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Background: In our previous study, we found that an exotic isomer with mgcshape may exist in the high-spin, highly
excited states of°Ca. Thez component of the total angular momentuda,= 60 7, of this torus isomer is constructed by
aligning totally twelve single-particle angular momentathie direction of the symmetry axis of the density distritwt The
torus isomer executes precession motion with the rigid/bndments of inertia about an axis perpendicular to the sytmyme
axis. The investigation, however, has been focused onf{@a.

Purpose: We systematically investigate the existence of exoticsigamers and their precession motions for a seriésofZ
even-even nuclei frorffSi to 56Ni. We analyze the microscopic shell structure of the tosasrier and discuss why the torus
shape is generated beyond the limit of large oblate defdomat

Method: We use the cranked three-dimensional Hartree-Fock (HF)@detvith various Skyrme interactions in a systematic
search for high-spin torus isomers. We use the three-diimsisime-dependent Hartree-Fock (TDHF) method for desuy

the precession motion of the torus isomer.

Results: We obtain high-spin torus isomers®ar, 4°Ca,*Ti, “6Cr, and®?Fe. The emergence of the torus isomers is associated
with the alignments of single-particle angular momentaicWlis the same mechanism as found*@a. It is found that all

the obtained torus isomers execute the precession motiteasit two rotational periods. The moment of inertia about a
perpendicular axis, which characterizes the precessidiomas found to be close to the classical rigid-body value.

Conclusions: The high-spin torus isomer 6fCa is not an exceptional case. Similar torus isomers exihwin nuclei from
36Ar to 52Fe and they execute the precession motion. The torus shgpaésated beyond the limit of large oblate deformation
by eliminating the 8 components from all the deformed single-particle wave fions to maximize their mutual overlaps.

PACS numbers: 21.60.Jz, 21.60.Ev, 27+40.

I. INTRODUCTION symmetry axis is quantum-mechanically forbidden. Thia+ot
tional degree of freedom causes the precession motion of the

Nuclear rotation is a key phenomenon to study the fundaSyStem as a whole. Then, an interesting q_uestion arises how
uch a “femto-scale magnet” rotates collectively to restbe

mental properties of finite many-body quantum systems. | i .
particular, the rotation about the symmetzydxis produces a roken symmetry about a perpendicular axis.
unigue quantum object with its density distribution of ausr A physical quantity characterizing such a collective rota-
shape, as shown in our previous studies*f@a [1,/2]. Ina tion is the moment of inertia about a perpendicular axis. It
classical picture for such rotation the oblate deformatien  has been theoretically recognized that an independetitigar
velops with increasing rotational frequency due to thergjro configuration in a deformed harmonic-oscillator potential
centrifugal force |[3]. However, such a collective rotation tates with the rigid-body moment of inertia when the self-
about the symmetry axis is quantum-mechanically forbiddenconsistency between the mean-field potential and the gensit
Instead, it is possible to construct extremely high-spitest  is fulfilled [7]. However, measured moments of inertia foe th
by aligning individual angular momenta of single-particle- =~ case of the precession motion of prolately deformed nuclei
tion in the direction of the symmetry axis [4, 5]. are often much smaller than the rigid-body values even when
A drastic example is a high-spin torus isomerd¢a [i], ~ Pairing correlations are negligible! [8, 9]. This is becaoe
where totally twelve single particles with the orbital atayu ~ Shell gfects in highK prolate isomers [8]. Although preces-
momentaA = +4, +5, and+6 align in the direction of the Sion modes of highk oblate isomers have not been observed

Symmetry axis and Construczazomponent of the total angu- yet, their moments of inertia would be much reduced from the
lar momentum ofl, = 60#. Thus, a “macroscopic” amount igid-body values due to oblate shell structures at smadrele

of circulating current emerges in the torus isomer statéghvh - mations|[10].

may be regarded as a fascinating new form of the nuclear mat- From these observations, it might be conjectured that the
ter suggested by Bohr and Mottelsoh [6]. moment of inertia about a perpendicular axis for the torus
Another important kind of rotation is a collective motion isomer also significantly deviates from the classical Fgid
that restores the symmetry spontaneously broken in the selbody value, because the torus isomer is a unique quantum
consistent mean field. The density distribution of the torusobject characterized by the alignment of angular momenta of
isomer largely breaks the symmetry about aor(y) axis per-  independent-particle motions. Itis thus surprising thatrho-
pendicular to the symmetry axis [2]. Below, we call this axisment of inertia about a perpendicular axis, evaluated wvigh t
a perpendicular axis. Thus, the torus isomer can rotatetabou time-dependent Hatree-Fock (TDHF) method, from the rota-
perpendicular axis, although the collective rotation daliba  tional period of the precession motion of the torus isomer in
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40Ca takes a value close to the classical rigid-body value [2]. Il. THEORETICAL FRAMEWORK
We analyzed the microscopic structure of the precession mo-
tion by using the random-phase approximation (RPA) method. A. Cranked HF calculation

In the RPA calculation, the precession motion of the toras is
mer is generated by a coherent superposition of many one-
particle-one-hole excitations across the sloping Fermfase.
We found that the precession motion obtained by the TDH
calculation is a pure collective motion well decoupled from
other collective modes. In our previous studies, however, w
focused only on the torus isomer¥Ca. It is thus important
to investigate whether torus isomers exist also in othefenuc
and the properties of the precession motion found there al
universal or not.

To investigate systematically the existence of high-spin
Igorus isomer states in a wide range of nuclei, we use the
cranked three-dimensional Skyrme HF method. To build
high-spin states rotating about the symmetry axis of the den
sity distribution ¢ axis), we add a Lagrange multiplies,

to the HF HamiltonianH. Then, the fective HF Hamilto-
rJ%ian, H’, is written asH’ = H — wJ,, whereJ, denotes the

Z component of the total angular momentum. We minimize
this dfective HF Hamiltonian with a given Lagrange multi-

In this paper, we first perform a systematic investigation ofPli€r, which is equivalent to the cranked HF equation givign b

the high-spin torus isomers for a serieshf= Z even-even ¢ {H - sz} =0.
nuclei from?8Si to*6Ni. We show that the high-spin torusiso-  For this purpose, we slightly modify the coflky3d. The
mer of4°Ca is not an exceptional case. About forty years agogetails of the code are given in Ref. [13]. In the code, the
Wong suggested, using a macroscopic-microscopic methodjngle-particle wave functions are described on a Cartesia
the possible existence of torus isomers at highly excitagst grid with a grid spacing of 1.0 fm, which is a good approx-
of a wide region of nuclel [12]. Quite recently, Staszczall an imation for not only bound states but also unbound states in
Wong systematically explored the existence of torus issmercontrast to the harmonic-oscillator basis expansion. \ke ta
using the constrained cranked Hartree-Fock (HF) method an82 x 32 x 24 grid points for thex, y, andz directions, re-
found some torus isomers at highly excited states in severajpectively. This is sfliciently accurate to provide converged
nuclei [11]. However, they use the harmonic-oscillator ba-configurations. The damped-gradient iteration method i 4]
sis expansion method, which is ifBaient to treat unbound used, and all derivatives are calculated with the Fouréersy
states. It is therefore flicult to examine the stability of the formation method.
torus isomers against the nucleon emission in their calcula In the calculation, we use the SLy6, SkI3, and SkM
tion, although some of them would contain single partiches i Skyrme forces to check the interaction dependence of the call
unbound states. culated results. Thesdfective interactions were well con-
structed based on nuclear bulk properties bffedin details;

We then perform a systematic TDHF calculation to investi-SLy6 as a fit which includes information on isotopic trends
gate the properties of the precession motion. For all the-hig and neutron matter [15], SkI3 as a fit taking into account the
spin torus isomers obtained by the cranked HF calculatien, wrelativistic isovector properties of the spin-orbit forfde],
find the periodic solutions of the TDHF equation of motion, and SkM as a widely used traditional standard![17]. How-
which describe the precession motions. Among them, the presver, except for thefective mass, the bulk properties (equi-
cession motion of the 6@torus isomer of°Ca is particularly  [ibrium energy and density, incompressibility, and synmyet
stable and continues for many periods. energy) are comparable to each other. In the energy density

] o functional, we omit terms depending on the spin density, be-

To understand the microscopic origin of appearance of th@ayse it may be necessary to extend the standard form of the
torus isomers, we analyze the process during which the shedlkyrme interaction in order to properly take into accouet th
structure of the large oblate shape and that of the tOfUSESha%pin-denSity dependentfects [18] (see also a reviel [19]),

grow up from that of the spherical shape. Using the radiyt such @ects are inessential to the torus isomers.
ally displaced harmonic-oscillator (RDHO) model [12] and

the oblately deformed harmonic-oscillator potential, we fi
nally discuss why the lowestsGcomponents disappear from
all the single-particle wave functions of the occupiedestat
and how a large ‘hole’ region is created in the center of the
nucleus to generate the torus shape. In the cranked HF calculations, we first search for stable
torus configurations in a series dbf = Z even-even nuclei
This paper is organized as follows: In Section Il, we de-from?28Sito°6 Ni. We use, as an initial configuration of the HF
scribe the theoretical framework and parameters of the nuzalculation, arw-cluster ring configuration placed on they
merical calculation. In Section Ill, we present resultsttg t plane, as shown in Fig. 1 of Refl [1]. Thecluster wave func-
systematic calculation for static and dynamical propertie  tion is described by a Gaussian function with the width of 1.8
the high-spin torus isomers including their precession mofm. The center positions of the Gaussian functions are dlace
tions. In Section IV, we analyze microscopic shell struetur equiangularly along a circle with a radius of 6.5 fm on the
of the torus isomers and discuss the reason why the torus,y) plane. Only for the calculations 6fFe with the SkM
shape emerges beyond the limit of large oblate deformatiorinteraction, we use a radius of 7.55 fm and a width of 1.63
Finally, we summarize our studies in Section V. fm. Using these initial configurations, we perform 15,000 HF

B. Setting of initial configurations
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iterations. We search for stable torus solutions varyirigpm  surface are occupied. They are expected to be more stable
0.5 to 2.5 MeVr with a step of 0.1 MeYs. After these cal- than other aligned configurations involving particle-hele
culations, we check the convergence of the total enerdies, t citations across the sloping Fermi surface. Before cagryin
density distributions, and the total angular momenta. & th out the cranked HF calculations, we can easily presume can-
calculations of the excitation energies, we subtract tiiex  didates of optimally aligned torus configurations. Since th
tation value of the center-of-mass motion in both the grounceffects of the spin-orbit potential are negligibly weak in the
and the torus isomer states. torus configurations, not onk§ but also thez component of

We next calculate all single-particle states includingstho the orbital angular momentum, are good quantum numbers
above the Fermi energy. To calculate those, we use, ad initigQ = A + X, whereX denotes the component of the spin,
wave functions of the HF calculation, the single-particevey ~ +1/2) [1]. Single-particle states having the safealue with
functions of the RDHO model [12]. This model is a good different spin directions are approximately degenerated and
approximation to the mean-field of torus-shaped isomers. Isimultaneously occupied . Thus, the lowest-energy cordigur
this model, the single-particle potential is given by tions for the torus shapesat= 0 areA = 0, 1, +2, and+3
for 2Si, A = 0, +1, +2, +3, and+4 or -4 for 3S,A = 0, +1,
.., x4 for 3Ar, A = 0, 1, ---, +4, and+5 or -5 for *°Ca,
A=0,%1,---, +5for*Ti, A =0, £1,---, +5, and+6 or -6

H denotes th | h lator f for*8Cr,A = 0, +1,---, +6 for>2Fe, andA = 0, £1,- - -, +6,
where m denotes the nucleon massy the oscillator fre- 70" - ¢ sy

quencyy andzthe radial and thecomponents of the cylindri- a0 ce irfoca possible aligned configurations at
cal coordinate system, afRj the radius parameter of the torus + 0 are (i)A = 0 41 - 44 and45 for J. = 20k
shape. Since the radial wave function of the lowest energy in_ S LT z - .
the RDHO model is described by a shifted Gaussian functioa__Sg >-<+12 izplfgdi%egiﬁfﬁir(ﬁsofggh?ngghe;afg]z’](")
with the widthd = VA/mwg, we determineyg from the radius ana (ii’i)_A,—_O’ 11’ +2’+3 LA 45 -T-G_ and+; for 1, = 10@;

gf a cr(cj)ss seqtiog orf]atorﬁsr:ing.l Tbhei ‘PF’“m?' V?'“M”d =25 2;2]' I_-|o'v;e\’/er \,/ve (':oul’d n(;t obtain stabzle_HF solu-

are determined through the global investigation mentione - S X :

above. Using this initial?:onditi?)n and a valu%(mj‘ obtained .|onsfo.r the conf|gqr.a.t|ons(|) and .(”'): the ce_ntrlfugarte IS
by the global investigation, we perform the HF iteration ove insufficient for stabilizing the configuration (i), while the last

4 ; - occupied single-particle state with = 7 is unbound for the
20000 times and calculate the single-particle states upeo t configuration (iii). Indeed, we confirmed that the torus isom
40th for both protons and neutrons.

configuration (iii) withJ, = 1007 slowly decays. In the sys-
tematic calculations, it is oftenfiicult to discuss the stability

of torus isomers when such unbound states are included. To
avoid this dfficulty, in this paper, we focus on torus configu-
rations without involving unbound single-particle states

V(r,2) = %mwg(r - Ro)? + %mwgzz, (1)

C. Sloping Fermi surface

It is important to note that the cranking termvJ, does not
change the single-particle wave functions for rotationuabo
the symmetry axis. Thus, it is useful to introduce the con-
cept of “sloping” Fermi surface. As usual, the single-paeti
Hamiltonian is given byd’ = 3, (A —w],"), wheref; and 5,
denote the mean-field Hamiltonian and #feomponent of the
total angular momentum for each single particle, respeigtiv
The eigenvalue o’ is written asE’ = Y;i[(g — 1) — AiwQi],

E. TDHF calculation for the precession motion

For the stable torus isomers obtained above, we performed
TDHF calculations to investigate their precession motions
The time evolution of the density distribution is deternuogy
. solving the TDHF equation of motiarip = [H, p]. When an
whered denotes the_Ferml energy at= 0. The symk_Jolsa. impulsive force is provided in a direction perpendiculattte
a”‘i%i denote Fhe smgle.-partlcle.energy a”q the e'ge.nvalugymmetry axis at = 0, the torus isomer starts to execute the
of j,, respectively. By introducing the sloping Fermi sur- precession motion. This precession motion is associatéd wi
face defined byl'(Q) = 1 + hwQ, we can rewriteE’ as 3 rotation about a perpendicular axis, i.e., an axis pelipand
E" = Yila - '(Q)}. Therefore, aligned configurations can |ar to the symmetry axis. In Ref.|[2], we already showed that
be easily constructed by plotting the single-particle gi®sr  this precession motion is a pure collective motion to restor
as a function of2 and tilting the Fermi surface in the.Q)  the broken symmetry and well described as coherent super-
plane. It is important to note that the valuewfto specify  positions of many 1p-1h excitations across the sloping Ferm
an aligned configuration is not unique. As we can immedi-syrface. We investigate whether other torus isomers also ex
ately see in Figs. 3-7 below, individual configurations do no cyte the precession motion well decoupled from other collec
change for a finite range of. tive modes and whether their moments of inertia are close to

the rigid-body values or not. In this way, we can also cheek th
stability of the obtained torus isomers against given irapel
D. Optimally aligned torus configurations forces.
Figure[1 illustrates the schematic picture of the precessio

Let us focus on optimally aligned torus configurationsmotion. Att = 0, the torus isomer is placed on the plane

where all the single-particle states below the sloping Fermwith the angular momentuid (= J;) along thez axis in the



TABLE |. Stable torus isomers obtained in the cranked HFdalc
tion with various Skyrme interactions. The excitation gyeEey, is
measured from the ground state. The calculated densityldisons
are fitted to the Gaussian functip(r, 2) = poe[-R)*Z]/%* and the
resulting values of the parameteps, Ry, andd, are listed. The sym-
bols, 7 andﬂu”", denote the rigid-body moments of inertia for the
rotations about a perpendicular and the symmetry axesscteply.

System J,  Ee po R d g 7
(h) (MeV) (fm=3) (fm) (fm) (2/MeV) (#*/MeV)
(SLy6)
%Ar 36 123.89 0.137 5.12 1.62 14.3 26.4

FIE. 1% ScheRmfat[ig]pi:_t#rebchthel_p:jr?_ces(sjion rtnotit%n of tdxutg;rs 0ca 60 169.71 0129 6.07 1.61 21.0 396
taken from Ref. . € Dold solld line denotes the symm .
of the density distribution. The dashed line denotes %/heqmégsn ::T' 44 15157 0.137 6.30 1.61 24.6 46.5
axis. The symbolg8 and¢ denote the tilting and the rotational angles, Cr 72 19125 0.132 7.19 1.60 33.8 64.7
respectively. 2Fe 52 183.70 0.138 7.47 160 39.1 75.1

(SkI3)

38Ar 36 125.15 0.146 5.01 1.58 13.7 25.3

laboratory frame. When an impulsive force is provided inthe 4%ca 60 173.52 0.138 5.90 158 19.9 375
negativex direction (the dotted line) at= 0, the total angular 4T 44 153.02 0.146 6.17 1.58 23.6 44.6
momentum become@(the dashed line). We call this vector 4cr 72 193.66 0.141 7.00 1.57 32.0 61.3
the precession axis. After that, the symmetry axis of the den s2r¢ 52 18370 0.147 7.31 157 375 71.9
sity distribution in the body-fixed frame (the bold solidén (SKM")
starts to rotate about.the precession axis Wlth the rotalteom BAr 36 12480 0131 516 1.65 146 26.9
_gleq?. In _the_pr_eces_smn motion, the v_alh_(es conse_r\_/ed and 0ca 60 167.84 0422 617 164 218 41.0
its direction is identical to the bold solid line. The tiljjrangle #Ti 44 15290 0131 6.36 164 251 475
6 is defined as the angle between the bold solid and the dashed, ' ' ' ' ' '
lines. Then, the moment of inertia for the rotation aboutra pe 5 r 72 19240 0125 7.30 1.63  34.9 66.7
pendicular axis, 7, , can be estimated b, = | /wprec, Where Fe 52 187.08 0.132 7.55 163  40.0 76.7

wprec denotes the rotational frequency of the precession mo-
tion. To build the first excited state of the precession nigtio
we provide an impulsive force such that the total angular moy, 447 for J, = 441, “8Cr for J, = 721, and52Fe forJ, = 52

mentum becomels= K +1. 7 with all the three Skyrme interactions used in this study.
To solve the TDHF equation, we use the cédy3d and  On the other hand, we have not found any stable torus iso-

take the Taylor expansion of the time-development operatofer jn 283j, 325, and®®Ni. In Fig.[3, we plot the total density

up to the 12th order. The setups of spatial grid points an@jistributions of the torus isomers obtained in the cranké&d H

interactions are the same as those of the cranked HF calculgg|culation with the SLy6 interaction.

tions described above. We start to perform calculation®ifro ¢ a1 density distribution of each of the torus isomers

the initigl density Qistribution obtained by the Cf?‘”"eq HFobtained in the cranked HF calculation is well fitted by the
calculations. The time step of the TDHF calculations is 0.2

: . : i i = poe L-Ro*+Z]/d?
fm/c. We calculate the time evolution until 3000 fm To Gaussian functiop(r.2) = poe » Wherepo, Ro,

X . ) . ; : andd denote the maximum value of the nucleon density, the
excite the precession motion, we provide an impulsive force

att = 0 by the external potential given Bye(r,¢,2) = radius of the torus ring, and the width of a cross sectionef th

22 . ; . torus ring, respectively. The resulting values of the paam
VozCoSp exp-(r RQ) /7. Th's. |mpuls|ye force gives an ters,po, Ro, andd, are tabulated in the middle part of Table
angular momentum in the negatixadirection att = 0. The

parametel, is chosen such that the total angular momentu we see that the valu% andql are almost constant for all
becomed = K + 1 he torus isomers. The interaction dependence of thesewalu

is weak. It is interesting that, in all the resultg, is smaller
than the saturation nuclear density4 ~ 0.17 fm=3) andd is
close to the width of an alpha particle used in Brink’sluster

lll. RESULTS OF CALCULATION model @, ~ 1.46 fm) [20].
_ _ Using the total density distribution, we also calculate the
A. Static properties rigid-body moments of inertia for rotation about a perpendi

ular axis, 7", and the symmetry axis7". The results are
We have carried out a systematic search for stable torus is@/so shown in Tablgl I. Later, we shall compare these values
mers for theN = Z even-even nuclei fror®Si to °6Ni. The  for 91"’ with those obtained by an analysis of the precession
result of the calculation is summarized in TaBle I. We obtainmotions in the TDHF time evolution.
the stable torus isomers{fAr for J, = 367, 4°Ca forJ, = 60 To investigate microscopic structures of the torus isomers
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we plot in Figs[#-F neutron single-particle energies vef3u Q

for each torus isomer calculated with the SLy6 interactlan.

the figures, the solid and the open circles denote the pesitiv FIG- 4. Single-particle energies versdor “°Ca. All symbols are

and negative-parity states, respectively. The gray areagh € same as in Figl 3.

plot denotes the occupied states. In each plot, we see that

the single-particle energies with the sameare almost de-

generate. This indicates that theets of the spin-orbit force S35Ar, A = 0, +1, +2, +3, +4,

are negligibly small and is approximately a good quantum for “°Ca,A = 0, +1,- - -, +4,+5,+6 [J, = 11/ x2 X 2 = 441i]

number in all the torus isomers. One may also notice that théor 44Ti, A = 0, +1, - , +4, +5,+6,+7[J, = 18 x2x 2 = 72

Kramer’s degeneracy for a pair of single-particle stateth wi #] for *8Cr, andA = 0, +1,--- , 5,46, +7 [J, = 13/ x2x 2 =

+A is lifted. This is due to the time-odd components (depen52 7] for 52Fe.

dent on the current density) of the cranked HF mean fields \ye can estimate from the figures a regioruofor which

associated with the macroscopic currents, which are pEEIUC gach of the torus isomers stably exists. This is done by deter

by the alignment of the single-particle angular momentawit mining the steepest and the most gradual slopes of the Fermi

large values oft. surface for which the occupied single-particle confignati
Because of the negligible spin-orbit splittings, the spin-remains the same. The results are plotted in[Big. 8. The,solid

orbit partners are always occupied simultaneously. Theeef dashed, and dotted lines denote the regions dr each of

the J; values of the optimally aligned configurations are easthe stable torus isomers obtained with the SLy6, Ski3, and

ily determined by summing up th& values of the occupied SkM* interactions, respectively. We see that the result does

single-particle states: they afe= 0, +1, +2, +3, +4,+5[J, = not strongly depend on the Skyrme interaction employed, al-

97 x2 (spin degeneracy2 (isospin degeneracy) 367] for  though the width is weakly dependent on it.

+4,+5,+6[J; = 157 x2 x 2 = 60#]
+
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B. Dynamic properties

FIG. 8. Regions ofv for which each of the torus isomers stably ex-
ists. The solid, dashed, and dotted lines denote the reslifslated
with the SLy6, SkI3, and SkMinteractions, respectively

stabilize the precession motion. We find that the precession
motions emerge also for other torus isomers and they are sta-

We carried out a systematic TDHF calculation for each ofble at least for two periods. After that, however, the tgtin
the torus isomers and found that that the TDHF time evolutiorangle gradually starts to fluctuate. Correspondingly, tha-r

of the density distribution is quite similar to that dispéalyin

tional angleg also starts to deviate from the linear time evo-

Fig. 2 of [2]. Figurd® shows the calculated time evolution oflution [see panel (c) in each plot]. We have also carried out
the precession motion for each of the torus isomers obtainesimilar TDHF calculations with the use of the Ski3 and SkM
with the SLy6 interaction. In each plot in Figl. 9, panels (a),interactions. The results are similar to those shown abowe f

(b), and (c) denote the total angular momentlinhe tilting

angle,6, and the rotational angle;, respectively. In panel

the SLy6 interaction, which implies that the propertiestaf t
precession motion are robust and depend on the choice of the

(a) in each plot, we can see that the total angular momentuiikyrme interaction only weakly.

is conserved very well. This indicates that the TDHF caleula To evaluate the moment of inertia for the rotation about a
tions are sfficiently accurate. We find that the precession mo-perpendicular axis, we take the average of the two periods
tion of the*°Ca torus isomer is especially stable [see panel (bjtarting fromt = 0 during which the precession motion is
in each plot], where the rotational angldineally increases especially stable. The results are tabulated in the thilicheo
with time, indicating that the rotation of the symmetry axis of Table[ll. Using these values, we calculate the frequerficy o
about the precession axis keeps a constant velocity throughe precession motion byprec = 27/ Tprec and the moment of

all the periods. This indicates that the strong shées re-
sponsible for the appearance of the torus isoméP@a also

inertia for the rotation about a perpendicular axisBy°"" =
| /wpree The results are tabulated in the forth and fifth columns
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FIG. 9. Time evolution of the precession motion for each eftitrus isomers frorfPAr to 5?Fe calculated by solving the TDHF equation of
motion for the SLy6 interaction. In each plot, panels (a), &nd (c) denote the total angular momentyrthe tilting angled, and the rotational
anguleg, respectively.

of Tableldl. The obtained moments of inertia are very close to IV. DISCUSSION
the rigid-body values tabulated in Talfle I for all the Skyrme
interactions employed. As discussed in Ref. [2], theseltesu
indicate that the precession motions under consideratien a
pure collective motions generated by coherent superpasiti
of many 1p-1h excitations across the sloping Fermi surface.

A. Radial density distributions of individual single-particle
states

Let us examine the radial density distributions of individ-
ual single-particle wave functions on tke= 0 plane for the
torus isomer of°Ca. For this purpose, we interpolate the den-
sity distributions described with a Cartesian coordinatée
cranked HF calculations by means of a third-order B-spline
function. After that, we transform those to a cylindricabco
dinate representatiomi[x,y) — pi(r, ¢)]. We then integrate



I
TABLE II. Results of the TDHF calculation for the precessioin- 0.03 | 7
tions of the torus isomers froffAr to *2Fe. The symbol denotes “ca (Cranked HF) .
the resulting total angular momentum after an impulsivedas pro- £
vided. The symboll . denotes the average over the two periods =
fromt = O for the precession motion. The symhoj.. denotes £  0.02
the precession frequency estimateddgyec = 27/Tpree. The sym- a
bol 7" denotes the moment of inertia for the rotation about a &
perpendicular axis estimated 8" = | /wprec a
—DHE 2 0.01
System | Torec Wprec T 2
) (MeV/h) (MeV) (*/MeV) g
(SLy6) I
S6Ar 37 450.1 2.75 13.5 0
“Ca 61 402.5 3.08 19.8 0.03 B
44T 45 651.0 1.90 23.7 o 40ca (RDHO) .
“Cr 73 554.5 2.24 326 E
52Fe 53 872.8 1.42 37.3 5 I
(Sk13) g o002 -
A 37 427.9 2.90 12.8 2
“Ca 61 378.6 3.28 18.6 8
44Tj 45 624.4 1.99 22.7 > o001 i
48Cr 73 524.5 2.36 30.9 2
52Fe 53 839.0 1.48 35.9 8
(SkM")
S6Ar 37 464.2 2.67 13.9 0
“Ca 61 418.2 2.96 20.6 15
a4 45 666.1 1.86 24.2 r(fm)
48Cr 73 572.8 2.16 33.7 . . L L . .
52Fa 53 894.8 139 38.3 FIG. 10. Radial density distributions of individual singlarticle

states on the = 0 plane for*°Ca obtained by the cranked HF cal-
culations (upper panel) and the RDHO model (lower pannele T
densities for the direction in cylindrical coordinates are integrated.

0i(r, ¢) in the ¢ direction and obtaip;(r). The calculated re-
sults are plotted in the upper panel of Figl 10.

As shown in Refs.[[1,/2], the RDHO model can describenotice that some radial density distributions with high an-
well the microscopic structures of torus isomers. To itatt ~ gular momentum slightly shift due to the spin-orbit poten-
this, we solve the Schrodinger equation with the RDHO podial. In Fig.[4, the degeneracy of single-particle energiih
tential, Eq. (1), by means of the deformed harmonic-ogoilla the same high\ is indeed slightly broken for the spin-orbit
basis expansion and calculaiér). In the calculation, we take partner withQ™ = 9/2™ and 1¥2” (A = 5) and that with
R, = 6.07 fm andd = 1.61 fm for the RDHO model and Q" = 11/2" and 132" (A = 6). These spin-orbitféects are
the same aligned single-particle configuration as thatieieta ~absentin the RDHO model.
by the cranked HF calculation f6fCa. The obtained radial
density distributions of the individual single-partictates are
plotted in the lower panel of Fig_10. Using these density B. Shell structure of torus nucleus
distributions, we calculate the rigid-body moments of iner
tia about a perpendicular axis and the symmetry axis: they Using the RDHO model, we next investigate shell struc-
are 7RPHO = 21 3 #?/MeV and 9”RDH° = 402 7?/MeV, re-  tures of a torus isomer and examine how single-particle con-
spectively. These values are in good agreement with thosigurations change from spherical to torus shapes. Figdre 11
obtained by the cranked HF calculation. shows a Nilsson diagram versus the paramgterR,/d for

In Fig.[10, it is clearly seen that the radial density distri-*°Ca. Aty = 0, the nuclear shape is spherical. At 4, a
butions of the individual single-particle states in the RDH torus shape is well developed, which is a size similar to that
model are quite similar to those obtained by the cranked Hbtained by the cranked HF calculations. Note that we take
calculations. In particular, the peak positions of eachalad into account volume conservation inside an equi-potestig!
density distribution are in good agreement between the twdéace of a torus isomer (see Ref. [12] and Appendix for the
calculations. As a matter of fact, the peak position of eachvolume conservation in & < 1). To eliminate the volume
density distribution shifts to a largerwith increasing orbital  effect, we plot the single-particle energies in unitag(n). In
angular momentum. Looking into details of the density dis-this figure, we slightly shift the single-particle energweith
tributions obtained by the cranked HF calculations, one mayigherQ in order to illustrate the degeneracy of the states.
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energies within the sambl/, shell are proportional to\2.
These two properties play an essential role in stabilizivey t
torus isomers when single particles are aligned in the tiinec
of the symmetry axis.

It is surprising that the single-particle shell structuféhe
RDHO model ayy = 4 is very similar to that of Fid.]5 obtained
by the cranked HF calculation. The RDHO model is therefore
a good approximation for describing the microscopic struc-
tures of the torus isomers.

C. Emergence of the torus shape beyond the limit of oblate
deformation

Lastly, let us discuss the reason why the torus nucleus
emerges beyond the limit of large oblate deformation. In the
spherical harmonic-oscillator potential, the radial wawec-
tion of the lowest single-particle state is given by a Gaarssi
function peaked at the center (the §tate): accordingly, the
L L L L central part of the total density distribution is quite $¢ab
0 1 2 3 4 Then, a question arises why such a stable and robust wave

_ function vanishes and how the torus shape emerges.
n=Ry/d : : .
To investigate why the $state disappears, we calculate the
single-particle energies for the deformed harmonic-toit

Single-Particle Energy [/fiwg(n)]
N

FIG. 11. Nilsson diagram versus = Ry/d of the RDHO model . . . .
for 4°Ca. The solid ang dashed Imses denote the single-partiafesst potential as & function of oblate deformation. Fidure 13xho

with positive- and negative-parities, respectively. Timgke-particle the obtained Nilsson diagram versus the aspect ratio of the
energies are plotted in units béx(n). To illustrate the degeneracy Short (thez direction) to the long (the radial direction) axes

of the levels, the single-particle energies with higheare slightly ~ for an ellipsoidal nuclear surface (oblate deformationheT
shifted. aspect ratio 1:1 corresponds to the spherical shape. The as-

pect ratio 1:5 corresponds to an oblate shape with the same
aspect ratio as that of the torus isomer*t€a obtained by

In Fig.[11, we see the spherical major shell wh =  the cranked HF calculation. The single-particle energies a
hwo(Nsh + 3/2) atn = 0, whereNs, denotes the total num- plotted in unit offiwo(€), Wwherewp(€) denotes the frequency
ber of oscillator quanta. With increasingthe single-particle  of the harmonic-oscillator potential depending on the \ifs
energies withQ = 1/2 approach the asymptotic value given perturbed-spheroid parameteo describe ellipsoidal nuclear
by E = hiwo(Ng, + 1), whereN,, = n; + nz, n; andn; denote  shapes. Inwy(e), the volume conservation inside an equi-
the quantum number for oscillations in taeand the radial potential surface is taken into account/[21]. In the figure, w
directions, respectively. The energies of other singldigla  see that some single-particle energies associated with\qjg
states with largef2 in the sameNs, shell steeply decrease as spherical major shells rapidly decrease with increasirigteb
a function ofy. At n = 4, the 10th and 11th (from the bottom) deformation. At the aspect ratio 1:5, the last occupiee$tat
single-particle states with? = 11/2- and 132" (A = 6) be-  “°Ca (N = 20) originates from that with a spherical harmonic-
come lower than the 14th level witd, = 1 (the Tiwo state).  oscillator quantum number dfs, = 3 (the Jiwg state).
These two single-particle states originate from those with  |n Figs[13, the single-particle energies are plotted \&®su
spherical harmonic-oscillator quantum numbeNgf = 5 (the  at each aspect ratio. We see that the shell gaps of the single-
Shwg state). particle energies decrease with increasing oblate defimma

It is easy to understand these behaviors. As Wong showeldowever, the basic pattern of deformed shell structure does
in Ref. [12], the single-particle energies for laBg are ap-  not change, in contrast to that of the RDHO model shown in
proximately given byE ~ fiwo(N, + 1) + #?A2/2mR. Thus,  Fig.[12. In Fig[T% (), the dashed line denotes the Fermi leve
the single-particle energies belonging to the siifysshell are  for N = 20 atw = 0. The neutron density distributiop(r, 2),
proportional toA? at lagerRy. for the occupied configuration is shown in Hig] 15 (a). The

Figure[12 shows the single-particle energies in the RDHQlensities in thep direction are integrated. Two prominent
model versug) fromn = 0 to 4. Atnp = 0 [Fig.[12 (a)], the peaks are seen in the density distribution. We next consider
familiar shell structure of the spherical harmonic-ostdlr is  an aligned single-particle configurationa@at= 1.6 MeV/#.
seen. With increasing [Figs.[12 (b)-(d)], single-particle en- This w corresponds to a value for the torus isomerga.
ergies with high2 rapidly decrease. Then, the single-particle The occupied states at this are shown by the gray area in
energies start to form parabolic structures.nAt 4 [Fig.[12  Fig.[14 (e). By the alignments, totally five single-particle
(e)], two important properties emerge: (i) the curvaturéhef  states with 1127[505] and 927[505] (A = 5), 9/2*[404]
parabolic structure becomes large, and (i) the singléigdar and 7/2+[404] (A = 4), and 52*[402] (A = 2) are occupied
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(the asymptotic Nilsson labe&b"[Nn,A] is used here). On and-1/27[301] (A = 1) become unoccupied. Summing up
the other hand, the single particle states wi#y27[303] and
-5/27[303] (A = 3), -5/2*[202] (A = 2), and—-3/27[301]
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FIG. 13. Nilsson diagram versus the aspect ratio of the gtz

direction) to long (the radial direction) axes for an elbffal nuclear
surface (oblate deformations). The solid and dashed liaestd the
single-particle states with positive and negative pajtiespectively.
The aspect ratio 1:1 corresponds to the spherical shapeadgext
ratio 1:5 is close to that of a torus isomer obtained by theled HF

calculation.

the aligned single-particle angular momenta, we obtain the
neutron contribution to the component of the total angular
momentuml], = 31%. Taking into account the proton contri-
bution as well, we finally obtain the total angular momentum
J; = 621 for this oblate configuration, which is close to that
of the torus isomer fof°Ca obtained by the cranked HF cal-
culation. The neutron density distributionat= 1.6 MeV/h

is shown in Figl_Ib (b). The two peaks seen in Eig. 15 (a) van-
ish and densities in the central region become flat and btretc
to radial direction, as the single-particle states witthiigare
occupied.

Figure [16 shows the density distributions of individual
single-particle states of special interest at aspect tafioThe
densities for thep direction in the cylindrical coordinate are
integrated. The dashed line shows the density distribudfon
the lowestA = O state. On the other hand, the solid lines
depict those of the alignedl = 2, 4, and 5 states mentioned
above that are occupiedat= 1.6 MeV/i. The single-particle
density distributions of these aligned states peak arouné
fm. Apparently, the overlap between the aligned nucleods an
the nucleons in the lowest = 0 state is very small. Namely,
the lowestA = 0 state largely containing the sphericaldldm-
ponentis rather isolated from the others. To gain the dieac
interactions between nucleons, the total system tends xe ma
imize the overlaps between the density distributions of-ind
vidual single particles. Thus, it would be energeticallydia
able to concentrate the densities of individual nucleoostad
r = 6 fm. In this way, the nucleus with extremely large oblate
deformation may start to generate the torus shape. Thissseem
to be the basic reason why a large 'hole’ is created in the cen-
tral region of the nucleus by eliminating the sphericah@ve
function.
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FIG. 15. (a) Density distributions of neutrons*tCa calculated for
the deformed harmonic-oscillator model at an oblate dedgion of
the aspect ratio 1:5 witlky = 0. The contours correspond to multiple
steps of 0.05 fii?. The densities for the direction in the cylindri-
cal coordinate are integrated. (b) The same as (a) butawitl.6
MeV/h. The colors are normalized by the largest density of panel (a

FIG. 16. Density distributions of the single-particle sgbf spe-
cial interest for*°Ca on thez = 0 plane in an oblate deformation of
the aspect ratio 1:5 calculated with the deformed harmos@Hator
model. The densities in thedirection in the cylindrical coordinate
are integrated. The solid lines show the density distrimgiof the
aligned single-particle states with = 2, 4, and 5 that are occupied
atw = 1.6 MeV/i. The dashed line shows the density distribution of

V. SUMMARY the lowestA = O state.

We have systematically investigated the existence of high-
spin torus isomers for a series bf = Z even-even nuclei also analyzed the microscopic structure of the obtainegstor
from 28Sj to %Ni using the cranked HF method. We found isomers by plotting the single-particle energies veiQuand
the stable torus isomers frotfAr to 52Fe for all the Skyrme using the concept of sloping Fermi surface. We determined
interactions used in this study. In the obtained torus issme the regions ofv for which the obtained torus isomers can sta-
thez components of the total angular momentum&re 36 bly exist in each Skyrme interaction. The dependence of the
# for 36Ar, 60 7 for 4°Ca, 447 for 44Ti, 72 h for 48Cr, and  Obtained results on the Skyrme interactions employed isdou
52 1 for %2Fe. We fitted the density distribution of each of to be weak.
the obtained torus isomers with the Gaussian function. We We have also performed TDHF calculations to explore the
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properties of the precession motion rotating with angular m formation is the one creating the localization of singletiote
mentuml = K + 1, which is built on each of the obtained density distributions around a torus ring. This seems to be a
torus isomer with = K. For all the obtained torus isomers, basic mechanism of the emergence of high-spin torus isomers
the precession motion emerges and the symmetry axis rotates
about the precession axis for at least two periods. It wasdou
that the precession motion of the B@somer in*°Ca is espe- ACKNOWLEDGMENTS
cially robust and stably rotates for many periods, We olet@in
similar results for all the Skyrme interactions used, W®als  T| was supported in part by MEXT SPIRE and JICFuS.
estimated the moment of inertia for the rotation about a perThis work was undertaken as part by the Yukawa Interna-
pendicular axis from the calculated rotational periodshef t tional Project for Quark-Hadron Sciences (YIPQS). J.A. M.
precession motion. The obtained moments of inertia ar@closwas supported by BMBF under contract number 06FY9086
to the rigid-body values for all the obtained torus isomers.  and 05P12RFFTG, respectively.

We have discussed the radial density distribution of each
single-particle wave function in the high-spin torus isome
of ¥%Ca. We showed that the density distributions are well Appendix: PARAMETERS AND VOLUME CONSERVATION
approximated by those of the RDHO model. We then dis- IN THE RDHO MODEL
cussed how the shell structure develops from sphericattis to
shapes. There are two important mechanisms for stabilizing In the RDHO model, we take the oscillator frequenoy,
torus isomers: (i) the development of the major shells conto conserve the inner volume of an equi-potential energy sur
sisting of single-particle states whose energies are gwen face. It is given by
E = (N4, + 1) + 72A%/2mR, whereN,, = n; + n; andA is

the z component of orbital angular momentum. (ii) a large G ——

value ofRy that reduces the energies of hi@tsingle-particle 3 1+5)y1-n

states. We finally discussed why the @omponents of all Wo | _ 3 2 n 0<n<1)
the single-particle wave functions vanish and generateusto | g, + g+~ arctan?)

shape. We showed that in an aligned single-particle configu- 3 4

ration with extremely large oblate deformation, the ovesla 270 (72 1),(A 1)

between the density distributions of the lowast 0 single-
particle state and the aligned highsingle-particle states be- Wheren = Ro/d andaw, denotes the oscillator frequency in the
come very small due to the strong centrifugal force. To gairspherical limit. Here, we takkwo 41A7L ,otorus/,ogr MeV,

the attractive interaction energy as much as possible enucl whereA is the number of nucleons, apgus andpg: denote

ons tend to maximize the overlaps of their wave functionsthe average densities of a torus isomer and the ground state,
An optimal configuration beyond the limit of large oblate de- respectivelyl[1/1]. In the calculations, we ysgus = (2/3)ogr-
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