental data directly
related to the three-body parameter. From 2006 on-
wards, quantities such as κ∗, a−, a+, and a∗ could be
measured around different resonances in various atomic
species (see section 4.7.2), at least for the ground Efi-
mov state and in some cases the first excited Efimov
state, thus providing some experimental estimate of the
three-body parameter. Surprisingly, the obtained val-
ues [281, 37] were not randomly distributed over an Efi-
mov log-period [1, eπ/s0 ≈ 22.7], but instead showed a
strong correlation with the range of the atomic inter-
action, taken to be the van der Waals length15,

`vdW =
1

2
(2µC6/~2)1/4,

15Not to be confused with the van der Waals radius rW that
accounts for the finite size of atoms and molecules in the equation
of state of gases.

associated with the van der Waals tail −C6/r
6 of the

interaction betwen two neutral atoms of reduced mass
µ [126]. The correlation of experimental results for a−
for identical bosons is shown in figure 11.2. It gives on
average:

a− = −(8.9± 1.8) `vdW. (11.1)

This average value is obtained from values of

a
(n)
− e−nπ/s0 for the ground-state (n = 0) and first-

excited (n = 1) Efimov states. The stated uncertainty
is two standard deviations of the data; all experimental
data fall into this range.

The values obtained from the ground-state reso-
nances are expected to deviate (by up to 25%) from
the exact three-body parameter. These values alone
give:

a
(0)
− = −(9.1± 1.5) `vdW . (11.2)

The first-excited-state resonances are expected to be
closer to the exact three-body parameter (within a few
percent). There are currently two experimental values
for such resonances. One is for a resonance in caesium-
133 at a magnetic field around 800 G [40],

a
(1)
− e−π/|s0| = −8.8(4) `vdW. (11.3)

The other comes from a resonance at around 900 G in
lithium-6 experiments [242, 239, 240, 75, 78], which
involve three distinguishable fermions behaving like
identical bosons. A recent and thorough analysis of
the data [248], including thermal corrections, gives the
value

a
(1)
− e−π/|s0| = −7.11(6) `vdW. (11.4)

All these results indicate that within an error of 20%,
the three-body parameter is universally determined by
the van der Waals length, with a− ≈ −9 `vdW.
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Figure 11.2: Van der Waals universality of the three-
body parameter observed in ultra-cold atomic gases for
caesium-133 [37, 32, 40], rubidium-85 [282], potassium-
39 [139], lithium-7 [143, 140, 281], and metastable
helium-4 [283]. For potassium-39, the data corresponds
to a point originally assigned to a four-body reso-
nance [141]. Also shown are the results [248] of lithium-
6 experiments [241, 242, 238, 239, 240, 75, 78, 248],
which involve three distinguishable fermions behaving
like identical bosons, except that they have three dif-
ferent scattering lengths. The value of a− for these

experiments is estimated by the formula a
(n)
− e−nπ/s0 .

Results for n = 0 (ground state) are shown by crosses,
whereas results for n = 1 (excited state) are shown by
squares. A linear fit of the results is plotted, along with
a shaded area indicating two standard deviations.

This remarkable experimental finding triggered the-
oretical activity to understand its origin. The first
proposed explanation [284] invoked quantum reflection
of the three-body wave function in the region where
atoms undergo van der Waals attraction. The argu-
ment supporting this idea is based on the calculation
of the three-body phase from a hyper-radial potential
which consists of an Efimov attraction at large distance
and a deep square well potential at short distance (ap-
proximating the effects of the two-body van der Waals
attraction). It is represented in the right panel of fig-
ure 11.1. For deep wells, the three-body phase appears
to stabilise around a well-defined value, close to π/4.
However, the stability of the three-body phase turns
out to be a peculiarity of the square well approxima-
tion. As we discussed previously, when the square well
in the hyper-radius potential is replaced by a van der
Waals attraction, the three-body phase can take dif-
ferent values with significant probability - see the left
panel of figure 11.1. Nevertheless, the idea of quantum
reflection looked compelling and prompted theorists to
check thoroughly the physics of three particles inter-
acting via deeply attractive van der Waals potentials.

The work of Jia Wang and co-workers [38] presented

the first exact calculation, using the adiabatic hyper-
spherical representation. In this method, the three-
body wave function is expressed as a linear combination
of products of hyper-radial and hyper-angular wave
functions Ψ =

∑
n Fn(R)Φn(Ω;R), where the hyper-

radius R characterises the size of the three-body sys-
tem and is defined16 as R2 = 2

3 (r2
12 + r2

23 + r2
31), and

Ω denotes the set of remaining coordinates describ-
ing the geometry of the three-body system, which are
called hyper-angles. Note that this form becomes sep-
arable only for the zero-range interaction at unitarity,
see equation (4.27). For finite-range interactions such
as the van der Waals type, the hyper-radius R is cou-
pled to the hyper-angles Ω at short distance. Hyper-
angular wave functions Φn are thus calculated to ob-
tain hyper-radial potentials Wn(R), as well as coupling
terms Wnn′(R), which lead to a set of coupled equa-
tions for the hyper-radial motion:(
− d2

dR2
+Wn(R)− E

)
Fn(R)+

∑
n′ 6=n

Wn,n′(R)Fn′(R) = 0,

(11.5)
where R is expressed in units of van der Waals length
`vdW and the potentials Wn, Wn,n′ is expressed in units

of van der Waals energy EvdW = ~2

m`2vdW
. These hyper-

radial equations uncouple at large hyper-radius, and
one of them features a hyper-radial potential W0(R)
that asymptotes to the Efimov attraction V0(R) of
equation (4.33). Solving the coupled equations (11.5)
for various two-body interactions with a van der Waals
tail, Jia Wang and co-workers found that the three-
body parameter is essentially determined by the van
der Waals tail and relatively insensitive to other de-
tails. In the limit of deep van der Waals interactions,
they found:

κ
(0)
∗ = (0.21± 0.01)/`vdW (11.6)

a
(0)
− = −(10.70± 0.35) `vdW (11.7)

which is close to ultra-cold atom observations given
in figure 11.2 and equation (11.2). For shallower po-
tentials for which the van der Waals character is less
pronounced, they found slightly larger values of κ

(0)
∗

and a
(0)
− . These values were recently confirmed in

Refs. [285, 286] for shallow van der Waals potentials
with a repulsive core and supporting only one two-body
bound state, giving:

κ
(0)
∗ = (0.226± 0.004)/`vdW (11.8)

a
(0)
− = −(9.69± 0.20) `vdW (11.9)

For all van der Waals potentials investigated so far,
deep or shallow, with or without a repulsive core,

16Note that the authors of reference [38] use a different con-
vention for the definition of the hyper-radius, namely R2 =
1√
3

(r212 + r223 + r231). Here, we use a definition that is consis-

tent with the one used in section 4.1 - see equation (4.24).
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the values of a
(0)
− /`vdW are comprised in the range

[−11.2,−8.3], i.e. −9.73± 15%. This theoretical value
is often cited in the literature, as it agrees well with
the experimental value of equation (11.2). However it
is more relevant to shallow potentials, and the value
in equation (11.7) should be taken as the universal
value relevant to interactions dominated by their van
der Waals tail. The more important deviation between
this value and the experimental value of equation (11.2)
suggests that other physics beyond the van der Waals
universality may contribute to the three-body param-
eter of atoms close to a broad magnetic Feshbach res-
onance [248].

Three-body repulsion Jia Wang and co-workers
looked for a simple reason for this universality in their
calculated hyper-radial potentials. They found that
the potential W0(R) exhibits a steep repulsive barrier
at a hyper-radius R ≈ 2`vdW, instead of a strong at-
traction as one would näıvely expect from the van der
Waals attraction. Furthermore, they found that this
repulsive barrier is always present, irrespective of the
presence or absence of a repulsive core17 in the two-
body potential, and in the limit of deeply attractive
potentials has a seemingly universal form that depends
only on the van der Waals tail of the potential - see the
grey curves in the top panel of Fig. 11.3. This observa-
tion alone cannot explain their results, because the po-
tential W0(R) is strongly coupled to other channels in
the region of the repulsive barrier. Solving the coupled
equations, Jia Wang and co-workers found that this re-
pulsive barrier is actually enhanced by the hyper-radial
couplings Wnn′ and effectively suppresses the probabil-
ity of finding the three particles within a hyper-radius
R < 2`vdW. The authors confirmed that imposing such
a steep barrier by hand in the potential W0(R) alone
sets the three-body phase to a value in good agree-
ment with their exact results (11.6-11.7). The repul-
sive barrier also explains why the results do not de-
pend much on the interatomic three-body forces, such
as the Axilrod-Teller potential [289]: the repulsive bar-
rier prevents the three atoms from coming to the short
distances where they would experience the three-body
force.

The three-body repulsive barrier was confirmed in
a different manner by Emiko Hiyama and Masayasu
Kamimura [285] from exact three-body calculations
with various helium potentials. Using the Gaussian ex-
pansion method to solve the three-body problem, they
obtained the energies E and the three-body wave func-
tions of trimers at unitarity. Integrating the squared
wave function over hyper-angles to obtain the inte-
grated hyper-radial density ρ(R) gives the effective
hyper-radial wave function F (R) = Rρ(R)1/2. This

17Shortly after the findings of Jia Wang and co-workers, a
work [288] proposed that the three-body repulsion originates
from the repulsive core in the two-body potential. However,
this statement is not consistent with the results of Jia Wang and
co-workers.

can be converted into the effective hyper-radial poten-
tial

U(R) =
1

F (R)

d2

dR2
F (R) + E, (11.10)

assuming that F (R) satisfies a single Schrödinger equa-
tion akin to equation (11.5). Hiyama and Kamimura
found that for all the helium pairwise potentials, both
the ground and first-excited trimers give the same po-
tential U(R) in the van der Waals region and it ex-
hibits the universal repulsive barrier - see the green
curve in the top panel of figure 11.3. This results in

a
(0)
− = −9.78(1)`vdW for all the helium potentials, in

agreement with the calculations of Refs. [38, 286] for
shallow Lennard-Jones potentials.

The calculations of Refs. [38, 285] thus indicate that
the origin of the van der Waals universality of the three-
body parameter is a three-body repulsion rather than
quantum reflection. Jia Wang and co-workers noted
that this repulsion originates from the suppression of
probability to find two atoms at short separation. This
suppression of probability is due, as in classical me-
chanics, to the acceleration of the relative motion by
the attractive potential, which makes the two atoms
spend little time at short separation. This suppression
squeezes the three-body wave function, which results
in an increase of kinetic energy that is responsible for
the repulsive barrier.

Connection with two-body physics The work of
reference [39] confirmed the interpretation of Jia Wang
and co-workers [38], and showed that this increase of
kinetic energy is physically related to a deformation of
the three-body system from its configuration at large
separations to shorter hyper-radii. At large hyper-
radius, the three-body configuration is independent of
the hyper-radius, and distributed according to the Efi-
mov hyper-angular wave function,

Φ
(ZR)
0 (Ω) =

3∑
i=1

φ0(αi)

sin 2αi
, (11.11)

where φ0 is given by equation (4.28) and αi denote the
hyper-angles α for the three possible Jacobi sets of co-
ordinates given by equations (4.9-4.10). As mentioned
in section 4.5.2, the most probable configurations have
an elongated-triangle geometry: two particles are close
and one is farther away. However, at hyper-radii on
the order of the van der Waals length, the suppression
of two-body probability forces the system to adopt an
equilateral configuration - see the bottom panel of fig-
ure 11.3. This change of configuration can be seen in
the hyper-radius dependence of the hyper-angular wave
function Φ0, and the kinetic energy associated with this
deformation is described by the non-adiabatic term

Q00(R) =

∫
dΩ

∣∣∣∣dΦ0

dR

∣∣∣∣2 (11.12)
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Figure 11.3: Top: Potential energy for three bosons resonantly interacting via two-body van der Waals inter-
actions as a function of their hyper-radius. The grey curves represent the diagonal potential W0(R) obtained in
reference [38] for the channel that asymptotes to the Efimov attraction V0(R) (shown in dashes). The different
curves correspond to calculations for two-body potentials (6-12 Lennard-Jones type [287]) of different depths,
supporting from 2 to 10 s-wave two-body bound states (from top to bottom). The green curves correspond to
the effective potential (11.10) obtained from the ground and first-excited helium trimer wave function calculated
in reference [285] with various helium potentials scaled to unitarity. They overlap within their thickness. The
blue curves represent the potential obtained from the pair ansatz (11.13) of reference [82]. They correspond
to the zero-energy two-body wave functions ϕ(r) for Lennard-Jones potentials supporting 2 to 5 s-wave bound
states. The red curves represent the effective hyper-radial potential (11.10) obtained from the separable model
of reference [82] given by equation (11.15). They correspond to the zero-energy two-body wave functions ϕ(r)
for Lennard-Jones potentials supporting 3 and 7 s-wave bound states.
Bottom: Configuration space of the three-boson system as a function of the hyper-radius and one hyper-angle.
A few configurations are shown, where bosons are represented by circles with a diameter equal to the van der
Waals length `vdW. The region of configurations for which at least two atoms are within the distance `vdW from
each other (i.e. circles touching each other) is shaded in pink. These configurations have near-zero probability
due to the two-body suppression induced by the van der Waals attraction - see figure 11.4. Below the hyper-
radius R = 2`vdW, configurations therefore have to deform to a nearly equilateral configuration. The kinetic
energy cost associated with this deformation results in the repulsive barrier of the top panel.

contained in W0(R). As the three-body system probes
shorter hyper-radii, the deformational energy due to
the two-body suppression arises as a repulsive barrier in
W0(R). To support this interpretation, the authors of

reference [82] presented two models built on the van der
Waals two-body suppression, that lead to the universal
three-body repulsion.

The first model consists in making the following
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Figure 11.4: Two-body radial probability density
|ϕ(r)|2 at unitarity (a ≈ ∞) as a function of inter-
particle separation r, for a deep van der Waals poten-
tial (black, obtained from equation (11.14)) and for
a shallow van der Waals potential with a repulsive
core (red). The corresponding potentials are shown
in dashed curves. In both cases, the probability den-
sity is suppressed for r . `vdW. In the first case, this
is due the acceleration in the attractive van der Waals
potential. In the second case, this is due to the repul-
sive core. The density profile is nearly the same for
r & `vdW since both potentials have the van der Waals
form in this region.

ansatz for the hyper-angular wave function,

Φ0(Ω;R) = Φ
(ZR)
0 (Ω)× ϕ(r12)ϕ(r23)ϕ(r31), (11.13)

i.e. the hyper-angular wavefunction Φ
(ZR)
0 from the

zero-range theory is multiplied by a two-body correla-
tion function ϕ for all three pairs. This two-body corre-
lation is taken to be the two-body radial wave function
ϕ(r) = rψ(r) at zero-energy for a potential at unitar-
ity with a van der Waals tail. This pair correlation
ansatz describes the suppression of two-body probabil-
ity in a simple fashion, and can be used to calculate
the hyper-radial potential W0(R).

The two-body radial wave function ϕ(r) is known to
have a universal form in the van der Waals region:

ϕ(r) =
r&`vdW

Γ(5/4)
√
xJ 1

4
(2x−2) (11.14)

where x = r/`vdW and Γ and Jα denote the gamma
and Bessel functions. At shorter distances r � `vdW
, ϕ(r) has a potential-dependent form and vanishes at
r = 0. The number of nodes in ϕ(r) corresponds to the
number of s-wave two-body bound states supported by
the potential. The probability density |ϕ(r)|2 is plotted
as a solid black curve in figure 11.4.

The authors of reference [39] found that the result-
ing hyper-radial potential W0(R) exhibits a repulsive
barrier similar to that of reference [38] - see the blue
curves in the top panel of figure 11.3. The barrier is

due to the large value of the non-adiabatic term Q00

of equation (11.12), confirming the deformation sce-
nario. The repulsive barrier does not depend much on
the short-range form of the potential nor its number
of bound states, as long as the two-body probability
is sufficiently suppressed at short-distance, i.e. ϕ(r)
has most of its amplitude in the van der Waals re-
gion where it has the universal form (11.14). This oc-
curs for most physical potentials, which feature either
a strongly repulsive core or a deep well that reduces
the short-distance probability - see figure 11.4.

In the second model of reference [39], the two-body
suppression is introduced through a separable repre-
sentation of two-body van der Waals potentials. Any
local potential V can be represented as a superposi-
tion of non-local separable potentials, a representation
introduced by Ernst, Shakin and Thaler (EST) [290].
Truncating this representation to a single separable po-
tential V̂ gives an approximation of the original poten-
tial V that reproduces one of its eigenstates |ψ〉 ex-
actly at a chosen energy, and other eigenstates approx-
imately around that energy. The separable potential
V̂ is explicitly constructed from that eigenstate as

V̂ =
1

〈ψ|V |ψ〉
V |ψ〉〈ψ|V. (11.15)

From this expression, one can easily check that the ac-
tion of V̂ and V onto |ψ〉 is the same. Choosing again
|ψ〉 to be the zero-energy scattering state, the result-
ing separable potential reproduces that state exactly
by construction, and therefore the two-body suppres-
sion at low energy. Solving the three-body problem
with this separable potential (see Appendix for details),
constructed from a ϕ(r) that is dominated by the van
der Waals form (11.14), gives a three-body parame-
ter that is consistent with the results of Jia Wang and
co-workers [38]. In the limit of a deep van der Waals
potential V , i.e. when ϕ(r) tends to the van der Waals
form (11.14), the authors find

κ
(0)
∗ = 0.187(1)`−1

vdW (11.16)

a
(0)
− = −10.86(1)`vdW, (11.17)

in fair agreement with equations (11.6-11.7). Fur-
thermore, the authors integrated the obtained three-
body probability density over the hyper-angles to ob-
tain a hyper-radial wave function, and converted that
wave function into an effective hyper-radial poten-
tial through equation (11.10). The resulting poten-
tial is shown by the red curves in the top panel of
figure 11.3 and compares well with the potentials of
reference [38] and [285].

These results show that the van der Waals univer-
sality of the three-body parameter is a consequence of
the van der Waals two-body universality given by equa-
tion (11.14).
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11.2.2 2 bosons + 1 particle

The van der Waals universality extends to systems of
different particles, such as heteronuclear atomic sys-
tems. The physics is richer because the particles may
have different masses, different quantum statistics, and
the interactions may have different van der Waals
lengths in addition to different scattering lengths. The
case of two identical bosons A of mass mA and one
particle X of mass mX was theoretically studied by
Yujun Wang and co-workers in reference [233] using 6-
12 Lennard-Jones potentials [287] VAA and VAX . In
this case, as discussed in section 6, there are two scat-
tering lengths aAA and aAX and two limits for which
the Efimov effect occurs: aAX → ±∞ with aAA fi-
nite, and aAX , aAA → ±∞. Accordingly, for these
two Efimov regimes, there are two geometric scaling
strengths, respectively s0 and s∗0, and two three-body
parameters, respectively κ and κ∗. The authors of ref-
erence [233] found that, for a given mass ratio mA/mX

between A and X, these three-body parameters are de-
termined solely from the van der Waals lengths `vdW,AA

and `vdW,AX (as well as aAA for the first Efimov regime),
and do not depend upon other short-range details, as
in the case of three identical bosons. Nevertheless,
they found that this van der Waals universality is ex-
plained differently for the Efimov-favoured limit (the
limit of large mass ratio mA/mX , i.e. two heavy bosons
and one light particle) and the Efimov-unfavoured limit
(the limit of small mass ratio mA/mX , i.e. two light
bosons and one heavy particle).

In the Efimov-unfavoured limit, the two Efimov
regimes are well separated. The first Efimov regime
corresponds to a family of bound states in a hyper-
radial potential (that asymptotes to the dissociation
threshold AX + A for aAX > 0), whereas the second
Efimov regime corresponds to a family of bound states
in another hyper-radial potential (that asymptotes to
the dissociation threshold AA + X for aAA > 0). The
authors of reference [233] found that the hyper-radial
potential for the first Efimov regime has a universal
form for a fixed `vdW,AA and `vdW,AX when it is expressed
in units of aAA, while the hyper-radial potential for the
second Efimov regime has a universal form for a fixed
`vdW,AA and `vdW,AX, which is independent of aAA. This
form exhibits the Efimov attraction at large distance,
and a short-range repulsion that is similar to that of
three identical bosons. This three-body repulsion pre-
sumably follows from the same two-body induced de-
formation mechanism explained in the previous section.

In the Efimov-favoured limit, on the other hand, the
hyper-radial repulsion picture becomes inadequate to
understand the three-body parameter: the repulsive
barrier in the hyper-radial potential featuring the Efi-
mov attraction goes to shorter and shorter distances
and becomes irrelevant, while the couplings to other
channels become increasingly strong. The authors of
reference [233] found that the Born-Oppenheimer pic-
ture is better suited for this situation. This picture

consists in considering the two heavy bosons as slow,
and take their relative coordinate r as the adiabatic
variable instead of the hyper-radius R. As the two
bosons slowly move, the light particle is assumed to
adiabatically follow a wave function Φ(~ρ; r) that is cal-
culated at each separation r of the two bosons. The
three-body wave function is therefore

ΨBO(r, ~ρ) = F (r)Φ(~ρ; r) (11.18)

The determination of Φ(~ρ; r) yields eigenstates Φn(~ρ; r)
and eigenvalues Un(r). One of these eigenvalues cor-
responds to a potential U(r) exhibiting the Efimov at-
traction at large r (when aAX � `vdW,AX). The relative
wave function F (r) for the two bosons is then simply
given by the following Schrödinger equation:(
− ~2

mA
∇2
r + VAA(r) + U(r)− E

)
F (r) = 0 (11.19)

Note that in this Efimov-favoured limit, the two Efi-
mov regimes are nearly the same (s0 ≈ s∗0), and ap-
pear in the Born-Oppenheimer approximation as a sin-
gle Efimov effect described by a single channel (corre-
sponding to the potential VAA +U) and a single three-
body parameter approximating the two three-body pa-
rameters. This three-body parameter is then deter-
mined by the form of the potential VAA(r) +U(r). Ac-
cording to reference [233], U(r) turns out to be negligi-
ble in the short-range region, and therefore the short-
range phase of F (r) is set by the van der Waals poten-
tial VAA only. As is known from the theory of van der
Waals potentials [291, 292], that phase depends only on
the van der Waals tail of this potential and its scatter-
ing length aAA. As a result, the three-body parameter
depends only on the van der Waals length `vdW,AA and
the scattering length aAA. If `vdW,AX > `vdW,AA, it may
also depend on `vdW,AX since the potential VAA + U
may depend on the van der Waals tail of VAX at in-
termediate distances. The conclusion is therefore the
same as for the Efimov-unfavoured limit: the three-
body parameters depend only on the van der Waals
lengths `vdW,AA and `vdW,AX , and the scattering length
aAA. However, the origin of this universality is different
from that of the Efimov-unfavoured limit and the case
of three identical bosons. Instead of a three-body re-
pulsion, it is the van der Waals potential VAA between
the two bosons that sets the three-body parameters,
the same way it sets the scattering length between the
two bosons.

The authors of reference [233] have checked that this
conclusion, obtained from the Born-Oppenheimer pic-
ture, is validated by exact calculations using the fully-
coupled hyper-radial equations for mass ratios rang-
ing from 14 to 29. For these large mass ratios, they
obtained a very good agreement between the Born-
Oppenheimer and exact calculations for the wave func-
tions and energies, and demonstrated that the results
are nearly insensitive to the number of bound states in
the two-body Lennard-Jones potentials VAA and VAX .
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11.3 Other types of short-range inter-
actions

The discovery of the van der Waals universality for
three particles rekindles the question of which con-
ditions lead to a simple determination of the three-
body parameter. The van der Waals universality for
two particles is a particular case of the universality of
power-law tail potentials, which decay as 1/rn, with
n > 3. One can therefore expect that a similar univer-
sality exists for three particles interacting via power-
law potentials. As for other finite-range interactions,
reference [38] indicates that van der Waals universality
likely extends to any finite-range interaction that suf-
ficiently suppresses the two-body probability at short
distance. Their conclusion is drawn from the similitude
between the three-body parameter for deep Pöschl-
Teller potentials [293, 294] and that of deep van der
Waals potentials, once both are expressed in units of
effective range. The relevant length scale for the three-
body parameter would therefore be the effective range
re, which in the case of van der Waals interactions is
simply related to the van der Waals length [292, 278].

11.3.1 Two-body correlation and effective
range

Extending the two-body analysis of section 11.2.1 to ar-
bitrary potentials qualitatively corroborates this point:
if the interaction suppresses the two-body probabil-
ity within some range r0, the restriction of three-body
configurations at small sizes imposes the three-body
system to deform, and the kinetic energy of that de-
formation creates a three-body repulsive barrier at a
hyper-radius comparable with the two-body suppres-
sion range r0. The effective range re provides a good
estimate of the suppression range. At unitarity, the
effective range re is defined by [70]

1

2
re =

∫ ∞
0

dr
[
ϕ̄(r)2 − ϕ(r)2

]
, (11.20)

where ϕ̄(r) = 1 is the asymptotic form of ϕ(r) that
is a solution of the free two-body problem. By con-
struction, if the amplitude of ϕ is suppressed within
some range r0 with respect to that of ϕ̄, then the ef-
fective range is positive, and 1

2re is a good estimate of
r0. Therefore the location of the three-body repulsive
barrier, and thus the three-body parameter, should be
given by the effective range.

Of course, the precise value of the three-body pa-
rameter should depend upon the precise location and
shape of the repulsive barrier. These in turn should
depend upon the precise shape of the two-body wave
function ϕ(r). For interactions with a van der Waals
tail, we know that ϕ(r) has a universal form in the re-
gion of suppression given by equation (11.14), and thus
the three-body parameter is universally related to `vdW.
More generally, for interactions with a power-law tail

decaying as −Cn/rn (n > 3), the two-body wave func-
tion at zero energy has the following universal form at
unitarity:

ϕ(r) =
r&`n

Γ

(
n− 1

n− 2

)√
xJ 1

n−2
(2x−(n−2)/2) (11.21)

where x = r/`n, and `n =
[

1
n−2

√
mCn
~

] 2
n−2

. With this

notation, `6 = `vdW. For each power n, there should
thus be a universal relation between the three-body
parameter and `n. In contrast, for interactions decay-
ing faster than power laws, such as exponentially de-
caying potentials, there is no such universality of the
two-body wave function. Only when such potentials
are very deep does the two-body wave function show a
very abrupt depletion of probability that approaches a
step function [82]:

ϕ(r) =

{
0 for r < 1

2re

1 for r ≥ 1
2re

. (11.22)

The work of reference [82] investigates these ideas
quantitatively using the separable potential approx-
imation described in section 11.2.1. The authors
checked that for various finite-range interaction po-
tentials near unitarity (Gaussian, exponential [294],
Pöschl-Teller [293, 294], Yukawa [295, 294], Morse [296,
294], 6-12 Lennard-Jones [287]), the separable poten-
tial (11.15) built with the corresponding zero-energy
two-body wave function ϕ does reproduce within a
few percent the three-body parameter extracted from
exact calculations for three identical bosons [279].
This confirms that, for pairwise potentials inducing a
pronounced suppression of two-body probability, the
three-body parameter is essentially governed by the
zero-energy two-body wave function.

As a result, it follows that the three-body parameter
for such interactions roughly scales with the effective
range. The numerical values of the three-body param-
eters for all the potentials considered in [82], when ex-
pressed in units of the effective range of the potential,
differ by just a factor of two. Namely,

κ
(0)
∗ ∈ [0.2, 0.4]× (

1

2
re)
−1. (11.23)

Although this does not constitute a universal result, it
is a significant reduction of variance with respect to the
Efimov log-period [1, eπ/s0 ≈ 22.7] allowed by the zero-
range theory. This fact may also be seen in the con-
text of functional renormalisation group (FRG) [297].
In this framework, one applies a regulator that cuts
off momenta smaller than k, and looks at the flow of
quantities, such as the effective three-body coupling
constant, as a function of k. The occurrence of the
Efimov effect at zero energy and the unitary limit im-
plies a limit cycle, i.e. a flow that is log-periodic in k,
instead of a fixed-point limit. This can be intuitively
understood by considering the log-periodic three-body
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wavefunction at zero energy in equation (4.35) confined
in a box of size 1/k. The phase of the log-periodic os-
cillations is related to the three-body parameter. The
authors of reference [297] checked that plotting the flow
as a function of kre for different separable potentials
(similar to those of reference [82]) results in phase dif-
ferences that are small compared to 2π. This confirms
that the three-body parameter for these potentials is
roughly determined by the effective range, in accor-
dance with equation (11.23).

11.3.2 Deep-potential limits

The exact calculations of reference [279] only feature
potentials near unitarity with at most one s-wave two-
body bound state. The authors of reference [82] then
extended their separable potential calculations to the
case of deeper potentials near unitarity. Within the
separable potential approximation, this amounts to
constructing the separable potential from a two-body
wave function with a larger number of nodes corre-
sponding to the number of s-wave bound states in the
original potential.

Power-law potentials

For potentials with a power-law tail r−n, because of
the universality of the two-body wave function given in
equation (11.21), changing the depth of the potential
results in little change in the three-body parameter. In
the limit of deep potentials, the authors numerically
found the following three-body parameters:

κ∗ = 0.364(1)/(
1

2
re) for n = 4 (11.24)

κ∗ = 0.2614(1)/(
1

2
re) for n = 6. (11.25)

Here, the effective range re is given by

1

2
re ≈ π

sin( π
n−2 )

2
2

n−2

n− 2

Γ(n/2+1
n−2 )

Γ( n/2n−2 )Γ(n+1
n−2 )

`n (11.26)

∼
(
n− 2

n− 1

) 1
n−2 2(n− 2)2

(n− 3)(2n− 5)
`n, (11.27)

which can be obtained from equations (11.20) and
(11.21). Note that for n = 4 and n = 6, equa-
tion (11.26) reduces to 1

2re/`4 = 2π
3 ' 2.0944 and

1
2re/`6 =

16Γ( 5
4 )

2

3π ' 1.39473, respectively, and 1
2re ≈

`n for large n.

Faster-than-power-law potentials

For potentials decaying faster than a power law, as the
depth of the potential is increased, the two-body wave
function slowly converges to the step function given
by equation (11.22). As a result, the three-body pa-
rameter slowly converges to a universal limit, which
reference [82] found to be numerically:

κ∗ = 0.2190(1)/(
1

2
re). (11.28)

11.3.3 Classes of universality

The authors of reference [82] concluded that there are
two classes of universality for the three-body param-
eter: the class of potentials decaying as power law,
which exhibit a robust universality, and the class of
potentials decaying faster than power laws, which give
a universal parameter only in the limit of very deep
potentials. The deep-potential limits are continuously
connected, because the two-body wave function (11.21)
for power-law potentials also tends to the step func-
tion (11.22) for very large n. Hence, as the power
n is continuously increased, the universal value of
the three-body parameter continuously decreases from
equations (11.24-11.25) to equation (11.28), but re-
quires deeper and deeper potentials to be reached.

It is important to note that these results are ob-
tained within the separable potential approximation;
they need to be confirmed and refined by exact calcu-
lations.

Finally, let us remark that the square-well potential

V (r) =

{
−V0 for r < r0

0 for r ≥ r0

, (11.29)

which is often used in model calculations, stands out
as a particular case. Its two-body wave function at
unitarity does not show a suppression of probability at
short distance, even when the depth V0 is increased,
and does not converge to equation (11.22). Therefore,
it is not expected to exhibit the deformation-induced
three-body repulsion, nor the universal three-body pa-
rameter of equation (11.28). The problem stems from
the absence of tail: there is only an abrupt variation
of the potential that precludes any acceleration, even
classically. If the abrupt variation is smoothed a bit,
the three-body parameter should eventually reach the
universal value of equation (11.28) in the limit of deep
wells.

11.4 Coupled-channel interactions

The preceding discussions only considered interactions
described by a single potential. In many physical sys-
tems with resonant interactions, the reality is more
complex as the interaction involves the coupling of po-
tentials from different channels, corresponding to dif-
ferent internal states of the colliding particles. For in-
stance, as explained in section 4.7, the two-body inter-
action between ultra-cold atoms is made resonant by
using Feshbach resonances [28, 126], which result from
the coupling between two or more hyperfine channels.
In such situations, the value of three-body parameter
may not follow the results presented in the previous
sections, and depends on the characteristics of the cou-
pled channels. Here, we consider the case of isolated
Feshbach resonances.
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11.4.1 Feshbach resonances

In the neighbourhood of a Feshbach resonance, two

scattering particles at relative energy E = ~2k2

m ap-
proach each other in some entrance channel corre-
sponding to their internal states, but during their colli-
sion can couple to a bound state of energy Ec in a closed
channel (i.e. whose potential dissociates above the en-
ergy E) corresponding to different internal states. The
s-wave scattering phase shift is then the sum of two
contributions:

δ0(k) = δ0,bg(k) + δ0,res(k) (11.30)

The first contribution is the background phase shift
δ0,bg corresponding to the entrance channel, and the
second contribution is a resonant phase shift δ0,res in-
duced by the coupling to the bound state. It has a
Breit-Wigner form [43, 126]:

tan δ0,res(k) = −
1
2Γ(k)

E − EC −∆(k)
, (11.31)

where Γ and ∆ are the width and shift of the resonance.
At small scattering energy, Γ(k) ≈ αk, and thus δ0,res

can be expanded as:

k

tan δ0,res(k)
= − 1

ares

−R∗k2 + o(k2) (11.32)

where ares = −
1
2α

Ec+∆(0) and R∗ = 2~2

mα . It follows that

the scattering length a is

a = abg + ares, (11.33)

where abg = − limk→0 tan δ0,bg(k)/k is the background
scattering length. The resonance condition is met when
the energy of the bound state Ec is tuned to compen-
sate the shift ∆(0), making ares, and thus a, divergent.

The strength of the resonance is characterised by the
length R∗. When R∗ is much smaller than the range b
of the interaction (the van der Waals length `vdW in the
case of atoms), the resonance is strong and dominated
by the entrance channel; the particles are most likely
to be found in the entrance channel. Such entrance-
channel dominated resonances usually (although not
necessarily) occur over a broad range of the tuning pa-
rameter (such as an applied magnetic field), and thus
are also called broad resonances. On the other hand,
when R∗ is much larger than the range b, the resonance
is weak and dominated by the closed channel. Such res-
onances are usually (although not necessarily) observed
as narrow resonances. The strength of a resonance is
thus conveniently characterised by the dimensionless
ratio sres = b/R∗.

11.4.2 Broad resonances

Broad resonances are dominated by their entrance
channel and can be effectively described by a single

potential [126]. The results of sections 11.2 and 11.3
based on single interaction potentials can therefore ap-
ply to the case of such resonances. In particular, for
broad atomic Feshbach resonances, the van der Waals
tail of the open-channel potential is the main feature
that determines the three-body parameter.

11.4.3 Narrow resonances

In 2004, Dmitry Petrov [77] investigated the physics of
three bosons near a narrow Feshbach resonance. For
narrow resonances, R∗ is much larger than the range
b of inter-particle forces, which induces the strong en-
ergy dependence of equation (11.32). Close to the res-
onance condition, one can neglect the background con-
tribution δs,bg, and comparing equation (11.32) with
equation (4.41), we see that such resonant interactions
have a large and negative effective range

re ' −2R∗ � −b. (11.34)

This confers to these systems some sort of long-range
property, which has the effect of providing a three-body
boundary condition for the Efimov-attracted particles
at distances on the order of R∗, at much larger distance
than the range of inter-particle forces.

Formally though, these systems can still be treated in
the zero-range theory, on the basis of equation (11.32),
implying that the scattering length a in equations (4.6)
or (4.7) is to be replaced by the energy-dependent scat-
tering length a(k) given by

1

a(k)
=

1

a
+R∗k

2, (11.35)

where k is the relative wave number between two par-
ticles. The work of reference [77] shows that unlike
the original zero-range theory, the resulting three-body
equations are well-behaved. Indeed, the presence of the
term R∗k

2 in equation (11.35) turns the Efimov attrac-
tion (4.33) at short hyper-radius R into a Coulomb-
type attraction −1/(R∗R), which does not necessitate
the introduction of a three-body parameter. Another
way to put it is that the three-body phase is set by
R∗. Namely, the three-body phase as measured by
κ∗, a∗, a+ was numerically found to be (up to a fac-
tor enπ/s0) [77, 4]:

κ∗ ' 0.11/R∗ ' −0.22/re, (11.36)

a+ ' 2.9R∗ ' −1.45 re, (11.37)

a∗ ' 0.64R∗ ' −0.32 re, (11.38)

which predicts accurately the quantities a
(i)
+ ≈

a+

(
eπ/|s0|

)i
and a

(i)
∗ ≈ a∗

(
eπ/|s0|

)i
, except for i = 0,

for which a
(0)
+ ' 3.3R∗ and a

(0)
∗ ' 0.45R∗.

In 2008, Alexander Gogolin and co-workers [277]
found an analytical solution to the three-boson prob-
lem near a narrow Feshbach resonance. Instead of
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the single-channel zero-range model based on equa-
tion (11.35), they used a two-channel model with no
interaction in the entrance channel and a zero-range
coupling between the entrance and closed channel. In-
tegrating the corresponding Schrödinger equation, they
showed that the resulting integral equation can be
mapped to a single-particle Schrödinger-like equation.
From this equation, the three-body parameter can be
expressed analytically, leading to an accurate value:

κ∗ ' 0.11691/R∗ ' −0.23381/re, (11.39)

a− ' −12.895R∗ ' 6.448 re. (11.40)

It is from these calculations that the universal relation
between a− and κ∗ given in Eq. (10.1) was calculated
accurately. For the ground-state trimer, the theory
gives [298]

a
(0)
− ' −10.90216R∗, (11.41)

a
(0)
∗ ' 0.458398R∗. (11.42)

This calculation was generalised to the case of 2+1
fermions [299] and to the case of 2+1 bosons [300]. The
authors have found that the three-body parameter in
these systems is universally described by the effective
range and the mass ratio. In the limit of large mass
imbalance, in particular, Efimov trimers’ energies at
unitarity are analytically found as

E(n)=
~2

2µR2
∗
e2π(1+n)/|s|×

4e−π/2 (2 light bosons+1 heavy particle)

4e2J0 (2 heavy bosons+1 light particle)

4e2J0 (2 heavy fermions+1 light particle)

where n = 0, 1, 2...., and J0 = 0.505560.... The ener-
gies of the 2 heavy bosons + 1 light particle system and
2 heavy fermions + 1 light particle system converge to
the same values since the repulsion originating from
the antisymmetrisation becomes negligible in the large
mass imbalance limit.

11.4.4 Intermediate resonances

It is remarkable that both the limit of very broad res-
onances and that of very narrow resonances lead to
a universal three-body parameter in terms of the ef-
fective range of the interaction. In the case of broad
resonances, the interaction can be described by a single
potential, which lead to universal three-body parame-
ters such as (11.24) or (11.25). In the case of narrow
resonances, the large and negative effective range leads
to a universal three-body parameter given by equa-
tion (11.39). An intriguing question is how these two
limits are connected for intermediate resonances which
are neither very broad nor very narrow. In particular,
one may wonder whether it can still be universally ex-
pressed in terms of the effective range, as the two limits
suggest.

The work of Richard Schmidt and co-workers [301]
investigates this point using a separable potential

model to describe the coupled channels. This model
treats the coupling between the entrance and closed
channels, but does not include any interaction in the
entrance channel. As a result, it does not reproduce the
deformation and three-body repulsion discussed in sec-
tion 11.2.1 that lead to the universal three-body param-
eter for broad resonances. The authors therefore ad-
justed the arbitrary form of of their inter-channel cou-
pling (an exponential function) so that the three-body
parameter in the limit of a broad resonance (sres � 1)
coincides with the known value for van der Waals inter-
actions, given by equation (11.6). They could then cal-
culate the three-body parameter as the strength of the
resonance sres is decreased, using functional renormal-
isation group techniques. In the limit of narrow reso-
nances (sres � 1), their calculation give a− ' −12.9R∗
and κ∗R∗ ' 0.117, reproducing the results (11.39-
11.40). For intermediate resonances (sres ∼ 1), they
obtain a smooth and continuous crossover connecting
the two limits18. This is in contrast with the effective
range, which changes sign as the strength of the reso-
nance reduces: for broad resonances, the effective range
is positive and on the order of the true range b of the
interaction (see equation (11.26)) and for narrow reso-
nance, the effective range is negative and given by the
length R∗ (see equation (11.34)). This indicates that
in this crossover region of intermediate resonances, the
three-body parameter is not simply given by the effec-
tive range. This is to be expected because the univer-
sal mechanisms relating the three-body parameter to
the effective range are different for the two limits: in
the case of broad resonances, universality stems from
the two-body short-range correlation given by equa-
tion (11.14), which is an off-the-energy-shell property,
whereas in the case of narrow resonance, universal-
ity stems from the energy-dependence of the scatter-
ing phase shift (11.32), which is an on-the-energy-shell
property.

The work of Yujun Wang and Paul S. Julienne [302]
presents the most complete model so far. The two-
body interaction is described by a set of two or three
channels corresponding to the spin states involved in
the Feshbach resonance, and the potential in each chan-
nel is modelled by 6-12 Lennard-Jones potential. By
incorporating both the resonance and van der Waals
physics, this kind of models is known to describe the
two-body physics very accurately over an energy range
comparable with the van der Waals energy EvdW, in
the same spirit as multi-channel quantum-defect the-
ory [303, 304]. The authors of reference [302] argue
that their model should equally provide an accurate
description of the three-body physics, in particular the
three-body parameter. Indeed, the Feshbach resonance
is decribed properly, both in the limit of narrow reso-

18An alternative crossover was proposed in reference [288], but
the model used in that work appears to rely on some invalid
assumptions, such as the universal three-body parameter being
set by the repulsive core of the two-body interaction potential,
which is not the case, as noted in section 11.2.1.
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nances and the limit of broad resonances where the van
der Waals tail of the potential determines the three-
body parameter. Moreover, the Lennard-Jones poten-
tials support more than one bound state, allowing the
description of recombination and relaxation processes
to these bound states. Solving the three-body prob-
lem numerically with such models, the authors of ref-
erence [302] could indeed reproduce the experimentally
observed loss by three-body recombination or atom-
dimer relaxation around several resonances: a broad
resonance in caesium-133 (sres ≈ 200), a double reso-
nance in caesium-133 (sres ≈ 200 and sres ≈ 200), and a
broad resonance in rubidium-85 (sres ≈ 200). Not only
could they reproduce the location of Efimov peaks giv-
ing the three-body parameter, but also the loss rate
for scattering lengths outside the window of zero-range
universality. This remarkable agreement is a further
evidence of the three-body van der Waals universality.

The experimental Efimov features considered in ref-
erence [302] are driven by broad resonances, and there-
fore satisfy the van der Waals universal value (11.7)
of the three-body parameter. In principle, the model
could also be used to investigate the case of interme-
diate and narrow resonances, although this was not
detailed in reference [302]. The authors point out that
for these resonances the results should depend not only
on the van der Waals length `vdW and the resonance
strength sres but also on other parameters such as the
background scattering length abg (a fact missing by
construction in the work of Richard Schmidt and co-
workers [301]). Even for the broad resonances, their

calculations indicate that while a
(0)
− remains largely in-

sensitive to abg, the value of a
(0)
+ may depends on abg.

A full mapping of the parameter space for Feshbach
resonances remains to be done.

11.4.5 Experimental observations

Broad resonances In ultra-cold atom experiments,
it is usually easier to deal with open-channel domi-
nated resonances because they correspond to broad res-
onances in terms of the applied magnetic field. Most
of the measurements reported in Fig. 11.2 are obtained
from relatively broad resonances. As mentioned in sec-
tion 11.4.2, broad resonances are expected to be well
described by single-channel two-body potentials. In-
deed, the theoretical results of section 11.2 for single-
channel van der Waals potentials agree with the obser-
vations within 20%. This agreement has confirmed the
van der Waals universality of the three-body parameter
for these resonances.

However, reducing the tolerance reveals some dis-
crepancies that seem significant. First of all, the theo-

retical calculation of a
(0)
− /`vdW for single-channel deep

van der Waals potentials gives a value close to −11, see
equations (11.7) and (11.17), whereas most experimen-
tal values are above −9. Another issue pointed out
in reference [248] is that the presumably most precise

experimental determinations of the three-body param-
eter, based on first-excited-state resonances, give the
values (11.3) and (11.4) that differ significantly by 20%.
In the absence of systematic errors, one has to conclude
that while van der Waals physics is the main ingredi-
ent determining the three-body parameter, it is not the
only one. Possible candidates are the deviation from
the van der Waals tail (C8 coefficient) in the single-
channel potential and coupled-channel effects. Accord-
ing to the calculations discussed in section 11.4.4, the
coupled-channel effects tend to increase the value of a−,
which may make it closer to the observed values. Yet,
more work is needed to refine our understanding. From
the current theoretical and experimental results, one
may only say that the value of a− for the broad atomic
resonances is about −9 `vdW, with an uncertainty of
20%.

Intermediate and narrow resonances Closed-
channel dominated resonances, on the other hand, are
most often narrow and necessitate a fine tuning of the
magnetic field, which in turn requires a high stabili-
sation of the intensity of the current in the coil cre-
ating the magnetic field. There are therefore much
less experimental observations for narrow resonances.
The experimental group of Giovanni Modugno in Flo-
rence [141] have reported the measurement of the
three-body parameter for seven different Feshbach res-
onances in potassium-39. These resonances correspond
to a magnetic field of 58.92, 60.1, 65.67, and 471.0 gauss
for atoms polarised in the hyperfine state with projec-
tion mF = 0 along the magnetic field, 33.64, 162.35,
and 560.7 gauss for mF = −1, and 402.6 gauss for
mF = +1. The strength sres of these resonances has
been calculated to range from 0.11 to 2.8, and the back-
ground scattering abg ranges from -1.54 nm to -0.95 nm.

The group found that the measured value of a
(0)
− does

not vary significantly from its expected value (11.2)
for broad resonances. Although the resonances are not
narrow enough to be fully in the regime described the-
oretically in section 11.4.3, one would have expected
that the observations would show some indication of
the crossover between the narrow and broad limits, as
suggested by the models of [301, 302]. As of now, these
observations remain to be interpreted theoretically.
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Part V

More than three
particles
After the Efimov effect was discovered, a natural ques-
tion was whether the same effect could apply to a
larger number of particles. In 1973, Amado and Green-
wood [305] already concluded that there is no Efimov
effect for four identical bosons or more, in the sense
that for N ≥ 4, there is not an infinite number of N -
body bound states near the appearance of an (N − 1)-
body bound state, as is the case for N = 3. In spite
of this early negative result, it was later found that
not only a 4-body Efimov effect can occur for mass-
imbalanced fermions, but a variety of universal N -body
bound states were found in the region where the 3-body
Efimov effect occurs. Here, we review the situation for
bosons and mass-imbalanced Fermi mixtures.

12 Bosons

12.1 Tetramers tied to Efimov trimers

12.1.1 Four identical bosons

Although Amado and Greenwood [305] found from the
trace of the four-body kernel of the four-boson in-
tegral equation that no four-body Efimov effect oc-
curs, they also acknowledged that near a two-body
resonance where the three-body Efimov effect occurs,
there should also be four-body bound states. How-
ever, one fundamental question was whether in the
limit of zero-range interactions a four-body parame-
ter is required to set the four-body energy, just as a
three-body parameter is required to set the three-body
energy. Amado and Greenwood’s result suggests that,
in the limit |a| � b, no four-body parameter is re-
quired. As a further evidence, J. A. Tjon found by
solving numerically the four-body problem for differ-
ent models that the four-body energy is correlated with
the three-body energy, a correlation referred to as the
“Tjon line” [307, 308].

On the other hand, the works of Sadhan K. Adhikari,
Tobias Frederico, I. D. Goldman, and Yamashita [309]
on the perturbative renormalisation of the few-body
problem with delta function potentials, and subse-
quent works [310, 311], advocated the introduction of
an (N + 1)-parameter for each particle added to the
N -body system. This question was also addressed
by Hans-Werner Hammer, Lucas Platter, and Ulf-G.
Meißner [312][34], by solving the Yakubovsky equa-
tions [313] (a generalisation to four bodies of the Fad-
deev equations) with a Gaussian separable two-body
and three-body potentials. The strengths of these po-
tentials are adjusted (renormalised) such that the two-
body and three-body energies are independent of the
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Figure 12.1: Schematic four-boson energy spectrum
as a function of the inverse scattering length 1/a be-
tween each pair of bosons (adapted from [33] and [306]).
The black curves represent the dimer+boson+boson
and dimer+dimer thresholds. The red curves repre-
sent the trimer+boson thresholds (compare with the
trimer energies of figure 4.2). The solid purple curves
represent the tetramer energies, and the dashed purple
curves correspond to inelastic virtual tetramer states.
Here, the two tetramers associated with the ground-
state trimer do not follow exactly the universal pat-
tern exhibited by the tetramers tied to excited trimers,
although this depends on the microscopic model.

Gaussian cutoff Λ of the potentials. The authors found
that there are two tetramer states below the ground-
state trimer and that their energy is relatively inde-
pendent of the cutoff Λ, suggesting that no four-body
renormalisation, and thus no four-body parameter is
required. This led to some controversy on the neces-
sity of a four-body parameter.

The work of Hans-Werner Hammer and Lucas Plat-
ter [34] also suggested that the presence of two tetramer
states below the ground-state trimer is a universal fea-
ture that also occurs below each of the excited trimer
states. This point was confirmed by Javier von Stecher,
José P. D’Incao and Chris H. Greene in their study [35]
where they solved the four-boson problem in hyper-
spherical coordinates. The use of four-body hyper-
radial potentials reveals the presence of a well below
each trimer-boson scattering threshold, following the
Efimov geometric scaling of these thresholds. Each po-
tential well can support two bound states, one of which
being just below the trimer-boson threshold, that is to
say a trimer weakly bound to a boson. The existence
of these states was confirmed by solving the coupled
hyper-radial equations using the correlated Gaussian
basis set expansion. This infinite set of tetramer states
have been referred to as“universal tetramers tied to (or
associated with) Efimov trimers”, to avoid the designa-

65



tion “Efimov tetramers” which would suggest a four-
body Efimov effect ruled out in reference [305].

The work of von Stecher and co-workers also pro-
posed a solution to the controversy on the neces-
sity of a four-body parameter. Indeed, the loca-
tion of the well in the four-body hyper-radial poten-
tial moves to a larger hyper-radius by a factor of
22.7 at each new trimer-boson threshold, making the
corresponding tetramer states essentially insensitive
to any short-range four-body force, as advocated in
[312, 34]. On the other hand, the well associated with
the ground-state trimer-boson threshold is located at
shorter hyper-radii comparable with the range of inter-
action, thus making the corresponding tetramers sen-
sitive to a short-range four-body force. This sensitivity
makes to some extent the ground-state tetramer ener-
gies independent of the trimer energy, thus requiring
in zero-range models the introduction of the four-body
parameter advocated in [310, 311].

The precise four-body spectrum for excited states
was calculated by Arnoldas Deltuva in a series of pa-
pers [314, 315, 316, 317, 318, 319, 320, 321, 322, 306].
This calculation had been challenging because the
excited tetramers are resonant states embedded in
trimer-boson continua. Deltuva obtained the bind-
ing energies Bn,i and widths Γn,i/2 of these states by
calculating four-body scattering properties using the
Alt-Grassberger-Sandhas (AGS) equations [323, 324].
Here, n refers to the n-th trimer of binding energy bn,
which the two tetramers i = 1, 2 are associated with.
At the unitary limit, and for large n, the following uni-
versal relations were found:

B1 + iΓ1/2 = (4.610(1) + i0.01483(1))bn

B2 + iΓ2/2 = (1.00227(1) + i0.000238(1))bn

The whole four-body spectrum is shown in fig-
ure 12.1. Generally speaking, each pair of tetramers
follows the trimer energy. The tetramer states thus
form a superposition of two geometrical series with the
Efimov scaling ratio eπ/s0 ≈ 22.7. The two tetramers
appear from the four-body threshold before the ap-
pearance of the associated trimer and dissociate in the
dimer-dimer scattering threshold. However, Deltuva
found that in the case of the tetramer resonances, the
most weakly bound state first dissociates in the trimer-
boson threshold, surviving as a inelastic virtual state,
before reappearing from that threshold and eventually
dissociating in the dimer-dimer threshold. There is an
additional family of tetramer states which appear near
the crossing of a trimer and the dimer-boson thresh-
old. These tetramer states are simply a consequence
of the Efimov effect occurring for the system of dimer
and two bosons, since the scattering length between the
dimer and boson is resonant near this crossing. These
particular features may not occur for the ground state
tetramers, depending on the details of the short-range
interaction.
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Figure 12.2: Schematic energy spectrum of three heavy
bosons and one light particle as a function of the in-
verse scattering length 1/a between the heavy boson
and light particle (adapted from Refs. [325, 326]). The
same conventions as those of figure 12.1 are used. It is
assumed that the mass ratio between heavy and light
is larger than ∼13. For mass ratios smaller than ∼13,
the second tetramer state would disappear at a nega-
tive value of the scattering length, instead of positive.
The virtual states indicated by the dashed curves are
a conjecture made by analogy with figure 12.1.

12.1.2 3 bosons + 1 particle

The four-body Efimov spectrum was investigated in
the case of heavy and light bosons mixtures by Yujun
Wang and co-workers [325], and subsequently by Do-
erte Blume and Yangqian Yan [326]. As in the case
of identical bosons, there appears to be no four-body
Efimov effect in these mixtures, despite earlier claims
based on the Born-Oppenheimer approximation [327].
On the other hand, the works of Refs. [325, 326]
show that, as in the case of identical bosons, univer-
sal tetramer states consisting of three heavy and one
light bosons are tied to the heavy+heavy+light Efi-
mov trimers (see section 6.2.1 for a discussion of these
trimers). The schematic four-body spectrum is given
in figure 12.2. Tetramer states tied to excited trimers
were evidenced in reference [325] from the calculated
four-body recombination rate, while the authors of
reference [326] only calculated the tetramers tied to
the ground-state trimer but conjectured that similar
tetramers exist for each excited trimer. In this lat-
ter work, two tetramers were found below the ground-
state Efimov trimer. They appear at negative scat-
tering lengths, but the excited tetramer disappears in
the trimer+heavy threshold for the mass ratio κ . 13
before reaching the unitary limit, while it persists to
some positive scattering length for κ & 13. On the
other hand, in the work of reference [325], only one
tetramer state was found at mass ratios κ = 30 and
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κ = 50. It is possible that the second tetramer was
missed in that study because of its very weak binding
energy.

In reference [326], the ground-state pentamer and
hexamer were also calculated. They were found to fol-
low the energy of the ground-state tetramer, as in the
case of identical bosons.

12.2 Universal clusters

The previous results on universal tetramers tied to Efi-
mov trimers naturally raise the question of the univer-
sality of larger cluster of bosonic particles. Although
there is an extensive theoretical literature on bosonic
clusters, motivated in particular by helium droplets,
recent works have focused on the connection to Efimov
physics, and in particular whether bosonic clusters with
resonant interactions can be universally described by a
scattering length and a three-body parameter, as in the
case of universal tetramers.

This question has not been conclusively answered
yet, because it requires the daunting task of calculat-
ing excited N -body cluster resonant states embedded
in scattering continua of sub-clusters. So far, most
studies [328, 329, 9, 330, 331, 332] have focused on the
N -body bound states below the ground-state trimer,
although one study [329] was able to find N -body res-
onances up to N = 6 below the first-excited trimer.
These studies give us some idea of the properties of
the conjectured universal clusters associated with ex-
cited Efimov trimers.

12.2.1 Clusters below the ground-state trimer

The earliest attempt at calculating the N -body clus-
ters tied to the ground-state Efimov trimer is the work
of Javier von Stecher [328], solving by the Diffusion
Monte-Carlo method a model consisting of two-body
square-well interactions and three-body repulsive hard-
core interactions. Von Stecher found that the N -boson
ground-state cluster systematically appears at a weaker
two-body attraction than the N −1-boson cluster, and
remains at a lower energy. This Borromean binding
property can be easily understood from the kinetic
and interaction energy counting argument given in sec-
tion 1. In this study, only the ground bound state has
been calculated. In a subsequent study [329] using dif-
ferent potential models and numerical techniques, von
Stecher identified three bound states for N = 5, and
two bound states for N = 6. These results are qualita-
tively summarised in figure 12.3.

In the work of Mario Gattobigio and Alejandro
Kievsky [331], the same problem was investigated for
systems of up to N = 6 bosons interacting either
through two-body Gaussian potentials, or two-body
Pöschl-Teller potentials. In each case, the first and sec-
ond N -body bound state were calculated. The results
with Gaussian two-body potentials were confirmed by
Yangqian Yan and Doerte Blume [333, 332], who also
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Figure 12.3: Schematic spectra of the N -boson clus-
ters up to N = 6, as a function of the inverse scat-
tering length 1/a between the bosons. This figure is
based on the qualitative results of Refs. [328, 329, 331].
Trimers and tetramers correspond to the red and pur-
ple curves, as in figure 12.1, and pentamers and hex-
amers are shown in blue and green, respectively. Clus-
ters below the ground-state trimer are non-universal, as
they depend on the details of the interactions, whereas
clusters below the excited trimers are believed to ap-
proach a universal pattern. This pattern is not well
known: only a a few states have been calculated in
reference [329] for negative scattering lengths. The re-
gion of positive scattering lengths offers many possible
crossings and is virtually unknown.

obtained results for two-body Lennard-Jones poten-
tials, adjusted two-body Helium-4 potentials, and two-
body zero-range interactions with power-law CpR

−p

three-body repulsive interactions.

Although all these results agree qualitatively with
figure 12.3, they quantitatively disagree. Figure 12.4
shows the energy of the ground state cluster for some
of these models. These models deviate as the number of
particles N is increased. This is not unexpected: as we
have learnt from the preceding sections, the ground-
state properties often deviate significantly from the
universal pattern exhibited by excited states because
the spatial extent of the ground states is comparable
to the range of the interactions. Interestingly, though,
Gattobigio and Kievsky showed in reference [331] that
these non-universal deviations (for their own results
and those of reference [328]) could be mapped back
for all N (up to N = 6) to a single universal curve
corresponding to the Efimov trimer curve given by
equation (4.39), generalising the modified universal for-
mula (4.42) for N > 3. This observation suggests that
there is a yet to be understood relationship between the
non-universal ground-state clusters and the universal
Efimov trimer structure.
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Figure 12.4: Bosons at unitarity (adapted from
Refs. [328, 331, 332]): Energy of the ground-state
bosonic cluster (normalised by the ground-state trimer
energy) as a function of the number of bosons, for dif-
ferent models of interactions at unitarity (1/a = 0) in-
dicated by the arrows. The dotted and dashed curves
are analytical predictions from Refs. [334] and [331],
respectively.

12.2.2 Universal N-body clusters

Much less is known about the clusters tied to excited
Efimov trimers, which are resonant states presumed to
have a universal structure. In reference [329], Javier
von Stecher could identify some of these states up to
N = 6. They are schematically shown in figure 12.3,
and qualitatively follow the pattern of the clusters as-
sociated with the ground-state Efimov trimer for nega-
tive scattering lengths. This indicates that the ground-
state clusters give us some idea of the spectrum of the
excited clusters. The earlier work of reference [328] at-
tempted to make these ground-state clusters close to
the universal clusters by using a model consisting of
two-body square-well interactions and three-body hard
core repulsive interactions. The resulting ground-state
pentamer and hexamer were indeed found to agree rel-
atively well with the excited pentamer and hexamer
resonances found in reference [329], much more so than
the ground-state clusters of other models. Neverthe-
less, it is unclear how much universal this model is,
especially for large N .

To improve this situation, Yan and Blume consid-
ered an alternative model in an attempt to approach a
purely zero-range model, which supposedly yields uni-
versal results for both the excited and ground clus-
ters (in fact, a purely zero-range model has no ground
state). Although two-body zero-range interactions can

be implemented in their numerical method (based on
the path integral Monte Carlo method), three-body
zero-range interactions cannot be treated. The authors
thus resorted to a three-body repulsive interaction of
the form CpR

−p, where R is the three-body hyper-
radius - see equation (4.24), and carefully checked that
when p is increased, the three-body ground-state ob-
servables convincingly converge to that of the univer-
sal (zero-range) theory. It is thus plausible that the
ground-state clusters of this model converge to the uni-
versal clusters for large enough p. Although the clus-
ter energies are found to be rather insensitive to p for
small N , for larger N their energies become strongly
dependent on p. Nevertheless, we noticed that the de-
pendence on 1/p appears to be linear, which makes
it easy to extrapolate to p → ∞. In figure 12.4, we
have represented the result of this extrapolation by the
red curve. At present, this curve represents the most
plausible variation of the energy with N for universal
clusters at the unitarity limit. Interestingly, it turns
out to be close to the curves obtained for ground-state
clusters for Lennard-Jones and scaled helium poten-
tials, although these curves are expected to represent
a different class of universality associated with van der
Waals potentials.

There remain many open questions about the univer-
sal clusters. The region of positive scattering lengths
have not been addressed yet, and promises to reveal
a rich pattern of clusters dissociating into subclusters.
There is also an intriguing possibility that the energy
of clusters of a very large number of particles, if they
exist, may leave the scaling window of the trimer they
are originally associated with.

12.3 Observation with atoms

In the theoretical study reference [35] on tetramers
tied to Efimov trimers, it was realised that experimen-
tal evidence of these tetramers could be seen through
the enhancement of the four-body recombination loss
rate at the scattering lengths where the tetramers ap-
pear at the four-body scattering threshold, something
which had in fact already been observed in experimen-
tal data from ultra-cold caesium atom experiments at
the University of Innsbruck. In reference [33], the ex-
perimentalists in Innsbruck confirmed that the loca-
tions of these loss peaks at a = 0.47a− and a = 0.84a−
(where a− designates the scattering length at which a
trimer appears, seen experimentally by a three-body
loss peak) are consistent with the expected locations
a−Tetra1 ≈ 0.43a− and a−Tetra2 ≈ 0.9a−. A few years
later, the same group reported the observation in the
same system of a weak five-body loss peak at the scat-
tering length where a ground-state pentamer is ex-
pected to appear [335].

Two other groups, the group of Randall G. Hulet at
Rice University [140] and the group of Giovanni Mod-
ugno and Massimo Inguscio in Florence [139], also re-
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ported in 2009 the observation of the four-body loss
peaks at the scattering lengths consistent with the
above values, but it turned out later that their results
were plagued by misassignments of the loss peaks and
recalibration of the scattering length with respect to
the magnetic field (see section 4.7.2), and their results
were modified in 2013 [141, 142]. The former group
originally found two four-body loss peaks [140], but
later in reference [142], they could only observe a sin-
gle peak at a = 0.37a− which is likely to correspond
to one of the four-body bound states, while the other
one is not observed. The latter group originally re-
ported the observation of a single four-body loss peak
at a = 0.43a− [139], but after reassignment of the
peaks, no four-body loss peak was found [141].

13 Mass-Imbalanced Fermi mix-
tures

Resonantly interacting four-body systems with identi-
cal fermions have also been studied recently. The first
treatment of these systems was the exact calculation by
Dmitry Petrov and co-workers [336, 337] of the dimer-
dimer scattering length for a four-body system of two
identical (i.e., spin-polarised) fermions plus two other
identical fermions (i.e. in a different spin state). The
four-body problem for fermions, while more challenging
than that for identical bosons, is still tractable analyti-
cally and numerically. Systems with identical fermions
are subject to the repulsion originating from the Pauli
exclusion principle and are, generally speaking, less
likely to support bound states than bosonic systems.
However, this repulsion can be overcome by increasing
the mass imbalance between the two fermionic species,
leading to the formation of a four-body bound state, as
in the case of mass-imbalanced three-body system with
fermions (see section 6.2.5). In this section, we review
the recent theoretical progress on two classes of four-
body systems which consist of resonantly-interacting
identical fermions of two species: a system of two iden-
tical (i.e. spin-polarised) fermions plus two other iden-
tical fermions in section 13.1, and a system of three
identical fermions plus another distinguishable particle
in section 13.2. We review and discuss prospects for
systems of more than four particles in section 13.2.3.

13.1 2 fermions + 2 fermions

The earliest works on the four-body problem in a
two-component Fermi mixture were motivated by the
studies of the BEC-BCS crossover [338, 339, 340,
341, 342, 343, 344, 345]. The nature and stabil-
ity of the Bose-Einstein condensate phase, consist-
ing of dimers made of different fermions, is sensi-
tive to scattering properties of the dimers. In some
works [341, 342, 343, 344, 346, 347], the dimer-dimer
s-wave scattering length has been estimated with some

approximations. Exact calculations have been per-
formed in Refs. [336, 337, 345, 348, 349], and the
dimer-dimer scattering length at equal mass has been
found to be add/a = 0.59... (a is the s-wave scatter-
ing length between two non-identical fermions), which
is significantly smaller than the mean-field (i.e., the
Born approximation) value add/a = 2.0 due to the
Pauli exclusion principle. The exact calculation of
the elastic dimer-dimer s-wave scattering length has
also been extended to the mass-imbalanced case in
Refs. [350, 191, 351], and the asymptotic behavior at
large mass ratio add ≈ aad/2 (aad is the fermion-dimer
s-wave scattering length) has also been found analyti-
cally [352].

For a four-body system made of 2 identical fermions
+ 2 identical fermions, there necessarily exists a re-
pulsion between each identical fermions due to the
Pauli exclusion principle, preventing the formation of
a universal four-body bound state [350, 353, 354]. In-
deed, for any parity and angular momentum channel,
there is no universal four-body bound state when the
mass ratio is smaller than the three-body Efimov crit-

ical mass ratio κ
(3)
c = 13.6069657... [355, 353, 354]:

there is neither a four-body Efimov effect at the uni-
tary limit [355, 354, 356] nor a universal four-body
bound state of Kartavtsev-Malykh character for a pos-
itive scattering length [353]. This is in marked contrast
to the 3+1 Fermi system discussed in the next section,
where four-body bound states can appear below the
three-body Efimov critical mass ratio.

On the other hand, if the mass ratio exceeds

the three-body Efimov critical mass ratio κ
(3)
c =

13.6069657..., the three-body Efimov attraction arises
and may bind the four particles. The resulting four-
body bound states, however, are not expected to
be four-body Efimov states. Since the introduction
of the three-body parameter is known to regularise
the four-body problem for a bosonic four-body sys-
tem [305, 312, 34], it is expected that the four-body
bound states of the 2+2 Fermi system, if they exist,
should also be characterized by the three-body param-
eter only, and would not require the introduction of a
four-body parameter. They would therefore be tied to
the three-body Efimov states, in an analogous manner
to the four-body bound states of a Bose system (see
section 12 and Refs. [312, 34, 35, 316, 325]), and show
the discrete-scaling symmetry with the same scaling
factor as the Efimov trimers.

13.2 3 fermions + 1 particle

In contrast to the 2 + 2 Fermi system, the system of
3 identical fermions of mass M plus a distinguishable
particle of mass m exhibits richer physics. In particu-
lar, the repulsion between the identical fermions can be
overcome by the attraction mediated by the other par-
ticle when the mass of the identical fermions is much
larger than that of the other particle. This situation
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is similar to the 2+1 system (see section 6.2.5). As a
result, physics similar to that of the 2+1 Fermi system
has been found to occur in the 3+1 Fermi systems, as
discussed below.

13.2.1 Four-body Efimov effect

Yvan Castin and co-workers have studied the 3+1 sys-
tem at the unitary limit, and have found that a four-
body Efimov effect occurs, i.e. the existence of a four-
body attraction leading to an infinite number of four-
body bound states in the absence of three-body bound
states. This effect occurs in the LΠ = 1+ channel,
where L is the total angular momentum and Π is the
parity of the four-body state, and for a mass ratio

M/m above the critical ratio κ
(4)
c = 13.384... [111],

which is below the critical mass ratio κ
(3)
c = 13.606...

for the occurence of three-body Efimov effect for 2+1
systems. The same result has also been obtained more
recently by Betzalel Bazak and Dmitry Petrov [357].
Since there is no trimer at unitarity in the range of

mass ratio κ
(4)
c < M/m < κ

(3)
c , the binding of the

3+1 states is a genuine four-body phenomenon. These
four-body Efimov states exhibit discrete scale invari-
ance with a scaling factor eπ/s, where the exponent s
in the scaling factor is obtained by numerically solv-
ing the four-body Schrödinger equation at the unitary
limit. As in the three-body Efimov effect, this leads
to a transcendental equation that determines the value
of s. It is worthwhile to note that this is the first
and so far only known example of the four-body Efi-
mov effect in any physical system: for a four-body
system of bosons, the four-body Efimov effect does
not occur [305], and there exists only a finite num-
ber of four-body bound states tied to each Efimov
trimers [312, 34, 35, 316] - see section 12.1. It is also
interesting to note that some of the four-body Efimov
states are likely to persist beyond the three-body crit-

ical mass ratio κ
(3)
c = 13.606..., while some others are

expected to mix with the trimer+fermion scattering
continua.

13.2.2 Universal four-body bound state

Below the four-body Efimov critical mass ratio κ
(4)
c =

13.384..., there is no universal four-body bound state
at the unitary limit. However, at positive scatter-
ing length for a mass ratio M/m & 9.5 , a universal
four-body bound state was found numerically by Do-
erte Blume in reference [353] in the same LΠ = 1+

channel as the four-body Efimov states. This four-
body bound state is universally characterised by the
s-wave scattering length, and is independent of other
short-range parameters. It can therefore be inter-
preted as a four-body analogue of the universal three-
body bound states found by Kartavtsev and Malykh
for mass ratio M/m > 8.17... and M/m > 12.91...
(see section 6.2.5). Just as the Kartavtsev-Malykh

three-body bound states are remnants of the three-
body Efimov states appearing above the critical mass

ratio κ
(3)
c = 13.606..., the universal four-body bound

state may be regarded as a remnant of the four-body
Efimov states appearing above the critical mass ratio

κ
(4)
c = 13.384... [111]. We note that the critical mass

ratio for this universal four-body state has recently
been refined to M/m = 8.862(1) [357].

Note that, as in the case of the 2 + 1 Fermi system
(see section 6.2.5 and Refs. [195, 355, 358, 194]), other
kinds of four-body bound states may exist for the 3
+ 1 Fermi system at unitarity even below the critical
mass ratio, but they are non-universal [355, 353, 358] in
the sense that they depend on a short-range boundary
condition that is not set by the scattering length but
other short-range details of the interactions.

13.2.3 Five bodies and beyond

It is rather challenging to study the universal and Efi-
mov states of five or more particles since it requires
a highly accurate calculation of the extremely small
binding energy of these clusters at the critical mass in
the presence of the fermionic sign problem. Neverthe-
less, Betzalel Bazak and Dmitry Petrov have recently
succeeded in studying the mass-imbalanced 4+1 Fermi
system by using the diffusion Monte Carlo method to
solve the Skorniakov - Ter-Martirosian equation for this
system [357]. They found the critical mass ratios for
the Efimov pentamers and universal pentamers in the
LΠ = 0− channel to be 13.279(2) and 9.672(6), respec-
tively.

From the critical mass ratios for the 2+1, 3+1, and
4+1 systems, it is tempting to make an extrapolation
to N + 1 system with N → ∞. The extrapolation
suggests that the critical mass ratios for the Efimov
and universal clusters approach ∼ 13.0(1) and ∼ 12(2)
in that limit. But this naive extrapolation should not
be taken too seriously since it neglects shell-closure-
oscillation which may be significant around the 4+1
system corresponding to the shell closure of the p-wave
orbital in the shell model picture [357]. The authors
of reference [357] expect that 5+1 Efimov hexamers or
universal hexamers, if they do exist, show qualitatively
different behaviours from 2+1, 3+1, and 4+1 clusters
since to form these hexamers a heavy fermion needs to
occupy a higher angular momentum or radial quantum
number state in the shell model picture.
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Part VI

Many-body systems
So far, our focus has been on isolated systems with a
relatively small number of particles. This approach is
relevant to the description of some systems such as light
nuclei or isolated molecules. However, many physical
systems are composed of a very large number of par-
ticles. It is thus natural to ask oneself about the im-
plications of Efimov physics in this context. Several
studies have recently started to address this question.
The first studies have looked into the influence of a
many-body background onto Efimov states, while more
recent studies deal with the consequences of few-body
Efimov physics at the many-body level.

14 Many-body background

The observation of Efimov physics in ultra-cold
atom experiments involve the existence of triatomic
molecules that can be formed from an extremely di-
lute cloud of atoms. Even though the density of the
cloud, typically 1012 atoms per cubic centimetre, is
small enough to regard the triatomic molecules as iso-
lated, it is natural to wonder how the properties of
such molecules are changed under the influence of a
surrounding medium. It is particularly interesting that
the medium may be composed of the same constituents
as the those of the molecule, as this consideration con-
stitutes a first step towards many-body problems. De-
pending on the quantum statistics of the constituents,
there are thus two possible media, a Fermi sea or a
Bose gas.

14.1 Efimov states in a Fermi sea

Let us consider an Efimov trimer containing one or
several fermionic particles, and surrounded by one or
several seas of fermions that are identical to those of
the Efimov trimer. The presence of these many ad-
ditional fermions constitutes a non-trivial many-body
problem, but it can be treated in a first approximation
as a static Fermi sea. In this case, the main effect of
the Fermi sea is to prevent the fermions in the Efimov
trimer from occupying the states already occupied by
the other fermions, owing to the Pauli exclusion be-
tween identical fermions. This idea has been explored
in the works of Refs. [359, 360, 361]. Generally speak-
ing, the Pauli exclusion tends to reduce the binding of
the Efimov trimer. For a large enough density of the
Fermi seas, the Efimov trimer eventually disappears.
The successive disappearances of the different excited
Efimov states as the density is increased follow a scaling
law with the universal scaling ratio eπ/|s0| [359, 361].
Interestingly, the trimers can survive at positive en-
ergy, as a “Cooper triples”, in analogy with the Cooper
pairs [362], a fact emphasised in reference [360].

14.1.1 Two bosons and a fermion in a Fermi
sea

The first study on the influence of a Fermi sea on Efi-
mov states is that of Davis James MacNeill and Fei
Zhou [359]. They considered two heavy bosons of mass
M immerged in a sea of light fermions of mass m,
assuming a resonant pairwise interaction between the
bosons and the fermions. If the sea was composed of
a single fermion, we know from section 6.2.1 that Efi-
mov trimers exist and can be interpreted in the Born-
Oppenheimer picture (see section 6.2.4) as the bind-
ing of the two bosons by the light fermion. The au-
thors thus used the Born-Oppenheimer approximation,
along with a semi-classical approximation, to calcu-
late the three-body spectrum with the constraint the
fermion cannot occupy states of momenta smaller than
the Fermi momentum kF of the Fermi sea. Since this
constraint breaks the translational invariance, the to-
tal momentum of the system does not simply shift the
energy of the spectrum. For simplicity, the authors re-
stricted their consideration to states of zero total mo-
mentum. For kF = 0, they retrieve the vacuum Efimov
states of section 6.2.4. Increasing kF results in an in-
crease of the trimer energies (a decrease of their bind-
ing energy). As a result, the infinite tower of Efimov
states is gradually pushed up, until the ground state
disappears in the scattering threshold. The successive
disappearances of Efimov states follow a scaling law
with the universal scaling ratio eπ/|s0|. The required
kF to observe this density dependence, however, seems
to be too large for cold-atom experiments with a large
mass imbalance [363].

14.1.2 Three fermions in a Fermi sea

A similar treatment for three kinds of fermions of equal
mass was done in the works of Nicolai Gayle Nygaard
and Nikolaj Thomas Zinner [361], and Patrick Nie-
mann and Hans-Werner Hammer [360]. The work of
reference [361] considered explicitly one Fermi sea as-
sociated with one of the three fermions, while the work
of reference [360] considered three Fermi seas of equal
Fermi momentum kF . In both works, the problem was
solved using the Skorniakov - Ter-Martirosian three-
body integral equation with the Pauli exclusion con-
straint from the static Fermi seas. The results are qual-
itatively the same as those of MacNeill and Zhou [359],
although the work of Niemann and Hammer [360] em-
phasises the existence of solutions at positive energies,
which they call “Cooper triples”, in analogy with the
Cooper pairs.

A limitation of the previous results is that the Fermi
seas are treated as static. In reality, the back action
of the particles on the Fermi seas can create particle-
hole excitations near the surface of the Fermi sea, an
effect called polarisation of the sea. The authors of
reference [359] estimated that the polarisation of the
sea would reduce even further the binding of the Efi-
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mov trimers. On the other hand, Charles J. M. Mathy
and co-workers [364] found in a somewhat different
system that the polarisation of the sea may on the
contrary enhance the stability of trimers. This work
considers the case of a trimer made of a light fermion
and two heavy fermions (known as Kartavtsev-Malykh
universal trimer, see section 6.2.5), surrounded by a
sea of identical heavy fermions. The authors used a
variational ansatz involving both the trimer and the
particle-hole excitation and found that the stability of
the trimer is enhanced by a moderate density of the
Fermi sea.

14.2 Efimov states in a condensate

14.2.1 Two impurities and a boson from a
BEC

The case of Efimov trimers in a BEC (Bose-Einstein
Condensate) has been considered by Nikolaj Thomas
Zinner in reference [365]. In that study, two heavy par-
ticles (impurities) resonantly interact with bosons from
a surrounding condensate of bosons. At low density, it
is known that one of the bosons can bind to two heavy
particles to form an Efimov trimer, which can be eas-
ily interpreted in the Born-Oppenheimer approxima-
tion, as detailed in section 6.2.4. The author of ref-
erence [365] thus used the Born-Oppenheimer approx-
imation to calculate the effective interaction between
the two heavy particles at fixed separations. To treat
the effect of the surrounding condensate, the author
used the Bogoliubov approach [366, 367] to describe
the bosons as a ground-state condensate with quasi-
particle excitations. The author then retained only
the coupling to quasi-particles, resulting in a three-
body problem for two heavy impurities and a quasi-
particle. Although the validity of this approximation is
not clear, it leads to results that are similar to those of
reference [359]. The resulting Born-Oppenheimer po-
tential between the two heavy impurities is influenced
by the medium at large separations R, on the order of
the coherence length ξ of the condensate. In this re-
gion, the bonding potential is reduced with respect to
the bonding potential in the absence of condensate (see
section 6.2.4 and figure 6.3), resulting in a faster decay.
This in turn reduces the binding of the Efimov states,
as in the case of a Fermi sea. However, in this theory,
the potential appears to be not defined beyond a cer-
tain separation R0 ≈ 0.5ξ, so that these preliminary
conclusions are to be confirmed by a more consistent
theory.

14.2.2 One impurity and two bosons from a
BEC

Systems of a single impurity atom resonantly interact-
ing with a Bose condensate have recently been realised
by two independent groups; one with potassium-39
atoms in two different hyperfine states by the group

of Jan Arlt at Aarhus University [368], and the other
one with a mixture of rubidium-87 and potassium-
40 by the group of Eric Cornell and Deborah Jin at
JILA [369]. Efimov states may appear in these systems
since two identical bosons can bind with the impurity
to form an Efimov trimer, as discussed in section 6.2.1.
This possibility was explicitly taken into account for
the impurity-BEC system in the work of Jesper Levin-
sen, Meera M. Parish, and Georg M. Bruun [370], by
constructing a variational ansatz that includes up to
two Bogoliubov excitations of the BEC. This allows
to take into account the three-body correlations of the
impurity with two bosons of the condensate. If one
includes only two-body correlations, the resulting vari-
ational ground-state is a “Bose polaron”, i.e. the im-
purity is dressed by the surrounding condensate and,
as the impurity-boson interaction is increased, progres-
sively binds with one of the bosons to form a dimer sur-
rounded by the remaining bosons. By contrast, taking
into account three-body correlations, the Bose polaron
instead turns into a trimer composed of the impurity
bound to two bosons and surrounded by the remain-
ing bosons. The authors indicate that this state may
be seen as the avoided crossing between the two-body
correlated polaron with the vacuum ground-state Efi-
mov trimer composed of the impurity and two bosons.
In the experiments [368, 369], such an avoided cross-
ing could not be observed since the Efimov trimers
are much larger than the mean atomic distance, but
it would appear if one can prepare a gas with much
smaller density. Interestingly, the energy of the trimer
dressed by the medium is lower than that of the vac-
uum trimer, showing that in this case the surrounding
condensate stabilises the Efimov trimer.

Given these results, it would be tempting to think
that by taking a larger number of Bogoliubov excita-
tions, one could couple the polaron to universal clus-
ters similar to those discussed in section 13.2, such as
a tetramer formed of three bosons and the impurity.
While this is certainly to be expected, the authors of
reference [370] argue that the couplings to these clus-
ters would be smaller than that to the trimer, and
possibly negligible. Their argument is that the repul-
sive interaction between the bosons tend to reduce the
coupling between the polaron and universal clusters.
They checked that the coupling to the trimer is in-
deed reduced when the scattering length aB between
the bosons is increased, relative to the scattering length
a− between a boson and the impurity at which the
trimer appears. Since universal clusters are expected
to appear at scattering lengths between a boson and
the impurity that are even smaller than |a−|, they ex-
pect that the reduction of the coupling is comparatively
stronger for larger clusters. Luis Aldemar Peña Ardila
and Stefano Giorgini have also arrived at a similar con-
clusion with a quantum Monte Carlo calculation [371].
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15 Many-body phases

15.1 Identical bosons

Since it became possible to adjust the scattering
length of ultra-cold atoms close to unitarity thanks to
magnetic Feshbach resonances, experimentalists have
hoped to realise the unitary Bose gas, an intriguing
strongly-correlated system which theorists have been
excited about for many years [372, 373, 374, 375, 376,
377, 378, 379]. In particular, some theorists have won-
dered about the role of Efimov physics in such a gas,
and how it can be described by the three-body param-
eter of the atoms, unlike the unitary Fermi gas which
has no microscopic length scale. Unfortunately, when
the scattering length is tuned to large values, ultra-
cold bosonic gases are found to be unstable because
of enhanced loss by recombination of the atoms into
the many bound states that exist for atomic interac-
tions. It is for this reason that Efimov trimers in ultra-
cold gases have been evidenced essentially through fea-
tures in these losses, rather than more direct oberva-
tions. Nevertheless a metastable unitary gas of den-
sity ρ and temperature T (or thermal de Broglie wave-
length λ = h/

√
2πmkBT ) can be prepared in the non-

degenerate regime ρλ3 � 1 [380], and it is possible
to observe the gas dynamics in the degenerate regime
ρλ3 & 1 [381]. Here we review some theoretical and
experimental works that attempt to reveal the role of
Efimov physics in an atomic Bose gas.

15.1.1 Three-body contact in a Bose gas

Shina Tan [382, 383, 384] has introduced a set of uni-
versal relations for the two-component Fermi gas that
relates its properties to the scattering length a be-
tween two different fermions through the strength of
two-particle short-range correlations, characterised by
an extensive quantity called the “contact” C2. This
quantity could be directly measured through radio-
frequency (rf) spectroscopy in a number of experi-
ments with ultra-cold atomic Fermi gases. The no-
tion of contact was generalised for bosons by several
authors [385, 386, 387, 388, 389]. It appears that, in
addition to the two-body contact, that gives the vari-
ation of energy E of the Bose gas with respect to the
scattering length a,

dE

da
=

~2

8πma2
C2,

the occurrence of Efimov physics for bosons requires
to introduce a three-body contact C3, that gives the
variation of energy with respect to the three-body pa-
rameter κ∗,

dE

dκ∗
=

~2κ2
∗

m
C3.

Contacts of the dilute Bose gas The rf response
of a Bose-Einstein condensate of rubidium-85 was re-
cently investigated experimentally at JILA [282]. The

three-body contact is expected to introduce in the rf re-
sponse a frequency dependence that is proportional to
C3 and has a log-periodicity that characterises Efimov
physics [388]. Although the contribution from the two-
body contact was clearly seen in the experiment, no
log-periodic contribution from the three-body contact
could be evidenced. This was explained by subsequent
calculations by D. Hudson Smith and co-workers in ref-
erence [389] which determined that for the dilute Bose
gas of volume V :

C2/V ≈ 16π2a2ρ2

C3/V ≈ 16π2(4π − 3
√

3)s0 cosh(πs0)

3 sinh3(πs0)
a4ρ3.

From this expression, the authors found that the value
of C3 is indeed too small to be observed in the experi-
ment.

Contact of the unitary Bose gas In a subsequent
experiment, the experimentalists at JILA were able
to measure the momentum distribution in their Bose-
Einstein condensate of rubidium at unitarity, before
the three-body losses set in and deplete the gas [381].
This distribution was found to saturate to a seem-
ingly universal distribution. The tail of this momen-
tum distribution is known to be related to the two-body
and three-body contacts [388, 386]. As in the rf spec-
troscopy case, the three-body contact introduces a con-
tribution which is proportional to C3 and has the Efi-
mov log-periodicity in momentum. From dimensional
analysis, D. Hudson Smith and co-workers [389] found
that for the unitary Bose gas,

C2/V ≈ αρ4/3

C3/V ≈ βρ5/3

By fitting the experimental measurement of the mo-
mentum distribution, assuming that the observed vari-
ations correspond to the log-periodic prediction for the
tail, the authors of reference [389] obtained α = 22(1)
and β = 2.1(1). Other theoretical works have made
predictions for the value of α, namely α = 10.3 [375],
α = 12 [390], and α = 9.02 [391]. The two-body
contact of the unitary Bose gas has also been calcu-
lated at finite temperature using a three-body-cutoff
model [392] but the small values of the three-body con-
tact and β have proved difficult to obtain.

15.1.2 The non-degenerate unitary Bose gas

In the non-degenerate regime ρλ3 � 1, the equation
of state of the unitary Bose gas can be treated by the
so-called virial expansion [48, 393]:

Pλ3

kBT
=
∑
n≥1

an(ρλ3)n

where a1 = 1, a2, a3... are the virial coefficients. Be-
cause the third coefficient is related to three-body cor-
relations, it is expected to depend on Efimov physics.
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Yvan Castin and Félix Werner have studied the virial
coefficients at unitarity 1/a = 0 [394] and found an an-
alytical expression for the first virial coefficients in the
zero-range limit:

a2 = −
√

2
9

8

a3 =
81

8
− 6
√

3f(κ∗λ)

where κ∗ is the three-body parameter defined from the
ground-state trimer energy E0 = −~2κ2

∗/m - see sec-
tion 10.1, and the function f admits the low- and high-
temperature limits19:

f(κ∗λ) ' eE0/kBT for kBT � E0

f(κ∗λ) ' |s0|
2π

ln(eγ+2πC/|s0|E0/kBT ) for kBT � E0,

where C ' 0.648... and γ ' 0.577... is Euler’s constant.
At high temperature, the gas therefore exhibits a de-
pendence on temperature that has the log-periodicity
associated with Efimov physics. The authors however
noted that the validity of the zero-range model may
break down in this limit.

Away from unitarity, the second and third virial co-
efficients were recently calculated numerically in ref-
erence [396], as a function of the scattering length a
and three-body parameter κ∗. These numerical results
are consistent with the above analytical predictions at
unitarity.

15.1.3 The Efimov liquid phase

The degenerate regime ρλ3 & 1 of the unitary Bose gas
is more speculative since strong losses occur in experi-
ments with atoms. Nevertheless, the recent experimen-
tal achievement of reference [381] has raised hope for
the investigation of the degenerate unitary Bose gas.

The recent theoretical developments in few-body Efi-
mov physics indicate that bosons may form universal
excited N -body clusters governed by Efimov physics
- see section 12.2. Similar clusters exist below the
ground-state Efimov trimer, although they are not nec-
essarily universal. The tendency of bosons to cluster
near unitarity indicates that the system as a gas is
metastable. This raises questions about the ground
state of the system. The results of numerical investi-
gations of N -body clusters shown in figure 12.4 sug-
gest that the energy per particle tends to a negative
constant for large N , although this constant depends
strongly on the model. A negative constant energy per
particle would imply that the system becomes a liq-
uid for large N . Based on this idea, Swann Piatecki

19The calculation of the third virial coefficient has also been
generalised to the case of 2+1 fermions [395] and to the case of
2+1 bosons [300].

𝑘𝐵𝑇/𝜖
0 1

𝑃
ℏ
3
/

𝑚
3
𝜖
5

0.0

0.2

0.4 Superfluid 
Efimov liquid

Normal gas

BEC

Figure 15.1: Schematic phase diagram of unitary
bosons as a function of pressure and temperature nor-
malised by the binding energy per particle ε in the
Efimov liquid phase (adapted from the path-integral
Monte Carlo results of reference [379]). The value of ε
is related to the energy E0 of the ground-state Efimov
trimer at unitarity, although it appears to be model-
dependent (see figure 12.4). In the calculation of refer-
ence [379], ε ≈ 8|E0|.

and Werner Krauth [379] investigated the possibility
of a liquid phase in the unitary Bose system, using the
path-integral Monte Carlo method to numerically solve
the same model as that of reference [328], i.e. bosons
with two-body zero-range interactions and three-body
hard repulsive core. They obtain the phase diagram
shown in figure 15.1 for a homogeneous system. They
found indeed that for sufficiently low temperature and
pressure, the system becomes a liquid, which they call
the “superfluid Efimov liquid”. As expected, the den-
sity of this liquid is fixed by the trimer energy, i.e. the
three-body parameter. We should note that the model
is quantitatively different from that of zero-range inter-
actions or shallow van der Waals interactions, as can
be seen in figure 12.4. The obtained phase boundaries
are therefore likely to be neither universal nor quanti-
tative for a realistic atomic system. Moreover, it is yet
unclear how stable the Efimov liquid phase is in an re-
alistic atomic system, which interacts through deep van
der Waals potentials, since further decay would occur
to more deeply bound states.

Yet, the idea of an Efimov liquid, essentially bound
by the Efimov attraction is quite compelling. A par-
ticularly intriguing point is whether the discrete scale
invariance still holds in this many-body system, imply-
ing that excited metastable liquid phases of densities
smaller by factors of 22.73 ≈ 104 could exist, at least
in principle.
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15.2 Trimer phases in Fermi mixtures

As discussed in Section 6, the Efimov effect occurs
in multi-component Fermi systems, i.e. mixtures of
fermions of different kinds or with different spins that
interact resonantly. Efimov trimers or related univer-
sal trimers may therefore be formed in these systems.
A striking difference with bosonic systems, however, is
that it is more difficult for more than three fermions
to bind, due to the Pauli exclusion between identi-
cal fermions. As a result, a relatively stable phase of
trimers may appear under certain conditions in these
systems. Recent studies have started to investigate this
possibility.

15.2.1 Three-component Fermi mixtures

For fermions of equal masses, three kinds of fermions
are necessary to exhibit the Efimov effect. In the work
of Paulo Bedaque and José D’Incao [397], the zero-
temperature phase diagram of the equal-mass three-
component Fermi gas is sketched out qualitatively as a
function of the scattering lengths aij between the dif-
ferent components 1, 2, 3. Their reasonning is based
on how energetically favourable it is for certain com-
ponents to pair, and how the condensation of these
pairs at zero temperature gives different symmetries of
the order parameter, corresponding to different phases.
However, they note that, beyond pairing, Efimov three-
body physics should also be taken into account, in par-
ticular the resonant enhancement of fermion-pair scat-
tering at certain values of the scattering lengths ai. Ac-
cording to the authors, this would result in additional
phases where the pairs and fermions are spatially sep-
arated due this enhanced repulsion, instead of forming
a mixture.

In his work [298], Yusuke Nishida goes one step fur-
ther by explicitly considering the possibility of three
fermions to form a ground-state Efimov trimer to mi-
minise their energy. The zero temperature phase dia-
gram, as a function of the scattering length a (assumed
to be the same for all pairs of components) and the
three-body parameter, consists of three phases: a fully
paired supefluid, a partially paired superfluid with re-
maining unpaired fermions, and a trimer phase, which
is assumed to be a Fermi gas of ground-state trimers.
Nishida calculates the boundaries of these phases in
limits where they can be calculated exactly using a
narrow-resonance model parameterised by a and R∗
(see section 11.4):

� the high-density limit kFR∗ →∞ of the transition
between the fully paired superfluid and partially
paired superfluid,

� the dilute limit kFa → 0− of the transition be-
tween the superfluid and the trimer phase at neg-
ative scattering length a < 0, which is given by
equation (11.41) indicating the appearance of a
ground-state trimer

1/𝑎𝑘𝐹 +∞−∞
0

∞

𝑅
∗
𝑘
𝐹

Superfluid + Fermi gas of 
fermions

Fully paired Superfluid

Superfluid + Fermi 
gas of trimers

Fermi gas of 
trimers

Figure 15.2: Conjectured phase diagram of the three-
component Fermi mixture with Fermi momentum kF ,
for the same narrow scattering resonance, parame-
terised by a and R∗, between all pairs of fermions
(adapted from reference [298]).

� the dilute limit kFa → 0+ of the transition be-
tween the superfluid and trimer phase at positive
scattering length a > 0, which is obtained by com-
paring the energies of a Fermi gas of trimers and
a Bose-Einstein condensate of dimers.

Here, kF denotes the Fermi momentum of the sys-
tem. The schematic phase diagram is represented in
figure 15.2. The author confirmed the qualitative as-
pects of that diagram by solving a simple mean-field
model including the trimers as a non-interacting Fermi
gas. The author also pointed out that within the par-
tially paired superfluid phase, there occurs a “fermion-
trimer” continuity: the unpaired fermions gradually
turn into trimers by binding with pairs as kFR∗ is de-
creased. This effect is anologous to the quark-hadron
continuity in nuclear matter. A qualitatively similar
phase diagram is expected for broad resonances, where

in general the three-body parameter κ
(0)
∗ plays the role

of R−1
∗ .

We note that in a previous work [273] Yusuke Nishida
also conjectured the existence of a trimer phase in a
two-component Fermi gas where one component is free
and the other is confined in two separate layers, making
the system resemble a three-component system since
the fermions confined in the different layers are distin-
guishable. As seen in section 9, this situation leads
to the Efimov effect for one free particle resonantly
interacting with two particles confined in different lay-
ers. Near this resonance, it is therefore expected that
the ground-state Efimov trimer leads to a trimer phase
at sufficiently low density, as in the three-component
Fermi gas.
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15.2.2 Two-component Fermi mixtures

In mass-imbalanced two-component Fermi systems,
Efimov trimers exist when the mass ratio between
heavy and light fermions exceeds κ

(3)
c = 13.606..., as

seen in sections 6.2.2 and 6.2.5. However, it is challeng-
ing to observe many-body physics induced by these Efi-
mov trimers in ultra-cold atom experiments, because
such Efimov trimers, when made of atoms, are unsta-
ble against recombination into an atom plus a tightly
bound dimer (see section 15.1). On the other hand, the
universal trimers, which are remnants of the Efimov
trimers in the range of mass ratios κ1 = 8.17260... <

M/m < κ
(3)
c , are stable against three-body recombina-

tion thanks to the repulsion created by the Pauli exclu-
sion principle (see section 6.2.5). Therefore, a gas com-
posed of the universal trimers seems to be a promising
candidate to observe a stable Efimov-induced many-
body phase in ultra-cold atoms.

Such a possibility has been studied in Refs. [398]
and [399]. Considering the mass ratio κ1 < M/m <
8.862... to avoid the formation of universal tetramers
(see Ref [353, 357] and section 13.2.2), a stable many-
body phase of the universal trimers has been predicted
to exist in a range of scattering lengths and population
imbalance between heavy and light fermions. When
the scattering length is small and positive so that the
binding energy of the universal trimer is large enough,
the trimer can be regarded as a point-like composite
fermion, having three internal degrees of freedom orig-
inating from its angular momentum L = 1. The trimer
gas thus becomes a three-component Fermi gas, each
component corresponding to one of the three rotational
states, m = −1, 0, 1. Since the s-wave interaction be-
tween the universal trimers would be the dominant in-
teraction of the trimer phase at low energy, the au-
thors have found that its low-energy effective Hamil-
tonian has an SU(3) symmetry. Furthermore, in ref-
erence [399], the Resonating Group Method was used
to obtain an estimate of the interaction between the
two universal trimers. The interaction was found to
be of the soft-core repulsion type, leading to a positive
s-wave scattering length for the trimer-trimer scatter-
ing. This would imply that the corresponding trimer
phase, in the limit of low density and low temperature,
is not superfluid, but a three-component, SU(3) Fermi
liquid [398].

We should note that the existence and nature of this
trimer phase await further confirmation, since the cru-
cial assumption about the absence of larger clusters
(e.g. pentamers, hexamers) has not been precisely val-
idated, and the method used to determine the trimer-
trimer interaction is only approximate. While the mass
ratio window 8.17... < M/m < 8.862 seems rather re-
strictive, an ultra-cold mixture of 53Cr and 6Li atoms
falls into this window (M/m = 8.80..) and is a promis-
ing candidate to confirm the existence and investigate
the properties of this trimer phase. We should note
however that several points may affect the existence

of a trimer phase in this mixture. First of all, the
mass ratio of 53Cr and 6Li atoms happens to be very
close to the critical mass ratio for the appearance of
a universal four-body bound state. This suggests that
the p-wave atom-trimer scattering volume is likely to
be strongly enhanced in this system, similarly to the
enhanced atom-dimer p-wave scattering observed in a
fermionic 40K-6Li mixture [186, 191, 192]. Second, be-
low a certain scattering length, effective-range correc-
tions and magnetic dipole-dipole interactions between
53Cr atoms may not be negligible [398].
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Part VII

Conclusion

The Efimov effect, in its most restrictive definition (see
section 4.5), could be simply regarded as an oddity
in the energy spectrum of three particles with short-
range interactions. On the other hand, it could be
argued that the Efimov effect is on the contrary a cen-
tral concept around which a wide range of strongly-
interacting systems may be described. Such is the case
of long-studied systems such as the tritium nucleus
or two-neutron halo nuclei in nuclear physics (see sec-
tions 4.6 and 6.4), or the triatomic molecule of helium-4
in atomic physics (see section 4.7). Even though these
systems may not be recognised as Efimov states in
the strictest sense, the Efimov effect provides a simple
framework for the existence of such compounds. The
recent experimental observations with ultra-cold atoms
and theoretical developments have now opened an even
richer variety of systems related to Efimov physics,

from N -body universal clusters tied to Efimov states,
to the super-Efimov effect, or mixed-dimensional Efi-
mov states. Perhaps one of the key points of Efimov
physics is to shift the paradigm of two-body correla-
tions in pairwise interacting systems to three-body cor-
relations due, or partly due, to the Efimov attraction.
In this regard, what we have learnt from Efimov physics
appears to be quite promising for the study of many-
body systems where such three-body correlations may
play an important role.
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Appendix: the
Skorniakov -
Ter-Martirosian
equation
In section 4.1, the problem of three identical bosons
interacting via zero-range forces was solved using
the Faddeev equations in hyper-spherical coordinates.
That approach has the advantage of revealing the
Efimov effect in a transparent manner, and provides
some analytic results. For the purpose of solving the
problem numerically, however, it is often preferred to
use integral equations in momentum space. These
equations were first derived by G. V. Skorniakov and
Karen A Ter-Martirosian [19], and take advantage of
the contact nature of the interaction to reduce the di-
mensionality of the problem. In general, the three-
body problem requires 3d coordinates in d dimensions.
For translationally invariant systems, one can eliminate
d coordinates associated with the centre of mass. With
contact interactions, the number of coordinates can be
further reduced by d. Additional rotational invariance
may further reduce the remaining d coordinates to just
one, making the problem easy to solve numerically.

It turns out that contact interactions are not nec-
essary to obtain such simplification. It is sufficient to
have a separable interaction, which enables to treat
finite-range effects. In this appendix, we derive the
Skorniakov - Ter-Martirosian equation for three identi-
cal bosons interacting via a separable interaction; the
zero-range equation can be obtained by considering the
limit when the separable interaction becomes a contact
interaction.

Separable interaction

A separable interaction [80] is represented by an oper-
ator of the form:

V̂ = ξ|φ〉〈φ|, (15.1)

which is a projector onto a “state” |φ〉 multiplied by
a scalar ξ. When applied to a two-body state |ψ〉, it
gives in momentum representation:

〈~p|V̂ |ψ〉 = ξ〈~p|φ〉〈φ|ψ〉 = ξφ(~p)

∫
d3~p

(2π)3
φ∗(~p)ψ(~p)

(15.2)
where ~p denotes the relative wave vector between two
particles. Note that for later convenience, we use the
same notation ~p for the integration variable: it should
be understood that all occurences of ~p inside the in-
tegral refer to the integration variable. To make the
choice of ξ unique for a given V̂ , the function φ is nor-
malised such that φ(~0) = 1.

Two-body problem

The two-body Schrödinger equation in momentum
space reads:(

~2p2

m
− E

)
ψ(~p) + ξφ(~p)〈φ|ψ〉 = 0 (15.3)

For scattering states ψ~k with an incoming wave vec-

tor ~k, the previous equation can be written as

ψ~k(~p) = (2π)2δ3(~p− ~k)−
m
~2 ξφ(~p)

p2 − k2 + iε
〈φ|ψ~k〉 (15.4)

with E = ~2k2/m and ε → 0+. In this equation, one
can recognise the T -matrix element:

T (~k, ~p) = 〈~p|V |ψ~k〉 = ξφ(~p)〈φ|ψ~k〉 (15.5)

Projecting equation (15.4) onto φ, one gets a closed
equation for 〈φ|ψ~k〉 which gives the straightforward so-
lution,

〈φ|ψ~k〉 =

(
1 +

m

~2
ξ

∫
d3~p

(2π)3

|φ(~p)|2

p2 − k2 + iε

)−1

φ∗(~k),

(15.6)

from which one obtains T (~k, ~p),

T (~k, ~p) =

(
1

ξ
+
m

~2

∫
d3~p′

(2π)3

|φ(~p′)|2

p′2 − k2 + iε

)−1

φ(~p)φ∗(~k)

(15.7)
This relation can be used to express the parameters ξ
and φ of the separable potential in terms of physical
quantities such as the scattering length a:

4π~2

m
a = T (~0,~0) =

(
1

ξ
+
m

~2

∫
d3~p′

(2π)3

|φ(~p′)|2

p′2

)−1

(15.8)

Three-body problem

The three-body problem is expressed in a particular
Jacobi wave vector set (~P , ~p) chosen among the three

possible sets (~Pk, ~pk),

~Pk =
2

3

(
~kk −

~ki + ~kj
2

)
(15.9)

~pk =
1

2
(~kj − ~ki) (15.10)

where (i, j, k) is a cyclic permutation of (1, 2, 3) and ~ki
is the wave vector of the ith particle. In these coordi-
nates, the three-body Schrödinger equation reads:(

3

4

~2

m
P 2 +

~2

m
p2 − E

)
Ψ(~P , ~p)

+
∑

i=1,2,3

ξφ(~pi)

∫
d3~pi
(2π)3

φ∗(~pi)Ψ(~P , ~p) = 0, (15.11)
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where the first term is associated with the kinetic en-
ergy, and the second term is the sum of the action
of the separable interaction on the wave function Ψ
over the three pairs 12, 23, and 31. Because of the
bosonic exchange symmetry, Ψ(~P , ~p) can be replaced

by Ψ(~Pi, ~pi) inside the integral of equation (15.11). As
in equation (15.2), it should be understood that ~pi in-
side this integral refers to the integration variable, such
that the integral term, once integrated, depends only
the remaining Jacobi wave vector ~Pi. One can thus
write:(

3

4
P 2 + p2 − m

~2
E

)
Ψ(~P , ~p) +

∑
i=1,2,3

F (~Pi)φ(~pi) = 0,

(15.12)
where

F (~P ) =
m

~2
ξ

∫
d3~p

(2π)3
φ∗(~p)Ψ(~P , ~p). (15.13)

Equation (15.12) can be inverted as

Ψ(~P , ~p) = Ψ0(~P , ~p)−
∑

i=1,2,3

F (~Pi)φ(~pi)
3
4P

2 + p2 − m
~2E + iε

,

(15.14)
where ε→ 0+. For three-body scattering states, E ≥ 0
and Ψ0 is a solution of the non-interacting problem for
three particles at that energy, providing the asymptotic
boundary condition. For states with at least two bound
particles, one has Ψ0 = 0. In the remainder, we will
restrict our consideration to the latter case. Inserting
equation (15.14) into equation (15.13) gives:

~2

mξ
F (~P ) = −

∑
i=1,2,3

∫
d3~p

(2π)3
φ∗(p)

F (~Pi)φ(~pi)
3
4P

2 + p2 − m
~2E + iε

.

(15.15)

Making the choice (~P , ~p) = (~P3, ~p3), one can factorise
one of the terms in the sum with the left-hand side of
equation (15.15) as follows:(

~2

mξ
+

∫
d3~p

(2π)3

|φ(~p)|2
3
4P

2 + p2 − m
~2E + iε

)
F (~P )

+
∑
i=1,2

∫
d3~p

(2π)3
φ∗(~p)

F (~Pi)φ(~pi)
3
4P

2 + p2 − m
~2E + iε

= 0.

(15.16)

Expressing the Jacobi coordinate sets (~P1, ~p1) and

(~P2, ~p2) in terms of (~P , ~p), one finds

~P1 = −~p− 1

2
~P (15.17)

~p1 = −1

2
~p+

3

4
~P (15.18)

and

~P2 = ~p− 1

2
~P (15.19)

~p2 = −1

2
~p− 3

4
~P (15.20)

so that ~p = −~P1 − 1
2
~P = ~P2 + 1

2
~P and therefore ~p1 =

1
2
~P1 + ~P and ~p2 = − 1

2
~P2 − ~P . Performing a change

of integration variable ~p → ~P1 and ~p → ~P2 in the first
and second integrals of the sum, and relabelling the

integration variable as ~Q in both integrals, one finally
arrives at the integral equation for F :

~2

m

|φ(~k)|2

T (~k,~k)
F (~P ) +

∫
d3 ~Q

(2π)3
φ∗(− ~Q− ~P

2
)φ(

~Q
2

+ ~P ) + φ∗( ~Q+
~P
2

)φ(− ~Q
2
− ~P )

P 2 +Q2 + ~Q · ~P − mE
~2

F ( ~Q)

= 0
(15.21)

where the wave vector ~k corresponds to the energy
~2k2

m = E − 3
4
~2P 2

m . This integral equation on F con-
stitutes the Skorniakov - Ter-Martirosian equation for
three identical bosons interacting via a separable inter-
action. The remarkable point of this equation is that
it replaces the original three-body Schrödinger equa-
tion (15.11) for the unknown function Ψ(~P , ~p) of two
three-dimensional variables by an equation on a func-
tion of only one three-dimensional variable, which is
not possible for a general interaction. For a rotation-
ally invariant system, the equation can be reduced to
independent equations for each partial wave F`(P ) that

depends only on the one-dimensional variable P = |~P |.
In order to solve equation (15.21) numerically to ob-
tain the three-body bound states, one writes the left-
hand side of equation (15.21) as a matrix acting on F
(through a discretisation scheme or spectral method)
and looks for the energies E < 0 that make one of
its eigenvalues equal to zero, in order to satisfy the
right-hand side of equation (15.21). The correspond-
ing eigenvectors F give the three-body wave functions
Ψ through equation (15.14).

Generalisations

The Skorniakov - Ter-Martirosian equation can be gen-
eralised to distinguishable, fermionic or any mixture of
particles. In general, there are three functions Fi

Fi(~Pi) =
m

~2
ξ

∫
d3~pi
(2π)3

φ∗(~pi)Ψ(~P , ~p) (15.22)

to describe the three pairs of particles, and they are so-
lutions of three coupled integral equations [245]. The
interaction can also be generalised to multi-channel in-
teraction [119, 400, 79]. There have also been general-
isations to the relativistic case - see section 4.4.

Zero-range limit

The zero-range limit can be obtained by setting φ(~p)
to a constant φ(~p) = 1. In this limit, the separable
potential is just a constant ξ in momentum space, cor-
responding to a delta function in real space. However,
this limit gives rise to an ultraviolet divergence of the
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integrals. These divergences can be cured by impos-
ing a momentum cutoff Λ and renormalising ξ in terms
of the physical scattering length a. Formally, this is
equivalent to setting φ(~p) = θ(Λ − p) in the formulas,
where θ denotes the unit step function. The integral
equation (15.21) thus becomes,

~2

m

1

T (~k,~k)
F (~P )

+2

∫
|~Q+

~P
2 |<Λ

|~P+
~Q
2 |<Λ

d3 ~Q

(2π)3

F ( ~Q)

P 2 +Q2 + ~Q · ~P − mE
~2

= 0.

(15.23)

The equation (15.8) gives the renormalisation rela-
tion:

1

a
=

4π~2

m

1

ξ
+

2

π
Λ. (15.24)

From this relation, one can express the T -matrix ele-
ments:

T (~k, ~p) =
m

4π~2

(
1

a
− 2

π

√
−k2 arctan

Λ√
−k2

)−1
θ(Λ−k)θ(Λ−p)

(15.25)

For sufficiently large Λ, the on-shell two- body T -
matrix element approaches

T (~k,~k) ≈ m

4π~2

(
1

a
−
√
−k2

)−1

, (15.26)

and the restriction | ~Q+
~P
2 | < Λ and |~P +

~Q
2 | < Λ over

the integration volume can be approximated by Q < Λ.
This results in the simplified equation,(

1

a
−
√

3

4
P 2 − m

~2
E

)
F (~P )

+8π

∫
Q<Λ

d3 ~Q

(2π)3

F ( ~Q)

P 2 +Q2 + ~Q · ~P − mE
~2

= 0.

(15.27)

which is the original equation derived by G. V. Skorni-
akov and K. A. Ter-Martirosian [19]. A remarkable
point of this equation is that the two-body physics
enters only through the on-shell T -matrix elements
T (~k,~k) and the cutoff Λ. In general, for non-separable

interactions, the off-shell T -matrix elements T (~k, ~p)
would be required. Here, all the off-shell information
is captured by the cutoff Λ, as can be checked from the
expression of T (~k, ~p) in equation (15.25). This infor-
mation is however essential for the three-body problem,
and Λ cannot be set to infinity in the above integral,
as the results would not converge but exhibit logarith-
mic oscillations with Λ. It is the large but finite value
of Λ that sets the three-body parameter of the Efi-
mov states. Because of the discrete scale invariance
discussed in the Efimov theory (see section 4.1), scal-
ing the value of Λ by powers of eπ/|s0| gives the same
three-body parameters and the same observables.

It should be noted that the impossibility to take Λ
to infinity is due to the fact that only two-body inter-
actions have been assumed. The three-body parame-
ter may also be fixed by a three-body force. Adding
a Λ-dependent zero-range three-body interaction can
cancel the dependence of the observables on Λ, mak-
ing it possible to take the limit Λ → ∞ [53, 6]. The
renormalised observables then depends on the two-
body scattering length a and a three-body parameter
introduced by the three-body interaction.

Finite-range effects

The choice of the parameters ξ and φ(~p) of the sepa-
rable potential in equation (15.1) depends on the sys-
tem and observables of interest. In the windows of
universality shown in figure 4.3, the observables de-
pend only the two-body scattering length a and the
three-body parameter κ∗. To calculate these univer-
sal observables, any choice of ξ and φ(~p) leading to
a desired a and κ∗ is possible. The most common
choices are the zero-range limit φ(~p) = θ(Λ − p) de-
scribed above, and the Gaussian separable potential
with φ(~p) = exp(−Λ2p2) [119, 400, 79], since they lead
to analytical simplifications and simple relations be-
tween the physical quantities (a, κ∗) and the parame-
ters (ξ,Λ).

On the other hand, to calculate observables outside
the universal region, that are affected by finite-range
corrections, a more precise choice of the parameters
is needed. As discussed in section 4.2, the interest of
separable potential models over zero-range models is
that they can account for the finite-range effects non-
perturbatively. Indeed, separable potential models can
be parameterised to reproduce exactly the two-body
scattering length and effective range, i.e. reproduce ex-
actly the low-energy two-body observables. Even when
the scattering length and effective range are fixed, there
remains some freedom to parameterise the separable
potential, and the precise choice of the separable poten-
tial can change the value of the three-body parameter.
As discussed in section 11.3, the three-body parameter
is to a great extent (although not completely) set by
the effective range, so that many separable potentials
(such as Gaussian) having the correct scattering length
and effective range already give a rough estimate of the
three-body energies beyond the zero-range limit.

If one has further information on the two-body inter-
action, such as off-shell T -matrix elements or a model
potential for the interaction20, one may construct an
even more precise separable potential by fully exploit-
ing its parameter space. Namely, a separable potential
V̂ can be designed to reproduce exactly an eigenstate
|ψ〉 at a given energy E of a given local potential V . It

20which are strictly speaking not two-body observables, but
may be known to model accurately the interaction of certain
particles.
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has the form [290]:

V̂ =
1

〈ψ|V |ψ〉
V |ψ〉〈ψ|V. (15.28)

which shows that the action of V̂ onto |ψ〉 is indeed the
same as V , thus ensuring that |ψ〉 is also an eigenstate
of V̂ at the same energy. If |ψ〉 is chosen to be the zero-
energy scattering eigenstate, the separable potential
has by construction the correct scattering length and
correct effective range. Indeed, the scattering length is
given by the asymptotic form of the zero-energy radial
wave function ϕ(r) = rψ(~r) (see equation 4.8):

ϕ(r) −−−→
r→∞

ϕ̄(r) = 1− r

a

and the effective range re is obtained from ϕ through
the formula [70],

1

2
re =

∫ ∞
0

dr
[
ϕ̄(r)2 − ϕ(r)2

]
.

In this case, the separable potential of equa-
tion (15.28) has the explicit parameterisation [39, 82]:

φ(p) = 1− p
∫ ∞

0

dr (ϕ̄(r)− ϕ(r)) sin pr (15.29)

and ξ is given by equation (15.8),

ξ =
4π~2

m

(
1

a
− 2

π

∫ ∞
0

dp|φ(p)|2
)−1

(15.30)

This separable representation was shown to repro-
duce approximately the three-body energies of the orig-
inal potential [82], and in particular the three-body
parameters of van der Waals potentials [39] - see sec-
tion 11.2.1.

As an example, we have constructed such a separa-
ble potential for helium-4, using the zero-energy eigen-
state obtained from the scaled LM2M2 potential of ref-
erence [123], as solved for the ground-state energy as
a function of scattering length (varied by scaling the
LM2M2 potential). The obtained energy is shown as a
dotted curve in figure 4.7.

Note that the representation of a given potential in
terms of a separable potential was generalised by Ernst,
Shakin and Thaler (EST) [290], who have shown that
any local potential V can be represented exactly as a
superposition of non-local separable potentials.

Integral equations for the triton

We present here the separable model of the triton, first
introduced by Kharchenko [207] and used to calculate
the surfaces and curves of figure 6.6. This model de-
scribes the triplet and singlet interactions of nucleons
by separable potentials of the form,

V̂t = ξt|φt〉〈φt|
V̂s = ξs|φs〉〈φs|

leading to the following integral equations:

[
1

at
+

2

π

∫ ∞
0

dp|φt(~p)|2
(

p2

3
4P

2 + p2 − m
~2E

− 1

)]
Ft(k)

+4π

∫
d3 ~Q

(2π)3

1
2I
tt
~k,~k′

Ft(Q) + 3
2I
ts
~k,~k′

Fs(Q)

P 2 +Q2 + ~P · ~Q− mE
~2

= 0

(15.31)

[
1

as
+

2

π

∫ ∞
0

dp|φs(~p)|2
(

p2

3
4P

2 + p2 − m
~2E

− 1

)]
Fs(k)

+4π

∫
d3 ~Q

(2π)3

3
2I
st
~k,~k′

Ft(Q) + 1
2I
ss
~k,~k′

Fs(Q)

P 2 +Q2 + ~P · ~Q− mE
~2

= 0

(15.32)

where

Iij~k,~k′
= φ∗i (| ~Q+

1

2
~P |)φj(|~P +

1

2
~Q|).

The functions φt and φs are obtained from the zero-
energy parameterisation of equation (15.29) where ϕ(r)
is the two-body radial wave function,

ϕ(r) =
r0

a

(
Qλ(0)

Pλ(0)
Pλ(tanh r/r0)−Qλ(tanh r/r0)

)

of the zero-energy scattering eigenstate for the Pöschl-
Teller potential,

V (r) = −~2

m
λ(λ+ 1)sech2(r/r0),

with the scattering length

a = r0

(
Qλ(0)

Pλ(0)
+Hλ

)
,

where Pλ(x) and Qλ(x) designate the Legendre poly-

nomials and Hλ =
∫ 1

0
1−tλ
1−t dt is the harmonic number,

which is equal to
∑λ
n=1

1
n for integral values of λ.

For φt (respectively φs), the parameters r0 and λ
are chosen to reproduce the triplet scattering length
at = 5.4112 fm (respectively the singlet scattering
length as = −23.7148 fm) and the triplet effective
range re,t = 1.7436 fm (respectively the singlet effec-
tive range re,s = 2.750 fm ). The values are taken from
reference [205]. To obtain the surfaces and curves of
figure 6.6, both at and as were varied away from their
physical values.
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“Anomalous commutator algebra for conformal
quantum mechanics.” Phys. Rev. D, 67, 045018,
Feb 2003.

[63] E. Braaten, H.-W. Hammer, and M. Kusunoki,
“Universal equation for Efimov states.” Phys.
Rev. A, 67, 022505, Feb 2003.

[64] Y. Wang, J. P. D’Incao, H.-C. Nägerl, and B. D.
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Schöffler, R. E. Grisenti, T. Jahnke, and
R. Dörner, “Imaging the structure of the
trimer systems 4He3 and 3He4He2.” Nature
Communications, 5, 2014.

[122] R. Higa, H.-W. Hammer, and U. van Kolck, “αα
scattering in halo effective field theory.” Nuclear
Physics A, 809, 171 – 188, 2008.

[123] R. A. Aziz and M. J. Slaman, “An examination
of abinitio results for the helium potential energy
curve.” The Journal of Chemical Physics, 94,
8047–8053, 1991.

[124] S. Ali and A. Bodmer, “Phenomenological α− α
potentials.” Nuclear Physics, 80, 99 – 112, 1966.

[125] H. Suno, Y. Suzuki, and P. Descouvemont,
“Triple − α continuum structure and Hoyle
resonance of 12C using the hyperspherical slow
variable discretization.” Phys. Rev. C, 91,
014004, Jan 2015.

[126] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga,
“Feshbach resonances in ultracold gases.” Rev.
Mod. Phys., 82, 1225–1286, Apr 2010.

[127] T. Cornelius and W. Glöckle, “Efimov states for
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Wenz, G. ZÃŒrn, and S. Jochim, “Radio-
Frequency Association of Efimov Trimers.”
Science, 330, 940–944, 2010.

[241] J. Huckans, J. Williams, E. Hazlett, R. Stites,
and K. O’Hara, “Three-Body Recombination in
a Three-State Fermi Gas with Widely Tunable
Interactions.” Phys. Rev. Lett., 102, 165302, Apr
2009.

[242] J. Williams, E. Hazlett, J. Huckans, R. Stites,
Y. Zhang, and K. O’Hara, “Evidence for
an Excited-State Efimov Trimer in a Three-
Component Fermi Gas.” Phys. Rev. Lett., 103,
130404, Sep 2009.

[243] E. Braaten, H.-W. Hammer, D. Kang, and
L. Platter, “Three-Body Recombination of 6Li
Atoms with Large Negative Scattering Lengths.”
Phys. Rev. Lett., 103, 073202, Aug 2009.

[244] P. Naidon and M. Ueda, “Possible Efimov Trimer
State in a Three-Hyperfine-Component Lithium-
6 Mixture.” Phys. Rev. Lett., 103, 073203, Aug
2009.

[245] E. Braaten, H. W. Hammer, D. Kang, and
L. Platter, “Efimov physics in 6Li atoms.” Phys.
Rev. A, 81, 013605, Jan 2010.

[246] A. Wenz, T. Lompe, T. Ottenstein, F. Serwane,
G. Zürn, and S. Jochim, “Universal trimer in a
three-component Fermi gas.” Phys. Rev. A, 80,
040702, Oct 2009.

[247] S. T. Rittenhouse, “Magnetic-field dependence
and Efimov resonance broadening in ultracold
three-body recombination.” Phys. Rev. A, 81,
040701, Apr 2010.

[248] B. Huang, K. M. O’Hara, R. Grimm, J. M. Hut-
son, and D. S. Petrov, “Three-body parameter
for Efimov states in 6Li.” Phys. Rev. A, 90,
043636, Oct 2014.

[249] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim,
P. S. Julienne, and J. M. Hutson, “Precise
Characterization of 6Li Feshbach Resonances
Using Trap-Sideband-Resolved RF Spectroscopy
of Weakly Bound Molecules.” Phys. Rev. Lett.,
110, 135301, Mar 2013.

[250] L. W. Bruch and J. A. Tjon, “Binding of three
identical bosons in two dimensions.” Phys. Rev.
A, 19, 425–432, Feb 1979.

[251] T. K. Lim and P. A. Maurone, “Nonexistence of
the Efimov effect in two dimensions.” Phys. Rev.
B, 22, 1467–1469, Aug 1980.

91

http://link.aps.org/doi/10.1103/PhysRevC.88.024610
http://link.aps.org/doi/10.1103/PhysRevC.88.024610
http://link.aps.org/doi/10.1103/PhysRevLett.111.105301
http://link.aps.org/doi/10.1103/PhysRevLett.111.105301
http://link.aps.org/doi/10.1103/PhysRevA.90.013619
http://link.aps.org/doi/10.1103/PhysRevA.90.013619
https://arxiv.org/abs/1610.07900
https://arxiv.org/abs/1610.07900
http://link.aps.org/doi/10.1103/PhysRevLett.109.243201
http://link.aps.org/doi/10.1103/PhysRevLett.109.243201
http://link.aps.org/doi/10.1103/PhysRevLett.103.043201
http://link.aps.org/doi/10.1103/PhysRevLett.103.043201
http://link.aps.org/doi/10.1103/PhysRevLett.100.143201
http://link.aps.org/doi/10.1103/PhysRevLett.100.143201
http://link.aps.org/doi/10.1103/PhysRevLett.117.163201
http://link.aps.org/doi/10.1103/PhysRevLett.117.163201
http://link.aps.org/doi/10.1103/PhysRevLett.115.043201
http://link.aps.org/doi/10.1103/PhysRevLett.115.043201
http://link.aps.org/doi/10.1103/PhysRevLett.101.203202
http://link.aps.org/doi/10.1103/PhysRevLett.101.203202
http://link.aps.org/doi/10.1103/PhysRevLett.105.103201
http://www.sciencemag.org/content/330/6006/940.abstract
http://link.aps.org/doi/10.1103/PhysRevLett.102.165302
http://link.aps.org/doi/10.1103/PhysRevLett.102.165302
http://link.aps.org/doi/10.1103/PhysRevLett.103.130404
http://link.aps.org/doi/10.1103/PhysRevLett.103.130404
http://link.aps.org/doi/10.1103/PhysRevLett.103.073202
http://link.aps.org/doi/10.1103/PhysRevLett.103.073203
http://link.aps.org/doi/10.1103/PhysRevLett.103.073203
http://link.aps.org/doi/10.1103/PhysRevA.81.013605
http://link.aps.org/doi/10.1103/PhysRevA.81.013605
http://link.aps.org/doi/10.1103/PhysRevA.80.040702
http://link.aps.org/doi/10.1103/PhysRevA.80.040702
http://link.aps.org/doi/10.1103/PhysRevA.81.040701
http://link.aps.org/doi/10.1103/PhysRevA.81.040701
http://link.aps.org/doi/10.1103/PhysRevA.90.043636
http://link.aps.org/doi/10.1103/PhysRevA.90.043636
http://link.aps.org/doi/10.1103/PhysRevLett.110.135301
http://link.aps.org/doi/10.1103/PhysRevLett.110.135301
http://link.aps.org/doi/10.1103/PhysRevA.19.425
http://link.aps.org/doi/10.1103/PhysRevA.19.425
http://link.aps.org/doi/10.1103/PhysRevB.22.1467
http://link.aps.org/doi/10.1103/PhysRevB.22.1467


[252] S. Vugal’ter and G. Zhislin, “On finiteness of
the discrete spectrum of the energy operators
of multiatomic molecules.” Theoretical and
Mathematical Physics, 55, 357–365, 1983.

[253] E. H. Lieb and W. Liniger, “Exact Analysis
of an Interacting Bose Gas. I. The General
Solution and the Ground State.” Phys. Rev.,
130, 1605–1616, May 1963.

[254] J. B. McGuire, “Study of Exactly Soluble
One-Dimensional N-Body Problems.” Journal of
Mathematical Physics, 5, 622–636, 1964.

[255] O. Kartavtsev, A. Malykh, and S. Sofianos,
“Bound states and scattering lengths of three
two-component particles with zero-range in-
teractions under one-dimensional confinement.”
Journal of Experimental and Theoretical Physics,
108, 365–373, 2009.

[256] M. Girardeau, “Relationship between Systems
of Impenetrable Bosons and Fermions in One
Dimension.” Journal of Mathematical Physics,
1, 516–523, 1960.

[257] Y. Nishida and D. T. Son, “Universal four-
component Fermi gas in one dimension.” Phys.
Rev. A, 82, 043606, Oct 2010.

[258] H.-W. Hammer and D. T. Son, “Universal
Properties of Two-Dimensional Boson Droplets.”
Phys. Rev. Lett., 93, 250408, Dec 2004.

[259] O. I. Kartavtsev and A. V. Malykh, “Universal
low-energy properties of three two-dimensional
bosons.” Phys. Rev. A, 74, 042506, Oct 2006.

[260] L. Platter, H.-W. Hammer, and U.-G. Meißner,
“Universal Properties of the Four-Boson System
in Two Dimensions.” Few-Body Systems, 35,
169–174, 2004.

[261] L. Pricoupenko and P. Pedri, “Universal (1 + 2)-
body bound states in planar atomic waveguides.”
Phys. Rev. A, 82, 033625, Sep 2010.

[262] F. F. Bellotti, T. Frederico, M. T. Yamashita,
D. V. Fedorov, A. S. Jensen, and N. T. Zinner,
“Scaling and universality in two dimensions:
three-body bound states with short-ranged
interactions.” Journal of Physics B: Atomic,
Molecular and Optical Physics, 44, 205302,
2011.

[263] I. Bloch, “Ultracold quantum gases in optical
lattices.” Nature Physics, 1, 23–30, Oct 2005.

[264] J. Levinsen, P. Massignan, and M. M. Parish,
“Efimov Trimers under Strong Confinement.”
Phys. Rev. X, 4, 031020, Jul 2014.

[265] D. S. Petrov and G. V. Shlyapnikov,“Interatomic
collisions in a tightly confined Bose gas.” Phys.
Rev. A, 64, 012706, Jun 2001.

[266] J. Levinsen and M. M. Parish, “Bound States
in a Quasi-Two-Dimensional Fermi Gas.” Phys.
Rev. Lett., 110, 055304, Jan 2013.

[267] M. T. Yamashita, F. F. Bellotti, T. Frederico,
D. V. Fedorov, A. S. Jensen, and N. T. Zinner,
“Weakly bound states of two- and three-boson
systems in the crossover from two to three
dimensions.” Journal of Physics B: Atomic,
Molecular and Optical Physics, 48, 025302,
2015.

[268] S. Lammers, I. Boettcher, and C. Wetterich, “Di-
mensional crossover of nonrelativistic bosons.”
Phys. Rev. A, 93, 063631, Jun 2016.

[269] Y. Nishida and S. Tan, “Universal Fermi Gases
in Mixed Dimensions.” Phys. Rev. Lett., 101,
170401, Oct 2008.

[270] Y. Nishida and S. Tan, “Liberating Efimov
Physics from Three Dimensions.” Few-Body
Systems, 51, 191–206, 2011.

[271] Z. Nussinov and S. Nussinov, “Triviality of
the BCS-BEC crossover in extended dimensions:
Implications for the ground state energy.” Phys.
Rev. A, 74, 053622, Nov 2006.

[272] Y. Nishida and S. Tan, “Confinement-induced
Efimov resonances in Fermi-Fermi mixtures.”
Phys. Rev. A, 79, 060701, Jun 2009.

[273] Y. Nishida, “Phases of a bilayer Fermi gas.”
Phys. Rev. A, 82, 011605, Jul 2010.

[274] T. Yin, P. Zhang, and W. Zhang, “Stable
heteronuclear few-atom bound states in mixed
dimensions.” Phys. Rev. A, 84, 052727, Nov
2011.

[275] G. Lamporesi, J. Catani, G. Barontini,
Y. Nishida, M. Inguscio, and F. Minardi,
“Scattering in Mixed Dimensions with Ultracold
Gases.” Phys. Rev. Lett., 104, 153202, Apr 2010.

[276] F. Minardi, G. Barontini, J. Catani, G. Lam-
poresi, Y. Nishida, and M. Inguscio, “Bose-Bose
mixtures in reduced dimensions.” Journal of
Physics: Conference Series, 264, 012016, 2011.

[277] A. Gogolin, C. Mora, and R. Egger, “Analytical
Solution of the Bosonic Three-Body Problem.”
Phys. Rev. Lett., 100, 140404, Apr 2008.

[278] V. Flambaum, G. Gribakin, and C. Harabati,
“Analytical calculation of cold-atom scattering.”
Phys. Rev. A, 59, 1998–2005, Mar 1999.

92

http://dx.doi.org/10.1007/BF01019022
http://dx.doi.org/10.1007/BF01019022
http://link.aps.org/doi/10.1103/PhysRev.130.1605
http://link.aps.org/doi/10.1103/PhysRev.130.1605
http://scitation.aip.org/content/aip/journal/jmp/5/5/10.1063/1.1704156
http://scitation.aip.org/content/aip/journal/jmp/5/5/10.1063/1.1704156
http://dx.doi.org/10.1134/S1063776109030017
http://dx.doi.org/10.1134/S1063776109030017
http://scitation.aip.org/content/aip/journal/jmp/1/6/10.1063/1.1703687
http://scitation.aip.org/content/aip/journal/jmp/1/6/10.1063/1.1703687
http://link.aps.org/doi/10.1103/PhysRevA.82.043606
http://link.aps.org/doi/10.1103/PhysRevA.82.043606
http://link.aps.org/doi/10.1103/PhysRevLett.93.250408
http://link.aps.org/doi/10.1103/PhysRevA.74.042506
http://dx.doi.org/10.1007/s00601-004-0065-z
http://dx.doi.org/10.1007/s00601-004-0065-z
http://link.aps.org/doi/10.1103/PhysRevA.82.033625
http://stacks.iop.org/0953-4075/44/i=20/a=205302
http://stacks.iop.org/0953-4075/44/i=20/a=205302
http://stacks.iop.org/0953-4075/44/i=20/a=205302
http://dx.doi.org/10.1038/nphys138
http://link.aps.org/doi/10.1103/PhysRevX.4.031020
http://link.aps.org/doi/10.1103/PhysRevA.64.012706
http://link.aps.org/doi/10.1103/PhysRevA.64.012706
http://link.aps.org/doi/10.1103/PhysRevLett.110.055304
http://link.aps.org/doi/10.1103/PhysRevLett.110.055304
http://stacks.iop.org/0953-4075/48/i=2/a=025302
http://stacks.iop.org/0953-4075/48/i=2/a=025302
http://stacks.iop.org/0953-4075/48/i=2/a=025302
http://link.aps.org/doi/10.1103/PhysRevA.93.063631
http://link.aps.org/doi/10.1103/PhysRevLett.101.170401
http://link.aps.org/doi/10.1103/PhysRevLett.101.170401
http://dx.doi.org/10.1007/s00601-011-0243-8
http://dx.doi.org/10.1007/s00601-011-0243-8
http://link.aps.org/doi/10.1103/PhysRevA.74.053622
http://link.aps.org/doi/10.1103/PhysRevA.74.053622
http://link.aps.org/doi/10.1103/PhysRevA.79.060701
http://link.aps.org/doi/10.1103/PhysRevA.82.011605
http://link.aps.org/doi/10.1103/PhysRevA.84.052727
http://link.aps.org/doi/10.1103/PhysRevA.84.052727
http://link.aps.org/doi/10.1103/PhysRevLett.104.153202
http://stacks.iop.org/1742-6596/264/i=1/a=012016
http://stacks.iop.org/1742-6596/264/i=1/a=012016
http://link.aps.org/doi/10.1103/PhysRevLett.100.140404
http://link.aps.org/doi/10.1103/PhysRevA.59.1998


[279] S. Moszkowski, S. Fleck, A. Krikeb, L. Theußl,
J.-M. Richard, and K. Varga, “Binding three or
four bosons without bound subsystems.” Phys.
Rev. A, 62, 032504, Aug 2000.

[280] J. P. D’Incao, C. H. Greene, and B. D.
Esry, “The short-range three-body phase and
other issues impacting the observation of Efimov
physics in ultracold quantum gases.” Journal
of Physics B: Atomic, Molecular and Optical
Physics, 42, 044016, 2009.

[281] N. Gross, Z. Shotan, S. Kokkelmans,
and L. Khaykovich, “Nuclear-Spin-Independent
Short-Range Three-Body Physics in Ultracold
Atoms.” Phys. Rev. Lett., 105, 103203, Sep 2010.

[282] R. J. Wild, P. Makotyn, J. M. Pino, E. A.
Cornell, and D. S. Jin, “Measurements of
Tan’s Contact in an Atomic Bose-Einstein
Condensate.” Phys. Rev. Lett., 108, 145305, Apr
2012.

[283] S. Knoop, J. Borbely, W. Vassen, and S. Kokkel-
mans, “Universal three-body parameter in
ultracold 4He∗.” Phys. Rev. A, 86, 062705, Dec
2012.

[284] C. Chin, “Universal scaling of Efimov res-
onance positions in cold atom systems.”
arXiv:1111.1484, 2011.

[285] E. Hiyama and M. Kamimura, “Universality in
Efimov-associated tetramers in 4He.” Phys. Rev.
A, 90, 052514, Nov 2014.

[286] D. Blume, “Efimov Physics and the Three-Body
Parameter for Shallow van der Waals Potentials.”
Few-Body Systems, 56, 859–867, 2015.

[287] J. E. Jones, “On the Determination of Molecu-
lar Fields. II. From the Equation of State of a
Gas,” Proceedings of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering
Sciences, 106, 463–477, 1924.

[288] P. Sørensen, D. Fedorov, A. Jensen, and
N. Zinner, “Efimov physics and the three-body
parameter within a two-channel framework.”
Phys. Rev. A, 86, 052516, Nov 2012.

[289] B. M. Axilrod and E. Teller, “Interaction of the
van der Waals Type Between Three Atoms.”
The Journal of Chemical Physics, 11, 299–300,
1943.

[290] D. Ernst, C. Shakin, and R. Thaler, “Separa-
ble Representations of Two-Body Interactions.”
Phys. Rev. C, 8, 46–52, Jul 1973.

[291] G. F. Gribakin and V. V. Flambaum, “Calcula-
tion of the scattering length in atomic collisions
using the semiclassical approximation.” Phys.
Rev. A, 48, 546–553, Jul 1993.

[292] B. Gao, “Quantum-defect theory of atomic
collisions and molecular vibration spectra.”
Phys. Rev. A, 58, 4222–4225, Nov 1998.
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