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Background: In our previous study, we found that an exotic isomer with a torus shape may exist in the high-spin, highly
excited states of40Ca. Thez component of the total angular momentum,Jz = 60 ~, of this torus isomer is constructed by
aligning totally twelve single-particle angular momenta in the direction of the symmetry axis of the density distribution. The
torus isomer executes precession motion with the rigid-body moments of inertia about an axis perpendicular to the symmetry
axis. The investigation, however, has been focused only on40Ca.

Purpose: We systematically investigate the existence of exotic torus isomers and their precession motions for a series ofN = Z
even-even nuclei from28Si to 56Ni. We analyze the microscopic shell structure of the torus isomer and discuss why the torus
shape is generated beyond the limit of large oblate deformation.

Method: We use the cranked three-dimensional Hartree-Fock (HF) method with various Skyrme interactions in a systematic
search for high-spin torus isomers. We use the three-dimensional time-dependent Hartree-Fock (TDHF) method for describing
the precession motion of the torus isomer.

Results: We obtain high-spin torus isomers in36Ar, 40Ca,44Ti, 48Cr, and52Fe. The emergence of the torus isomers is associated
with the alignments of single-particle angular momenta, which is the same mechanism as found in40Ca. It is found that all
the obtained torus isomers execute the precession motion atleast two rotational periods. The moment of inertia about a
perpendicular axis, which characterizes the precession motion, is found to be close to the classical rigid-body value.

Conclusions: The high-spin torus isomer of40Ca is not an exceptional case. Similar torus isomers exist widely in nuclei from
36Ar to 52Fe and they execute the precession motion. The torus shape isgenerated beyond the limit of large oblate deformation
by eliminating the 0s components from all the deformed single-particle wave functions to maximize their mutual overlaps.

PACS numbers: 21.60.Jz, 21.60.Ev, 27.40.+z

I. INTRODUCTION

Nuclear rotation is a key phenomenon to study the funda-
mental properties of finite many-body quantum systems. In
particular, the rotation about the symmetry (z) axis produces a
unique quantum object with its density distribution of a torus
shape, as shown in our previous studies for40Ca [1, 2]. In a
classical picture for such rotation the oblate deformationde-
velops with increasing rotational frequency due to the strong
centrifugal force [3]. However, such a collective rotation
about the symmetry axis is quantum-mechanically forbidden.
Instead, it is possible to construct extremely high-spin states
by aligning individual angular momenta of single-particlemo-
tion in the direction of the symmetry axis [4, 5].

A drastic example is a high-spin torus isomer in40Ca [1],
where totally twelve single particles with the orbital angular
momentaΛ = +4, +5, and+6 align in the direction of the
symmetry axis and construct azcomponent of the total angu-
lar momentum ofJz = 60 ~. Thus, a “macroscopic” amount
of circulating current emerges in the torus isomer state, which
may be regarded as a fascinating new form of the nuclear mat-
ter suggested by Bohr and Mottelson [6].

Another important kind of rotation is a collective motion
that restores the symmetry spontaneously broken in the self-
consistent mean field. The density distribution of the torus
isomer largely breaks the symmetry about an (x or y) axis per-
pendicular to the symmetry axis [2]. Below, we call this axis
a perpendicular axis. Thus, the torus isomer can rotate about a
perpendicular axis, although the collective rotation about the

symmetry axis is quantum-mechanically forbidden. This rota-
tional degree of freedom causes the precession motion of the
system as a whole. Then, an interesting question arises how
such a “femto-scale magnet” rotates collectively to restore the
broken symmetry about a perpendicular axis.

A physical quantity characterizing such a collective rota-
tion is the moment of inertia about a perpendicular axis. It
has been theoretically recognized that an independent-particle
configuration in a deformed harmonic-oscillator potentialro-
tates with the rigid-body moment of inertia when the self-
consistency between the mean-field potential and the density
is fulfilled [7]. However, measured moments of inertia for the
case of the precession motion of prolately deformed nuclei
are often much smaller than the rigid-body values even when
pairing correlations are negligible [8, 9]. This is becauseof
shell effects in high-K prolate isomers [8]. Although preces-
sion modes of high-K oblate isomers have not been observed
yet, their moments of inertia would be much reduced from the
rigid-body values due to oblate shell structures at small defor-
mations [10].

From these observations, it might be conjectured that the
moment of inertia about a perpendicular axis for the torus
isomer also significantly deviates from the classical rigid-
body value, because the torus isomer is a unique quantum
object characterized by the alignment of angular momenta of
independent-particlemotions. It is thus surprising that the mo-
ment of inertia about a perpendicular axis, evaluated with the
time-dependent Hatree-Fock (TDHF) method, from the rota-
tional period of the precession motion of the torus isomer in
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40Ca takes a value close to the classical rigid-body value [2].
We analyzed the microscopic structure of the precession mo-
tion by using the random-phase approximation (RPA) method.
In the RPA calculation, the precession motion of the torus iso-
mer is generated by a coherent superposition of many one-
particle-one-hole excitations across the sloping Fermi surface.
We found that the precession motion obtained by the TDHF
calculation is a pure collective motion well decoupled from
other collective modes. In our previous studies, however, we
focused only on the torus isomer of40Ca. It is thus important
to investigate whether torus isomers exist also in other nuclei
and the properties of the precession motion found there are
universal or not.

In this paper, we first perform a systematic investigation of
the high-spin torus isomers for a series ofN = Z even-even
nuclei from28Si to56Ni. We show that the high-spin torus iso-
mer of40Ca is not an exceptional case. About forty years ago,
Wong suggested, using a macroscopic-microscopic method,
the possible existence of torus isomers at highly excited states
of a wide region of nuclei [12]. Quite recently, Staszczak and
Wong systematically explored the existence of torus isomers
using the constrained cranked Hartree-Fock (HF) method and
found some torus isomers at highly excited states in several
nuclei [11]. However, they use the harmonic-oscillator ba-
sis expansion method, which is insufficient to treat unbound
states. It is therefore difficult to examine the stability of the
torus isomers against the nucleon emission in their calcula-
tion, although some of them would contain single particles in
unbound states.

We then perform a systematic TDHF calculation to investi-
gate the properties of the precession motion. For all the high-
spin torus isomers obtained by the cranked HF calculation, we
find the periodic solutions of the TDHF equation of motion,
which describe the precession motions. Among them, the pre-
cession motion of the 60~ torus isomer of40Ca is particularly
stable and continues for many periods.

To understand the microscopic origin of appearance of the
torus isomers, we analyze the process during which the shell
structure of the large oblate shape and that of the torus shape
grow up from that of the spherical shape. Using the radi-
ally displaced harmonic-oscillator (RDHO) model [12] and
the oblately deformed harmonic-oscillator potential, we fi-
nally discuss why the lowest 0s components disappear from
all the single-particle wave functions of the occupied states
and how a large ‘hole’ region is created in the center of the
nucleus to generate the torus shape.

This paper is organized as follows: In Section II, we de-
scribe the theoretical framework and parameters of the nu-
merical calculation. In Section III, we present results of the
systematic calculation for static and dynamical properties of
the high-spin torus isomers including their precession mo-
tions. In Section IV, we analyze microscopic shell structures
of the torus isomers and discuss the reason why the torus
shape emerges beyond the limit of large oblate deformation.
Finally, we summarize our studies in Section V.

II. THEORETICAL FRAMEWORK

A. Cranked HF calculation

To investigate systematically the existence of high-spin
torus isomer states in a wide range of nuclei, we use the
cranked three-dimensional Skyrme HF method. To build
high-spin states rotating about the symmetry axis of the den-
sity distribution (z axis), we add a Lagrange multiplier,ω,
to the HF Hamiltonian,Ĥ. Then, the effective HF Hamilto-
nian, Ĥ′, is written asĤ′ = Ĥ − ωĴz, whereĴz denotes the
z component of the total angular momentum. We minimize
this effective HF Hamiltonian with a given Lagrange multi-
plier, which is equivalent to the cranked HF equation given by
δ
〈

Ĥ − ωĴz

〉

= 0.
For this purpose, we slightly modify the codeSky3d. The

details of the code are given in Ref. [13]. In the code, the
single-particle wave functions are described on a Cartesian
grid with a grid spacing of 1.0 fm, which is a good approx-
imation for not only bound states but also unbound states in
contrast to the harmonic-oscillator basis expansion. We take
32 × 32 × 24 grid points for thex, y, andz directions, re-
spectively. This is sufficiently accurate to provide converged
configurations. The damped-gradient iteration method [14]is
used, and all derivatives are calculated with the Fourier trans-
formation method.

In the calculation, we use the SLy6, SkI3, and SkM∗

Skyrme forces to check the interaction dependence of the cal-
culated results. These effective interactions were well con-
structed based on nuclear bulk properties but differ in details;
SLy6 as a fit which includes information on isotopic trends
and neutron matter [15], SkI3 as a fit taking into account the
relativistic isovector properties of the spin-orbit force[16],
and SkM∗ as a widely used traditional standard [17]. How-
ever, except for the effective mass, the bulk properties (equi-
librium energy and density, incompressibility, and symmetry
energy) are comparable to each other. In the energy density
functional, we omit terms depending on the spin density, be-
cause it may be necessary to extend the standard form of the
Skyrme interaction in order to properly take into account the
spin-density dependent effects [18] (see also a review [19]),
but such effects are inessential to the torus isomers.

B. Setting of initial configurations

In the cranked HF calculations, we first search for stable
torus configurations in a series ofN = Z even-even nuclei
from 28Si to56 Ni. We use, as an initial configuration of the HF
calculation, anα-cluster ring configuration placed on thex-y
plane, as shown in Fig. 1 of Ref. [1]. Theα-cluster wave func-
tion is described by a Gaussian function with the width of 1.8
fm. The center positions of the Gaussian functions are placed
equiangularly along a circle with a radius of 6.5 fm on the
(x, y) plane. Only for the calculations of52Fe with the SkM∗

interaction, we use a radius of 7.55 fm and a width of 1.63
fm. Using these initial configurations, we perform 15,000 HF
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iterations. We search for stable torus solutions varyingω from
0.5 to 2.5 MeV/~ with a step of 0.1 MeV/~. After these cal-
culations, we check the convergence of the total energies, the
density distributions, and the total angular momenta. In the
calculations of the excitation energies, we subtract the expec-
tation value of the center-of-mass motion in both the ground
and the torus isomer states.

We next calculate all single-particle states including those
above the Fermi energy. To calculate those, we use, as initial
wave functions of the HF calculation, the single-particle wave
functions of the RDHO model [12]. This model is a good
approximation to the mean-field of torus-shaped isomers. In
this model, the single-particle potential is given by

V(r, z) =
1
2

mω2
0(r − R0)

2 +
1
2

mω2
0z2, (1)

where m denotes the nucleon mass,ω0 the oscillator fre-
quency,r andz the radial and thezcomponents of the cylindri-
cal coordinate system, andR0 the radius parameter of the torus
shape. Since the radial wave function of the lowest energy in
the RDHO model is described by a shifted Gaussian function
with the widthd =

√
~/mω0, we determineω0 from the radius

of a cross section of a torus ring. The optimal values ofR0 and
d are determined through the global investigation mentioned
above. Using this initial condition and a value ofω0 obtained
by the global investigation, we perform the HF iteration over
20000 times and calculate the single-particle states up to the
40th for both protons and neutrons.

C. Sloping Fermi surface

It is important to note that the cranking term−ωĴz does not
change the single-particle wave functions for rotation about
the symmetry axis. Thus, it is useful to introduce the con-
cept of “sloping” Fermi surface. As usual, the single-particle

Hamiltonian is given byĤ′ =
∑

i(ĥi−ω ĵz
(i)

), whereĥi and ĵz
(i)

denote the mean-field Hamiltonian and thezcomponent of the
total angular momentum for each single particle, respectively.
The eigenvalue ofĤ′ is written asE′ =

∑

i [(ei − λ) − ~ωΩi ],
whereλ denotes the Fermi energy atω = 0. The symbolsei

andΩi denote the single-particle energy and the eigenvalue
of ĵz

(i)
, respectively. By introducing the sloping Fermi sur-

face defined byλ′(Ω) = λ + ~ωΩ, we can rewriteE′ as
E′ =

∑

i{ei − λ′(Ωi)}. Therefore, aligned configurations can
be easily constructed by plotting the single-particle energies
as a function ofΩ and tilting the Fermi surface in the (e,Ω)
plane. It is important to note that the value ofω to specify
an aligned configuration is not unique. As we can immedi-
ately see in Figs. 3-7 below, individual configurations do not
change for a finite range ofω.

D. Optimally aligned torus configurations

Let us focus on optimally aligned torus configurations
where all the single-particle states below the sloping Fermi

surface are occupied. They are expected to be more stable
than other aligned configurations involving particle-holeex-
citations across the sloping Fermi surface. Before carrying
out the cranked HF calculations, we can easily presume can-
didates of optimally aligned torus configurations. Since the
effects of the spin-orbit potential are negligibly weak in the
torus configurations, not onlyΩ but also thez component of
the orbital angular momentum,Λ, are good quantum numbers
(Ω = Λ + Σ, whereΣ denotes thez component of the spin,
±1/2) [1]. Single-particle states having the sameΛ value with
different spin directions are approximately degenerated and
simultaneously occupied . Thus, the lowest-energy configura-
tions for the torus shapes atω = 0 areΛ = 0,±1,±2, and±3
for 28Si,Λ = 0,±1,±2,±3, and+4 or−4 for 32S,Λ = 0,±1,
· · · , ±4 for 36Ar, Λ = 0, ±1, · · · , ±4, and+5 or−5 for 40Ca,
Λ = 0,±1, · · · , ±5 for 44Ti, Λ = 0,±1, · · · , ±5, and+6 or−6
for 48Cr,Λ = 0,±1, · · · , ±6 for 52Fe, andΛ = 0,±1, · · · , ±6,
and+7 or−7 for 56Ni.

For instance, in40Ca, possible aligned configurations at
ω , 0 are (i)Λ = 0, ±1, · · · , ±4, and+5 for Jz = 20~
[= 5~ × 2 (spin degeneracy)×2 (isospin degeneracy)], (ii)
Λ = 0,±1,±2,±3,+4, and+5 for Jz = 60~ [= 15~ × 2× 2],
and (iii)Λ = 0,±1,±2,+3,+4,+5,+6, and+7 for Jz = 100~
[= 25~×2×2]. However, we could not obtain stable HF solu-
tions for the configurations (i) and (iii): the centrifugal force is
insufficient for stabilizing the configuration (i), while the last
occupied single-particle state withΛ = 7 is unbound for the
configuration (iii). Indeed, we confirmed that the torus isomer
configuration (iii) withJz = 100~ slowly decays. In the sys-
tematic calculations, it is often difficult to discuss the stability
of torus isomers when such unbound states are included. To
avoid this difficulty, in this paper, we focus on torus configu-
rations without involving unbound single-particle states.

E. TDHF calculation for the precession motion

For the stable torus isomers obtained above, we performed
TDHF calculations to investigate their precession motions.
The time evolution of the density distribution is determined by
solving the TDHF equation of motioni~ρ̇ = [Ĥ, ρ]. When an
impulsive force is provided in a direction perpendicular tothe
symmetry axis att = 0, the torus isomer starts to execute the
precession motion. This precession motion is associated with
a rotation about a perpendicular axis, i.e., an axis perpendicu-
lar to the symmetry axis. In Ref. [2], we already showed that
this precession motion is a pure collective motion to restore
the broken symmetry and well described as coherent super-
positions of many 1p-1h excitations across the sloping Fermi
surface. We investigate whether other torus isomers also exe-
cute the precession motion well decoupled from other collec-
tive modes and whether their moments of inertia are close to
the rigid-body values or not. In this way, we can also check the
stability of the obtained torus isomers against given impulsive
forces.

Figure 1 illustrates the schematic picture of the precession
motion. At t = 0, the torus isomer is placed on thex-y plane
with the angular momentumK (= Jz) along thez axis in the
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FIG. 1. Schematic picture for the precession motion of torusisomers
taken from Ref. [2]. The bold solid line denotes the symmetryaxis
of the density distribution. The dashed line denotes the precession
axis. The symbolsθ andφ denote the tilting and the rotational angles,
respectively.

laboratory frame. When an impulsive force is provided in the
negativex direction (the dotted line) att = 0, the total angular
momentum becomes~I (the dashed line). We call this vector
the precession axis. After that, the symmetry axis of the den-
sity distribution in the body-fixed frame (the bold solid line)
starts to rotate about the precession axis with the rotational an-
gleφ. In the precession motion, the valueK is conserved and
its direction is identical to the bold solid line. The tilting angle
θ is defined as the angle between the bold solid and the dashed
lines. Then, the moment of inertia for the rotation about a per-
pendicular axis,T⊥, can be estimated byT⊥ = I/ωprec, where
ωprec denotes the rotational frequency of the precession mo-
tion. To build the first excited state of the precession motion,
we provide an impulsive force such that the total angular mo-
mentum becomesI = K + 1.

To solve the TDHF equation, we use the codeSky3d and
take the Taylor expansion of the time-development operator
up to the 12th order. The setups of spatial grid points and
interactions are the same as those of the cranked HF calcula-
tions described above. We start to perform calculations from
the initial density distribution obtained by the cranked HF
calculations. The time step of the TDHF calculations is 0.2
fm/c. We calculate the time evolution until 3000 fm/c. To
excite the precession motion, we provide an impulsive force
at t = 0 by the external potential given byVext(r, ϕ, z) =
V0zcosϕexp[−(r − R0)2/d2]. This impulsive force gives an
angular momentum in the negativex direction att = 0. The
parameterV0 is chosen such that the total angular momentum
becomesI = K + 1.

III. RESULTS OF CALCULATION

A. Static properties

We have carried out a systematic search for stable torus iso-
mers for theN = Z even-even nuclei from28Si to 56Ni. The
result of the calculation is summarized in Table I. We obtain
the stable torus isomers in36Ar for Jz = 36~, 40Ca forJz = 60

TABLE I. Stable torus isomers obtained in the cranked HF calcula-
tion with various Skyrme interactions. The excitation energy, Eex, is
measured from the ground state. The calculated density distributions
are fitted to the Gaussian functionρ(r, z) = ρ0e−[(r−R0)2+z2]/d2

and the
resulting values of the parameters,ρ0, R0, andd, are listed. The sym-
bols,T rid

⊥ andT rid
‖ , denote the rigid-body moments of inertia for the

rotations about a perpendicular and the symmetry axes, respectively.

System Jz Eex ρ0 R0 d T rid
⊥ T rid

‖

(~) (MeV) (fm−3) (fm) (fm) (~2/MeV) (~2/MeV)

(SLy6)
36Ar 36 123.89 0.137 5.12 1.62 14.3 26.4
40Ca 60 169.71 0.129 6.07 1.61 21.0 39.6
44Ti 44 151.57 0.137 6.30 1.61 24.6 46.5
48Cr 72 191.25 0.132 7.19 1.60 33.8 64.7
52Fe 52 183.70 0.138 7.47 1.60 39.1 75.1

(SkI3)
36Ar 36 125.15 0.146 5.01 1.58 13.7 25.3
40Ca 60 173.52 0.138 5.90 1.58 19.9 37.5
44Ti 44 153.02 0.146 6.17 1.58 23.6 44.6
48Cr 72 193.66 0.141 7.00 1.57 32.0 61.3
52Fe 52 183.70 0.147 7.31 1.57 37.5 71.9

(SkM∗)
36Ar 36 124.80 0.131 5.16 1.65 14.6 26.9
40Ca 60 167.84 0.122 6.17 1.64 21.8 41.0
44Ti 44 152.20 0.131 6.36 1.64 25.1 47.5
48Cr 72 192.40 0.125 7.30 1.63 34.9 66.7
52Fe 52 187.08 0.132 7.55 1.63 40.0 76.7

~, 44Ti for Jz = 44~, 48Cr for Jz = 72~, and52Fe forJz = 52
~ with all the three Skyrme interactions used in this study.
On the other hand, we have not found any stable torus iso-
mer in28Si, 32S, and56Ni. In Fig. 3, we plot the total density
distributions of the torus isomers obtained in the cranked HF
calculation with the SLy6 interaction.

The total density distribution of each of the torus isomers
obtained in the cranked HF calculation is well fitted by the
Gaussian functionρ(r, z) = ρ0e−[(r−R0)2+z2]/d2

, whereρ0, R0,
andd denote the maximum value of the nucleon density, the
radius of the torus ring, and the width of a cross section of the
torus ring, respectively. The resulting values of the parame-
ters,ρ0, R0, andd, are tabulated in the middle part of Table
I. We see that the valuesρ0 andd are almost constant for all
the torus isomers. The interaction dependence of these values
is weak. It is interesting that, in all the results,ρ0 is smaller
than the saturation nuclear density (ρsat∼ 0.17 fm−3) andd is
close to the width of an alpha particle used in Brink’sα-cluster
model (dα ∼ 1.46 fm) [20].

Using the total density distribution, we also calculate the
rigid-body moments of inertia for rotation about a perpendic-
ular axis,T rid

⊥ , and the symmetry axis,T rid
‖ . The results are

also shown in Table I. Later, we shall compare these values
for T rid

⊥ with those obtained by an analysis of the precession
motions in the TDHF time evolution.

To investigate microscopic structures of the torus isomers,
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FIG. 2. (Color online) Density distributions on thez= 0 plane of the
obtained stable torus isomers. The contours correspond to multiple
steps of 0.015 fm−3. The color is normalized by the largest density
in each plot.

we plot in Figs. 3-7 neutron single-particle energies versusΩ
for each torus isomer calculated with the SLy6 interaction.In
the figures, the solid and the open circles denote the positive-
and negative-parity states, respectively. The gray area ineach
plot denotes the occupied states. In each plot, we see that
the single-particle energies with the sameΛ are almost de-
generate. This indicates that the effects of the spin-orbit force
are negligibly small andΛ is approximately a good quantum
number in all the torus isomers. One may also notice that the
Kramer’s degeneracy for a pair of single-particle states with
±Λ is lifted. This is due to the time-odd components (depen-
dent on the current density) of the cranked HF mean fields
associated with the macroscopic currents, which are produced
by the alignment of the single-particle angular momenta with
large values ofΛ.

Because of the negligible spin-orbit splittings, the spin-
orbit partners are always occupied simultaneously. Therefore,
the Jz values of the optimally aligned configurations are eas-
ily determined by summing up theΛ values of the occupied
single-particle states: they areΛ = 0,±1,±2,±3,+4,+5 [Jz =

9 ~ ×2 (spin degeneracy)×2 (isospin degeneracy)= 36~] for
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the single-particle energies of the positive- and negative-parity states,
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FIG. 4. Single-particle energies versusΩ for 40Ca. All symbols are
the same as in Fig. 3.

36Ar, Λ = 0,±1,±2,±3,+4,+5,+6 [Jz = 15~ ×2× 2 = 60~]
for 40Ca,Λ = 0,±1, · · · ,±4,+5,+6 [Jz = 11~ ×2× 2 = 44~]
for 44Ti, Λ = 0,±1, · · · ,±4,+5,+6,+7 [Jz = 18~ ×2×2 = 72
~] for 48Cr, andΛ = 0,±1, · · · ,±5,+6,+7 [Jz = 13~ ×2×2 =
52~] for 52Fe.

We can estimate from the figures a region ofω for which
each of the torus isomers stably exists. This is done by deter-
mining the steepest and the most gradual slopes of the Fermi
surface for which the occupied single-particle configuration
remains the same. The results are plotted in Fig. 8. The solid,
dashed, and dotted lines denote the regions ofω for each of
the stable torus isomers obtained with the SLy6, SkI3, and
SkM∗ interactions, respectively. We see that the result does
not strongly depend on the Skyrme interaction employed, al-
though the width is weakly dependent on it.
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FIG. 5. Single-particle energies versusΩ for 44Ti. All symbols are
the same as in Fig. 3.
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B. Dynamic properties

We carried out a systematic TDHF calculation for each of
the torus isomers and found that that the TDHF time evolution
of the density distribution is quite similar to that displayed in
Fig. 2 of [2]. Figure 9 shows the calculated time evolution of
the precession motion for each of the torus isomers obtained
with the SLy6 interaction. In each plot in Fig. 9, panels (a),
(b), and (c) denote the total angular momentum,I , the tilting
angle,θ, and the rotational angle,φ, respectively. In panel
(a) in each plot, we can see that the total angular momentum
is conserved very well. This indicates that the TDHF calcula-
tions are sufficiently accurate. We find that the precession mo-
tion of the40Ca torus isomer is especially stable [see panel (b)
in each plot], where the rotational angleφ lineally increases
with time, indicating that the rotation of the symmetry axis
about the precession axis keeps a constant velocity through
all the periods. This indicates that the strong shell effects re-
sponsible for the appearance of the torus isomer in40Ca also
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ists. The solid, dashed, and dotted lines denote the resultscalculated
with the SLy6, SkI3, and SkM∗ interactions, respectively

stabilize the precession motion. We find that the precession
motions emerge also for other torus isomers and they are sta-
ble at least for two periods. After that, however, the tilting
angle gradually starts to fluctuate. Correspondingly, the rota-
tional angleφ also starts to deviate from the linear time evo-
lution [see panel (c) in each plot]. We have also carried out
similar TDHF calculations with the use of the SkI3 and SkM∗

interactions. The results are similar to those shown above for
the SLy6 interaction, which implies that the properties of the
precession motion are robust and depend on the choice of the
Skyrme interaction only weakly.

To evaluate the moment of inertia for the rotation about a
perpendicular axis, we take the average of the two periods
starting fromt = 0 during which the precession motion is
especially stable. The results are tabulated in the third column
of Table II. Using these values, we calculate the frequency of
the precession motion byωprec= 2π/Tprec and the moment of
inertia for the rotation about a perpendicular axis byT TDHF

⊥ =

I/ωprec. The results are tabulated in the forth and fifth columns
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FIG. 9. Time evolution of the precession motion for each of the torus isomers from36Ar to 52Fe calculated by solving the TDHF equation of
motion for the SLy6 interaction. In each plot, panels (a), (b), and (c) denote the total angular momentumI , the tilting angleθ, and the rotational
anguleφ, respectively.

of Table II. The obtained moments of inertia are very close to
the rigid-body values tabulated in Table I for all the Skyrme
interactions employed. As discussed in Ref. [2], these results
indicate that the precession motions under consideration are
pure collective motions generated by coherent superpositions
of many 1p-1h excitations across the sloping Fermi surface.

IV. DISCUSSION

A. Radial density distributions of individual single-part icle
states

Let us examine the radial density distributions of individ-
ual single-particle wave functions on thez = 0 plane for the
torus isomer of40Ca. For this purpose, we interpolate the den-
sity distributions described with a Cartesian coordinate in the
cranked HF calculations by means of a third-order B-spline
function. After that, we transform those to a cylindrical coor-
dinate representation [ρi(x, y) → ρi(r, ϕ)]. We then integrate
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TABLE II. Results of the TDHF calculation for the precessionmo-
tions of the torus isomers from36Ar to 52Fe. The symbolI denotes
the resulting total angular momentum after an impulsive force is pro-
vided. The symbolTprec denotes the average over the two periods
from t = 0 for the precession motion. The symbolωprec denotes
the precession frequency estimated byωprec = 2π/Tprec. The sym-
bol T TDHF

⊥ denotes the moment of inertia for the rotation about a
perpendicular axis estimated byT TDHF

⊥ = I/ωprec.

System I Tprec ωprec T TDHF
⊥

(~) (MeV/~) (MeV) (~2/MeV)

(SLy6)
36Ar 37 450.1 2.75 13.5
40Ca 61 402.5 3.08 19.8
44Ti 45 651.0 1.90 23.7
48Cr 73 554.5 2.24 32.6
52Fe 53 872.8 1.42 37.3

(SkI3)
36Ar 37 427.9 2.90 12.8
40Ca 61 378.6 3.28 18.6
44Ti 45 624.4 1.99 22.7
48Cr 73 524.5 2.36 30.9
52Fe 53 839.0 1.48 35.9

(SkM∗)
36Ar 37 464.2 2.67 13.9
40Ca 61 418.2 2.96 20.6
44Ti 45 666.1 1.86 24.2
48Cr 73 572.8 2.16 33.7
52Fe 53 894.8 1.39 38.3

ρi(r, ϕ) in theϕ direction and obtainρi(r). The calculated re-
sults are plotted in the upper panel of Fig. 10.

As shown in Refs. [1, 2], the RDHO model can describe
well the microscopic structures of torus isomers. To illustrate
this, we solve the Schrödinger equation with the RDHO po-
tential, Eq. (1), by means of the deformed harmonic-oscillator
basis expansion and calculateρi(r). In the calculation, we take
R0 = 6.07 fm andd = 1.61 fm for the RDHO model and
the same aligned single-particle configuration as that obtained
by the cranked HF calculation for40Ca. The obtained radial
density distributions of the individual single-particle states are
plotted in the lower panel of Fig. 10. Using these density
distributions, we calculate the rigid-body moments of iner-
tia about a perpendicular axis and the symmetry axis: they
areT RDHO

⊥ = 21.3 ~2/MeV andT RDHO
‖ = 40.2 ~2/MeV, re-

spectively. These values are in good agreement with those
obtained by the cranked HF calculation.

In Fig. 10, it is clearly seen that the radial density distri-
butions of the individual single-particle states in the RDHO
model are quite similar to those obtained by the cranked HF
calculations. In particular, the peak positions of each radial
density distribution are in good agreement between the two
calculations. As a matter of fact, the peak position of each
density distribution shifts to a largerr with increasing orbital
angular momentum. Looking into details of the density dis-
tributions obtained by the cranked HF calculations, one may
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FIG. 10. Radial density distributions of individual single-particle
states on thez = 0 plane for40Ca obtained by the cranked HF cal-
culations (upper panel) and the RDHO model (lower pannel). The
densities for theφ direction in cylindrical coordinates are integrated.

notice that some radial density distributions with high an-
gular momentum slightly shift due to the spin-orbit poten-
tial. In Fig. 4, the degeneracy of single-particle energieswith
the same highΛ is indeed slightly broken for the spin-orbit
partner withΩπ = 9/2− and 11/2− (Λ = 5) and that with
Ωπ = 11/2+ and 13/2+ (Λ = 6). These spin-orbit effects are
absent in the RDHO model.

B. Shell structure of torus nucleus

Using the RDHO model, we next investigate shell struc-
tures of a torus isomer and examine how single-particle con-
figurations change from spherical to torus shapes. Figure 11
shows a Nilsson diagram versus the parameterη = R0/d for
40Ca. At η = 0, the nuclear shape is spherical. Atη = 4, a
torus shape is well developed, which is a size similar to that
obtained by the cranked HF calculations. Note that we take
into account volume conservation inside an equi-potentialsur-
face of a torus isomer (see Ref. [12] and Appendix for the
volume conservation in 0≤ η ≤ 1). To eliminate the volume
effect, we plot the single-particle energies in unit of~ω0(η). In
this figure, we slightly shift the single-particle energieswith
higherΩ in order to illustrate the degeneracy of the states.
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for 40Ca. The solid and dashed lines denote the single-particle states
with positive- and negative-parities, respectively. The single-particle
energies are plotted in units of~ω0(η). To illustrate the degeneracy
of the levels, the single-particle energies with higherΩ are slightly
shifted.

In Fig. 11, we see the spherical major shell withE =

~ω0(Nsh + 3/2) at η = 0, whereNsh denotes the total num-
ber of oscillator quanta. With increasingη, the single-particle
energies withΩ = 1/2 approach the asymptotic value given
by E = ~ω0(N′sh+ 1), whereN′sh = nr + nz, nz andnr denote
the quantum number for oscillations in thez and the radial
directions, respectively. The energies of other single-particle
states with largerΩ in the sameNsh shell steeply decrease as
a function ofη. At η = 4, the 10th and 11th (from the bottom)
single-particle states withΩp = 11/2− and 13/2− (Λ = 6) be-
come lower than the 14th level withN′sh = 1 (the 1~ω0 state).
These two single-particle states originate from those witha
spherical harmonic-oscillator quantum number ofNsh = 5 (the
5~ω0 state).

It is easy to understand these behaviors. As Wong showed
in Ref. [12], the single-particle energies for largeR0 are ap-
proximately given byE ∼ ~ω0(N′sh+ 1)+ ~2Λ2/2mR2

0. Thus,
the single-particle energies belonging to the sameN′sh shell are
proportional toΛ2 at lagerR0.

Figure 12 shows the single-particle energies in the RDHO
model versusΩ from η = 0 to 4. At η = 0 [Fig. 12 (a)], the
familiar shell structure of the spherical harmonic-oscillator is
seen. With increasingη [Figs. 12 (b)-(d)], single-particle en-
ergies with highΩ rapidly decrease. Then, the single-particle
energies start to form parabolic structures. Atη = 4 [Fig. 12
(e)], two important properties emerge: (i) the curvature ofthe
parabolic structure becomes large, and (ii) the single-particle

energies within the sameN′sh shell are proportional toΛ2.
These two properties play an essential role in stabilizing the
torus isomers when single particles are aligned in the direction
of the symmetry axis.

It is surprising that the single-particle shell structure of the
RDHO model atη = 4 is very similar to that of Fig. 5 obtained
by the cranked HF calculation. The RDHO model is therefore
a good approximation for describing the microscopic struc-
tures of the torus isomers.

C. Emergence of the torus shape beyond the limit of oblate
deformation

Lastly, let us discuss the reason why the torus nucleus
emerges beyond the limit of large oblate deformation. In the
spherical harmonic-oscillator potential, the radial wavefunc-
tion of the lowest single-particle state is given by a Gaussian
function peaked at the center (the 0s state): accordingly, the
central part of the total density distribution is quite stable.
Then, a question arises why such a stable and robust wave
function vanishes and how the torus shape emerges.

To investigate why the 0sstate disappears, we calculate the
single-particle energies for the deformed harmonic-oscillator
potential as a function of oblate deformation. Figure 13 shows
the obtained Nilsson diagram versus the aspect ratio of the
short (thez direction) to the long (the radial direction) axes
for an ellipsoidal nuclear surface (oblate deformation). The
aspect ratio 1:1 corresponds to the spherical shape. The as-
pect ratio 1:5 corresponds to an oblate shape with the same
aspect ratio as that of the torus isomer of40Ca obtained by
the cranked HF calculation. The single-particle energies are
plotted in unit of~ω0(ǫ), whereω0(ǫ) denotes the frequency
of the harmonic-oscillator potential depending on the Nilsson
perturbed-spheroid parameterǫ to describe ellipsoidal nuclear
shapes. Inω0(ǫ), the volume conservation inside an equi-
potential surface is taken into account [21]. In the figure, we
see that some single-particle energies associated with high Nsh

spherical major shells rapidly decrease with increasing oblate
deformation. At the aspect ratio 1:5, the last occupied state for
40Ca (N = 20) originates from that with a spherical harmonic-
oscillator quantum number ofNsh = 3 (the 3~ω0 state).

In Figs. 14, the single-particle energies are plotted versusΩ
at each aspect ratio. We see that the shell gaps of the single-
particle energies decrease with increasing oblate deformation.
However, the basic pattern of deformed shell structure does
not change, in contrast to that of the RDHO model shown in
Fig. 12. In Fig. 14 (e), the dashed line denotes the Fermi level
for N = 20 atω = 0. The neutron density distribution,ρ(r, z),
for the occupied configuration is shown in Fig. 15 (a). The
densities in theϕ direction are integrated. Two prominent
peaks are seen in the density distribution. We next consider
an aligned single-particle configuration atω = 1.6 MeV/~.
This ω corresponds to a value for the torus isomer of40Ca.
The occupied states at thisω are shown by the gray area in
Fig. 14 (e). By the alignments, totally five single-particle
states with 11/2−[505] and 9/2−[505] (Λ = 5), 9/2+[404]
and 7/2+[404] (Λ = 4), and 5/2+[402] (Λ = 2) are occupied
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(the asymptotic Nilsson labelΩπ[NnzΛ] is used here). On
the other hand, the single particle states with−7/2−[303] and
−5/2−[303] (Λ = 3), −5/2+[202] (Λ = 2), and−3/2−[301]
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FIG. 13. Nilsson diagram versus the aspect ratio of the short(thez
direction) to long (the radial direction) axes for an ellipsoidal nuclear
surface (oblate deformations). The solid and dashed lines denote the
single-particle states with positive and negative parities, respectively.
The aspect ratio 1:1 corresponds to the spherical shape. Theaspect
ratio 1:5 is close to that of a torus isomer obtained by the cranked HF
calculation.

and−1/2−[301] (Λ = 1) become unoccupied. Summing up
the aligned single-particle angular momenta, we obtain the
neutron contribution to thez component of the total angular
momentumJz = 31 ~. Taking into account the proton contri-
bution as well, we finally obtain the total angular momentum
Jz = 62 ~ for this oblate configuration, which is close to that
of the torus isomer for40Ca obtained by the cranked HF cal-
culation. The neutron density distribution atω = 1.6 MeV/~
is shown in Fig. 15 (b). The two peaks seen in Fig. 15 (a) van-
ish and densities in the central region become flat and stretch
to radial direction, as the single-particle states with highΩ are
occupied.

Figure 16 shows the density distributions of individual
single-particle states of special interest at aspect ratio1:5. The
densities for theϕ direction in the cylindrical coordinate are
integrated. The dashed line shows the density distributionof
the lowestΛ = 0 state. On the other hand, the solid lines
depict those of the alignedΛ = 2, 4, and 5 states mentioned
above that are occupied atω = 1.6 MeV/~. The single-particle
density distributions of these aligned states peak aroundr = 6
fm. Apparently, the overlap between the aligned nucleons and
the nucleons in the lowestΛ = 0 state is very small. Namely,
the lowestΛ = 0 state largely containing the spherical 0scom-
ponent is rather isolated from the others. To gain the attractive
interactions between nucleons, the total system tends to max-
imize the overlaps between the density distributions of indi-
vidual single particles. Thus, it would be energetically favor-
able to concentrate the densities of individual nucleons around
r = 6 fm. In this way, the nucleus with extremely large oblate
deformation may start to generate the torus shape. This seems
to be the basic reason why a large ’hole’ is created in the cen-
tral region of the nucleus by eliminating the spherical 0swave
function.
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FIG. 14. Single-particle energies of the deformed harmonic-oscillator versusΩ at various oblate deformations. In panel (e), the dashed line
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the deformed harmonic-oscillator model at an oblate deformation of
the aspect ratio 1:5 withω = 0. The contours correspond to multiple
steps of 0.05 fm−2. The densities for theφ direction in the cylindri-
cal coordinate are integrated. (b) The same as (a) but withω =1.6
MeV/~. The colors are normalized by the largest density of panel (a).

V. SUMMARY

We have systematically investigated the existence of high-
spin torus isomers for a series ofN = Z even-even nuclei
from 28Si to 56Ni using the cranked HF method. We found
the stable torus isomers from36Ar to 52Fe for all the Skyrme
interactions used in this study. In the obtained torus isomers,
thez components of the total angular momentum areJz = 36
~ for 36Ar, 60 ~ for 40Ca, 44~ for 44Ti, 72 ~ for 48Cr, and
52 ~ for 52Fe. We fitted the density distribution of each of
the obtained torus isomers with the Gaussian function. We
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FIG. 16. Density distributions of the single-particle states of spe-
cial interest for40Ca on thez = 0 plane in an oblate deformation of
the aspect ratio 1:5 calculated with the deformed harmonic-oscillator
model. The densities in theφ direction in the cylindrical coordinate
are integrated. The solid lines show the density distributions of the
aligned single-particle states withΛ = 2, 4, and 5 that are occupied
atω = 1.6 MeV/~. The dashed line shows the density distribution of
the lowestΛ = 0 state.

also analyzed the microscopic structure of the obtained torus
isomers by plotting the single-particle energies versusΩ and
using the concept of sloping Fermi surface. We determined
the regions ofω for which the obtained torus isomers can sta-
bly exist in each Skyrme interaction. The dependence of the
obtained results on the Skyrme interactions employed is found
to be weak.

We have also performed TDHF calculations to explore the
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properties of the precession motion rotating with angular mo-
mentumI = K + 1, which is built on each of the obtained
torus isomer withI = K. For all the obtained torus isomers,
the precession motion emerges and the symmetry axis rotates
about the precession axis for at least two periods. It was found
that the precession motion of the 60~ isomer in40Ca is espe-
cially robust and stably rotates for many periods, We obtained
similar results for all the Skyrme interactions used, We also
estimated the moment of inertia for the rotation about a per-
pendicular axis from the calculated rotational periods of the
precession motion. The obtained moments of inertia are close
to the rigid-body values for all the obtained torus isomers.

We have discussed the radial density distribution of each
single-particle wave function in the high-spin torus isomer
of 40Ca. We showed that the density distributions are well
approximated by those of the RDHO model. We then dis-
cussed how the shell structure develops from spherical to torus
shapes. There are two important mechanisms for stabilizing
torus isomers: (i) the development of the major shells con-
sisting of single-particle states whose energies are givenby
E = (N′sh + 1) + ~2Λ2/2mR2

0, whereN′sh = nr + nz andΛ is
the z component of orbital angular momentum. (ii) a large
value ofR0 that reduces the energies of highΩ single-particle
states. We finally discussed why the 0s components of all
the single-particle wave functions vanish and generate a torus
shape. We showed that in an aligned single-particle configu-
ration with extremely large oblate deformation, the overlaps
between the density distributions of the lowestΛ = 0 single-
particle state and the aligned high-Ω single-particle states be-
come very small due to the strong centrifugal force. To gain
the attractive interaction energy as much as possible, nucle-
ons tend to maximize the overlaps of their wave functions.
An optimal configuration beyond the limit of large oblate de-

formation is the one creating the localization of single-particle
density distributions around a torus ring. This seems to be a
basic mechanism of the emergence of high-spin torus isomers.
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Appendix: PARAMETERS AND VOLUME CONSERVATION
IN THE RDHO MODEL

In the RDHO model, we take the oscillator frequency,ω0,
to conserve the inner volume of an equi-potential energy sur-
face. It is given by
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whereη = R0/d and

◦
ω0 denotes the oscillator frequency in the

spherical limit. Here, we take~
◦
ω0= 41A−1/3ρtorus/ρgr MeV,

whereA is the number of nucleons, andρtorus andρgr denote
the average densities of a torus isomer and the ground state,
respectively [11]. In the calculations, we useρtorus= (2/3)ρgr.
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