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Abstract

We propose an extension of the Alday-Gaiotto-Tachikawa-Wyllard conjecture
to 5d SU(N) gauge theories. A Nekrasov partition function then coincides with a
scalar product of the corresponding Gaiotto-Whittaker vectors of the q-deformed
WN algebra.



1 Introduction

The discovery of the notion of the four-dimensional (4d) N = 2 theories of class S
[1] added a new dimension to the study of supersymmetric gauge theories. The AGT

correspondence [2] generalized by Wyllard [3] is one of the remarkable developments

inspired by the study on the 4d theories of class S. This conjectural correspondence

relates the 4d theories of class S with certain 2d conformal field theories (CFTs). The

regular punctures appearing in the M-theory construction [1] are then translated into the

corresponding primary states in the 2d side [2, 3], and the Nekrasov partition function

of a 4d theory coincides with the 2d conformal block for these primary fields.

The AGT-W correspondence was extended by [5, 6] to the asymptotically-free version

of the theories of class S. This extended class of theories arises from M5-branes wrapping

a Riemann surface with irregular singularities [7, 8, 9, 10, 11, 12, 13, 14], and these

singularities lead to Gaiotto-Whittaker vectors in the 2d CFT side.

Recently, 5d uplifts of these 4d N = 2 theories have been discussed extensively

from various view points: the localization [15, 16], mysterious 6d (2, 0) SCFT [17, 18,

19], ultraviolet fixed point theories in 5d [16, 20, 21, 22], and topological string theory

[23, 24, 25, 26, 27, 28, 29, 30]. The AGT correspondence also has a 5d generalization

[31, 32]. The 2d counterpart in the 5d AGT correspondence is q-Virasoro algebra that

was introduced in [33, 34, 36, 35, 37] as a hidden symmetry of integrable models coming

from massive deformation of 2d Virasoro CFTs. This algebra is generated by Tn that

satisfies the following commutation relation

[ Tn, Tm] = −
∞∑

`=1

f` (Tn−`Tm+` − Tm−`Tn+`) −
(1 − q)(1 − t−1)

1 − p
(pn − p−n)δn+m,0, (1.1)

where p = q/t. Awata and Yamada [31] introduced the following Gaiotto-Whittaker

vector

T1|λ〉 = λ|λ〉, Tn≥2|λ〉 = 0, (1.2)

and they claimed the scalar product of the vector |λ = Λ2〉 is equal to the Nekrasov

partition function of 5d N = 1 SU(2) super Yang-Mills theory

Z
SU(2)
YM = 〈Λ2|Λ2〉. (1.3)

In this paper we provide the higher-rank generalization of their finding. Our conjecture is

that the Nekrasov partition function for the SU(N) Yang-Mills theory is precisely equal

to a scalar product of certain Gaiotto-Whittaker vectors of the q-deformed WN algebra

Z
SU(N)
YM = 〈0, · · · , 0, ΛN |ΛN , 0, · · · , 0〉. (1.4)
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To verify this conjecture, we will present tests of the conjecture at one and two instanton

for N = 3 and one instanton for N = 4.

This paper is organized as follows. We give a brief review on the q-deformation

of W -algebra in section 2. In section 3, we identify the Whittaker vectors for the q-

deformed W -algebras that give the Nekrasov partition functions of 5d gauge theories.

We also present explicit checks of this generalized AGT-W correspondence. We conclude

in section 4. In appendix A, we set some conventions for the Nektasov formulas. Kac-

Shapovalov matrixes of q-deformed W3 and W4-algebras are given in appendix B and

C.

2 q-deformed WN algebra

In this paper, we show that the 5d Nekrasov partition functions are controlled by the hid-

den q-deformed WN symmetry through the AGT-W correspondence. To understand 2d

off-critical integrable models by generalizing the conformal symmetries, the q-deformation

of the Virasoro algebra [33, 34, 36] and WN algebra [35, 37] were originally introduced.

In this section, we collect some known results on the q-deformed WN -algebra, and we use

these formulas in the next section to establish the 5d version of the AGT-W correspon-

dence.

2.1 q-W3 algebra

Let us start with writing down the explicitly form of the q-W3 algebra. The q-W3 algebra

is generated by two currents W 1(z) and W 2(z), which are introduced by q-deformed

version of the Miura transformation [37, 35]. They satisfy the following relations

f11
(w

z

)
W 1(z)W 1(w) − W 1(w)W 1(z)f11

( z

w

)
= −(1 − q)(1 − t−1)

1 − p

(
δ
(pw

z

)
W 2(

√
pw) − δ

(
w

pz

)
W 2

(
w
√

p

))
, (2.1)

f12
(w

z

)
W 1(z)W 2(w) − W 2(w)W 1(z)f21

( z

w

)
= −(1 − q)(1 − t−1)

1 − p

(
δ

(
p
√

pw

z

)
− δ

(
w

p
√

pz

))
, (2.2)

f22
(w

z

)
W 2(z)W 2(w) − W 2(w)W 2(z)f22

( z

w

)
= −(1 − q)(1 − t−1)

1 − p

(
δ
(pw

z

)
W 1

(
z
√

p

)
− δ

(
w

pz

)
W 2 (

√
pw)

)
, (2.3)
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where the structure function f `m(z) is defined by

f11 (z) = f 22 (z) = exp
∞∑

n=1

zn

n

(1 − p2n)(1 − qn)(1 − t−n)

1 − p3n
≡

∞∑
`=0

f11
` z`, (2.4)

f12 (z) = f 21 (z) = exp
∞∑

n=1

zn

n

p
n
2 (1 − pn)(1 − qn)(1 − t−n)

1 − p3n
≡

∞∑
`=0

f12
` z`. (2.5)

Notice that the delta function in this article is δ(z) =
∑

n∈Z zn.

Let us introduce the generators of this algebra. There are two types of generators

W 1,2
n because we have two currents W 1,2(z). The mode expansion of the currents is

W 1(z) =
∑
n∈Z

z−nW 1
n , W 2(z) =

∑
n∈Z

z−nW 2
n . (2.6)

In this paper we follow the convention of [37]. The above relations are then equivalent

to the following commutation relations between the generators

[
W 1

n , W 1
m

]
= −

∞∑
`=1

f 11
`

(
W 1

n−`W
1
m+` − W 1

m−`W
1
n+`

)
+ dn−mW 2

n+m, (2.7)

[
W 1

n , W 2
m

]
= −

∞∑
`=1

f 12
`

(
W 1

n−`W
2
m+` − W 2

m−`W
1
n+`

)
+ d3nδn+m,0, (2.8)

[
W 2

n , W 2
m

]
= −

∞∑
`=1

f 11
`

(
W 2

n−`W
2
m+` − W 2

m−`W
2
n+`

)
+ dn−mW 1

n+m, (2.9)

where we introduced

dn = c (p
n
2 − p−

n
2 ), c = −(1 − q)(1 − t−1)

1 − p
, (2.10)

for simplicity. This algebra is not Lie algebra, but we can construct the representation

space by considering the Verma module as the case of the usual Virasoro algebra. The

highest weight vector |w〉 for this algebra is then defined by

W α
0 |w〉 = wα|w〉, W α

n≥1|w〉 = 0, α = 1, 2, (2.11)

and the Verma module of the algebra is spanned by the vectors W 1
n1

W 1
n2
· · ·W 2

m1
W 2

m2
· · · |w〉

for negative integers ni, mj. We call the non-negative number −(
∑

i ni+
∑

j mj) the level

of this vector.
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2.2 q-WN algebra and q-Miura transformation

The q-deformed WN algebra is given by the q-deformation of the Miura transformation

introduced in [35, 37]

: (pD − A1(z)) · · · (pD−AN(p1−Nz)) : =
N∑

α=1

(−1)α W α(p
1−α

2 z) p(N−α)D, (2.12)

where pD is the p-shift operator since D ≡ z∂z, and Aα(z) is the following exponentiated

q-deformed bosons

Aα(z) = : exp

(∑
n=1

aα
nz−n

)
: q

√
b aα

0 p
N+1

2
−α. (2.13)

This construction is a q-deformed version of the free field realization. The q-boson an
α is

[an
α, am

β ] =
1

n
(1 − qn) (1 − t−n)

1 − pn(δαβN−1)

1 − pnN
pnNθ(α−β) δm+n,0. (2.14)

The theta function is defined by θ(x < 0) = 1 and θ(x ≥ 0) = 0. The quantum

Miura transformation (2.12) yields the N − 1 currents W α(z) =
∑

n∈Z z−n Wα
n . Notice

that there are only these N − 1 non-trivial currents because W 0(z) = WN(z) = 1 and

W α<0(z) = Wα>N(z) = 0.

Using the q-boson construction of the currents, we can show that the algebraic relation

between the q-W currents takes the following quadratic form [38]

fαβ
(w

z

)
W α(z) W β(w) − W β(w) W α(z) fβα

( z

w

)
= c

α∑
γ=1

(
γ−1∏
ρ=1

(1 − qpρ)(1 − t−1pρ)

(1 − pρ)(1 − pρ+1)

)

×
(

δ
(
p

β−α
2

+γ w

z

)
fα−γ β−γ

(
p−

β−α
2

)
Wα−γ

(
p−

γ
2 z
)

W β+γ
(
p

γ
2 w
)

− δ
(
p−

β−α
2

−γ w

z

)
fα−γ β−γ

(
p

β−α
2

)
W α−γ

(
p

γ
2 z
)

W β+γ
(
p−

γ
2 w
))

, (2.15)

here we adopt the convention
∏1−1

ρ=1 ∗ = 1. The structure functions are given by

fαβ (z) ≡ exp

(
∞∑

n=1

zn

n
(1 − qn)(1 − t−n)

1 − pαn

1 − pn

1 − p(N−β)n

1 − pNn
p

β−α
2

n

)
, (2.16)

fβα (z) ≡ fαβ (z) , (α ≤ β), (2.17)

and the Taylor expansion of the structure function around z = 0 gives the structure

constants fαβ (z) =
∑∞

`=0 fαβ
` z`. The highest weight vector |w〉 for this algebra is then

4



defined by

W α
0 |w〉 = wα|w〉, W α

n≥1|w〉 = 0, α = 1, 2, · · · , N − 1. (2.18)

We can also construct the Verma module by acting lowering operators W α
n<0 succesively.

For the latter discussion, let us write down the commutation relations in the N = 4

case explicitly. There are three currents, and their generators satisfy

[
W 1

n , W 1
m

]
= −

∞∑
`=1

f11
`

(
W 1

n−`W
1
m+` − W 1

m−`W
1
n+`

)
+ dn−mW 2

n+m, (2.19)

[
W 2

n , W 2
m

]
= −

∞∑
`=1

f22
`

(
W 2

n−`W
2
m+` − W 2

m−`W
2
n+`

)
+

(1 − qp)(1 − t−1p)

(1 − p)(1 − p2)
d4nδn+m

+ c d2n
1 + p2

1 − p2
δn+m + dn−m

∞∑
r=0

(
r∑

`=0

f 13
`

)(
W 1

−rW
3
n+m+r + W 3

n+m−r−1W
1
r+1

)
, (2.20)

[
W 3

n , W 3
m

]
= −

∞∑
`=1

f33
`

(
W 3

n−`W
3
m+` − W 3

m−`W
3
n+`

)
+ dn−mW 2

n+m, (2.21)

[
W 1

n , W 2
m

]
= −

∞∑
`=1

f12
`

(
W 1

n−`W
2
m+` − W 2

m−`W
1
n+`

)
+ d2n−mW 3

n+m,0, (2.22)

[
W 1

n , W 3
m

]
= −

∞∑
`=1

f13
`

(
W 1

n−`W
3
m+` − W 3

m−`W
1
n+`

)
+ d4nδn+m,0, (2.23)

[
W 2

n , W 3
m

]
= −

∞∑
`=1

f23
`

(
W 2

n−`W
3
m+` − W 3

m−`W
2
n+`

)
+ dn−2mW 1

n+m,0. (2.24)

The Kac-Shapovalov matrix at level one is given in Appendix.C.

Notice that there are no algebraic distinction between W 1 and W 3. In the generic

q-WN case, the reflection Wα ↔ WN−α is a symmetry. This fact is a key to specify the

explicit form (1.4) of the 5d generalization of the AGT-W correspondence.

3 The AGT-W correspondence in 5d

In this section, we demonstrate that 5d Nekrasov instanton partition functions are pre-

cisely equal to the scalar norms of the corresponding Whittaker vectors for q-W algebra.

This result provides 5d generalization of the AGT-W correspondence for irregular singu-

larities. The basic element in the gauge theory side of this correspondence is the Nekrasov

instanton partition function [39]. This partition function for 5d SU(N) Yang-Mills theory
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takes the following form

Z
SU(N)
YM =

∑
~Y

(
Λ2

√
q

t

)N |~Y | N∏
α,β=1

1

NYαYβ
(QβQ−1

α )
=

∞∑
k=0

Λ2Nk Z
SU(N)
YM k-inst., (3.1)

where ~Y is N -tuple of Young diagrams. The parameter Qα = e−Raα is an exponentiated

Coulomb branch parameter, and therefore it satisfies Q1Q2 · · ·QN = 1. Using this for-

mula and summing over Young diagrams, we can easily calculate this partition function.

In the remaining part of this section, we consider q-WN algebra description of the same

result.

3.1 SU(3) Yang-Mills versus q-W3 algebra

A Whittaker vector is a state in the Verma module of a given algebra, and this vector

is characterized by certain coherent state conditions for the lowering operators. The

lowering operators for the q-W3 algebra are the generators with negative levels W 1,2
n<0.

We then introduce the following Whittaker vector of the q-W3 algebra

W 1
1 |Λ1, Λ2〉 = Λ1|Λ1, Λ2〉, (3.2)

W 2
1 |Λ1, Λ2〉 = Λ2|Λ1, Λ2〉, (3.3)

W 1
n |Λ1, Λ2〉 = W 2

n |Λ1, Λ2〉 = 0, n ≥ 2. (3.4)

We can impose this condition consistently with the commutation relations. This Whit-

taker vector is the q-deformed version of that for the usual W3 algebra [6, 12]. As a vector

in the Verma module, this Whitaker state is determined by the above defining equations

up to overall factor. We will normalize the state as |Λ1, Λ2〉 = |w〉+ · · · . We parametrize

the highest weights w as follows

w1 = Q1 + Q2 +
1

Q1Q2

, w2 =
1

Q1

+
1

Q2

+ Q1Q2. (3.5)

Our conjecture is that the instanton partition function of 5d SU(3) pure super Yang-Mills

theory is equal to the scalar product of two Whittaker vectors of the q-W3 algebra:

Z
SU(3)
YM = 〈 0, Λ3 |Λ3, 0 〉 = 〈Λ3, 0 | 0, Λ3 〉. (3.6)

Here 〈 0, Λ3 | is the dual vector of | 0, Λ3 〉. This conjecture is precisely 5d generalization

of the AGT-W correspondence between 4d SU(3) pure Yang-Mills theory and the W3

algebra proposed in [6]. We give an explicit check of this 5d relation (3.6) in the following.
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one-instanton test

It is easy to compute the one instanton partition function by using the formula (3.1).

For instance, the contribution from the 3-tuple ~Y = ([1], ∅, ∅) is(√
q

t

)3
1

(1 − q)(1 − t−1)(1 − Q2Q
−1
1 t−1q)(1 − Q3Q

−1
1 t−1q)(1 − Q1Q

−1
2 )(1 − Q1Q

−1
3 )

.

(3.7)

The 1-instanton partition function is the summation of three contributions coming from

the 3-tuples satisfying |~Y | = 1. Eliminating Q3 by the constraint Q3 = (Q1Q2)
−1 yields

the following result

Z
SU(3)
YM1-inst. = −q

3
2 t

3
2 Q2

1Q
2
2

× q2t2 (Q3
1Q

4
2 + Q4

1Q
3
2 + Q1Q

3
2 + Q3

1Q2 + Q1 + Q2) − (t4 + 2qt3 + 2q3t + q4) Q2
1Q

2
2

(1 − q)(1 − t)(qQ1 − tQ2)(tQ1 − qQ2)(qQ2
1Q2 − t)(tQ2

1Q2 − q)(qQ1Q2
2 − t)(tQ1Q2

2 − q)
.

(3.8)

Let us reproduce this result by means of the Whittaker vectors of the q-W3 algebra.

Since the Whittaker vector lies in the Verma module, we can use the ansatz

|Λ1, Λ2〉 = |w〉 + c10W
1
−1|w〉 + c01W

2
−1|w〉 + · · · . (3.9)

Imposing the conditions (3.2-3.4) at level one, we can solve it at this level by using the

level one Kac-Shapovalov matrix G(1) that is the following Gram matrix(
Λ1

Λ2

)
= G(1)

(
c10

c01

)
, G(1) =

(
〈w|W 1

1 W 1
−1|w〉 〈w|W 1

1 W 2
−1|w〉

〈w|W 2
1 W 1

−1|w〉 〈w|W 2
1 W 2

−1|w〉

)
. (3.10)

The components are given by

〈w|W 1
1 W 1

−1|w〉 = −f 11
1 (w1)

2 + d2w2, (3.11)

〈w|W 1
1 W 2

−1|w〉 = 〈w|W 1
2 W 1

−1|w〉 = −f 12
1 w1w2 + d3, (3.12)

〈w|W 2
1 W 2

−1|w〉 = −f 11
1 (w2)

2 + d2w1. (3.13)

The solution to the Whittaker condition (3.2-3.4) at level one then leads to

〈Λ′
1, Λ

′
2|Λ1, Λ2〉 = 1 +

(
Λ′

1 Λ′
2

) (
G(1)

)−1

(
Λ1

Λ2

)
+ · · · . (3.14)
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Notice that 〈Λ1, Λ2|Wα
−1 = 〈Λ1, Λ2|Λα. We can also solve the condition (3.2-3.4) at a given

level in this way. The level k contribution is then given by the level k Kac-Shapovalov

matrix G(k) for the q-W3 algebra. Consider the following specialized situation

〈0, Λ3|Λ3, 0〉 = 1 + Λ6
(
G(1)

)−1

21
+ · · · = 1 +

∞∑
k=1

Λ6k
(
G(k)

)−1
(W2

−1)k,(W1
−1)k . (3.15)

In this case, the level k contribution reduces to the ( (W 2
−1)

k, (W 1
−1)

k )-component. Then

our conjecture (3.6) at level one claims that
(
G(1)

)−1

21
coincides with the one instanton

partition function of 5d SU(3) pure Yang-Mills theory. Substituting our parametrization

(3.5), the off-diagonal component of the matrix
(
G(1)

)−1
takes the following form

(
G(1)

)−1

21
=

−〈w|W 2
1 W 1

−1|w〉
detG(1)

= −q
3
2 t

3
2 Q2

1Q
2
2

× q2t2 (Q3
1Q

4
2 + Q4

1Q
3
2 + Q1Q

3
2 + Q3

1Q2 + Q1 + Q2) − (t4 + 2qt3 + 2q3t + q4) Q2
1Q

2
2

(1 − q)(1 − t)(qQ1 − tQ2)(tQ1 − qQ2)(qQ2
1Q2 − t)(tQ2

1Q2 − q)(qQ1Q2
2 − t)(tQ1Q2

2 − q)
.

(3.16)

This is precisely equal to (3.8).

two-instanton test

We can also present explicit check of our conjecture (3.6) at two instanton. At two

instanton |~Y | = 2, the partition function has the contributions from the 3-tuples ~Y =

([1], [1], ∅), ([2], ∅, ∅), ([12], ∅, ∅) and their permutations. Substituting these 3-tuples of

Young diagrams into (3.1) yields the two instanton partition function Z
SU(3)
YM2-inst. for SU(3)

pure Yang-Mills theory.

The q-W3 counterpart to the two instanton partition function is the level two Kac-

Shapovalov matrix as (3.6) and (3.15). The explicit form of the Kac-Shapovalov matrix

G(2) is given in Appendix.B. By computer calculation, we can show that the level two

part of the norm (3.15) of the Whittaker vectors is equal to the two instanton partition

function as

Z
SU(3)
YM 2-inst. =

(̃G(2))25

detG(2)
, (3.17)

where (̃G(2))25 is the (2, 5)-cofactor of the level two Kac-Shapovalov matrix. This result

confirms our conjecture at level two.
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3.2 SU(3) SQCD versus q-W3 algebra

We can generalize our conjecture to SU(3) gauge theory with fundamental hypermulti-

plets. Let us consider the SU(3) gauge theory with single fundamental hypermultiplet

for example. The Nekrasov partition function for this theory is

Z
SU(3)
Nf=1 =

∑
~Y

Λ5|~Y |
(√

q

t

)3|~Y | ∏3
α=1

∏
(i,j)∈Yα

(1 − QαQmt−i+1qj−1)∏3
α,β=1 NYαYβ

(QβQ−1
α )

, (3.18)

where Qm = e−Rm is the exponentiated mass parameter.

The Nekrasov partition function of this SQCD should be equal to the scalar product

of the two Whittaker vectors

Z
SU(3)
Nf=1 = 〈 0, Λ3 |Λ2, QmΛ2 〉. (3.19)

It is easy to check this conjecture at one instanton level. The one instanton part actu-

ally coincides with the following combination of elements of the inverse Kac-Shapovalov

matrix at level one

Z
SU(3)
Nf=11-inst. = Z

SU(3)
YM1-inst. + q2t2Q2

1Q
2
2Qm×

(qt2 + q2t) (Q4
1Q

4
2 + Q2

1 + Q2
2) − (t3 + q3) (Q2

1Q
3
2 + Q3

1Q
2
2 + Q1Q2)

(1 − q)(1 − t)(qQ1 − tQ2)(tQ1 − qQ2)(qQ2
1Q2 − t)(tQ2

1Q2 − q)(qQ1Q2
2 − t)(tQ1Q2

2 − q)

=
(
G(1)

)−1

21
+ Qm

(
G(1)

)−1

22
, (3.20)

and this combination is precisely the level one part of the right hand side go our conjecture

(3.19). By employing compter calculation, we should be able to justify this conjecture

at higher level. Further generalization of this relation is also straightforward. The scalar

product 〈QmΛ2, Λ2 |Λ2, Q′
mΛ2 〉 corresponds to the Nekrasov partition function of SU(3)

gauge theory with two fundamental hypermultiplets.

3.3 generalization to q-WN algebra

Generalization of our proposal (3.6) to the higher rank cases is also very simple. Our

conjecture is that the instanton partition function of 5d SU(N) pure super Yang-Mills

theory is equal to the scalar product of two Whittaker vectors of the q-WN algebra:

Z
SU(N)
YM = 〈0, · · · , 0, ΛN |ΛN , 0, · · · , 0〉. (3.21)

The Whittaker vectors are defined by

W α
1 |Λ1, · · · , ΛN−1〉 = Λα|Λ1, · · · , ΛN−1〉, W α

n |Λ1, · · · , ΛN−1〉 = 0, n ≥ 2, (3.22)

〈Λ1, · · · , ΛN−1|W α
−1 = Λα〈Λ1, · · · , ΛN−1|, 〈Λ1, · · · , ΛN−1|W α

m = 0, m ≤ −2, (3.23)

9



and the identification between the Coulomb branch parameters and the highest weights

is

wα =
∑

1≤β1<···<βα≤N

Qβ1 · · ·Qβα , α = 1, 2, · · · , N − 1. (3.24)

Notice that Q1Q2 · · ·QN = 1.

Since it is hard to prove this conjecture, we show the relation at one instanton level

in the SU(4) case. Higher rank generalization of this test also should be straightforward.

one-instanton test for q-W4 algebra

Let us test our conjecture (3.21) for N = 4. The corresponding algebra is q-W4 algebra

whose commutation relations were given in the previous section. The level one Kac-

Shapovalov matrix G(1) (w1, w2, w3, w4) for this algebra is given in Appendix.C. As we

showed for N = 3, the level one part of the scalar product in the right hand side of

(3.21) is given by the (3, 1)-component of the inverse matrix (G(1))−1. Using computer

calculation, we can easily show the one instanton (i.e. Λ8) part of our conjecture (3.21)

Z
SU(4)
YM1-inst. =

q2t2(q+t)(Q1Q2Q3)2(q8Q4
1Q4

2Q4
3−2q7tQ4

1Q4
2Q4

3+q6t2(Q4
1Q6

2Q6
3+2Q5

1Q6
2Q5

3+···)+···)
(1−q)(1−t)

Q

(α,β,γ)=(1,2,3),(2,3,1),(3,1,2)(qQβ−tQα)(tQβ−qQα)(qQ2
αQβQγ−t)(tQ2

αQβQγ−q)

=
(
G(1)

)−1

31
. (3.25)

To show this relation, we substitute Q4 = (Q1Q2Q3)
−1.

4 Discussion

In this paper we proposed the generalized AGT-W correspondence between 5d uplift of

4d N = 2 SU(N) asymptotically-free gauge theories and the q-deformed WN algebra.

The Nekrasov partition function of a 5d gauge theory is then equal to the scalar product

of the corresponding Whittaker vectors of the q-deformed WN algebra. We presented

explicit checks of our conjecture based on the instanton expansion.

Our conjecture simplifies the original 4d AGT-W correspondence [5, 6] since we can

write down the algebraic relations of the q-deformed WN algebra explicitly, although it is

very hard to find the explicit form for the undeformed one. The complicated structure of

the original WN algebra is packed into the embedding of the WN currents in the deformed

currents. The 4d limit, which is easy to see in the gauge theory side, of our 5d conjecture

should shed new light on the 4d AGT-W correspondence [5, 6].
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There are many further directions. Generalization to 5d N = 1 SU(N) SQCD with

Nf flavors should be possible since we can expect the following relation

Z
SU(N)
Nf

= Z
U(1)
Nf

· 〈Λ′
1, · · · , Λ′

N−1|ΛN−1, · · · , Λ1〉. (4.1)

It would also interesting if we can generalize our conjecture to generic ABCDEFG gauge

groups and q-deformed W -algebras. Such generalization in 4d case was already studied in

[8]. Proof of the original AGT-W relation are already known [40, 41], and therefore there

should be some relation between our conjecture and the quantum groups appearing in

[40, 41]. It should also be possible to verify our conjecture along the line of [43, 44, 42, 45].
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A Nekrasov formula

The Nekrasov partition functions for the 5d theories on R4 × S1, which are uplift of the

4d N = 2 gauge theories, is an equivariant index for the instanton moduli space [39].

Employing the Duistermaat-Heckman formula, Nekrasov derived a closed expression for

the partition functions based on the Chern characters of the complex for the linearized

ADHM equations. The SU(N) vector multiplet contribution to the Nekrasov partition

functions is

Z vect.
~Y

(Qα; t, q) =

(√
q

t

)N |~Y |
1∏

α,β=1,2 NYαYβ
(Qβα; t, q)

, (A.1)

where Qαβ = QαQ−1
β , Qα = e−Raα is the exponentiated Coulomb branch parameters and

so they satisfy
∏

α Qα = 1. The factor NYα,Yβ
is given by

NYαYβ
(Q; t, q) =

∏
s∈Rα

(
1 − Qt`Yβ

(s)qaYα (s)+1
) ∏

t∈Yβ

(
1 − Qt−(`Yα (t)+1)q−aYβ

(t)
)

. (A.2)

The arm and leg length here is defined by

aY (i, j) = Yi − j, `Y (i, j) = Y t
j − i. (A.3)
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The fundamental hypermultiplets lead to the following contribution

Z fund.
~Y

Qα, Qm; t, q) =
N∏

α=1

∏
(i,j)∈Yα

(1 − QαQmt−i+1qj−1). (A.4)

The instanton number k corresponds to the total number of the boxes in the N-tuples ~Y

of Young diagrams as k = |~Y | :=
∑

α |Yα|. The k-instanton partition function for SU(N)

gauge theory with Nf flavors is therefore

Z
SU(N)
SQCD k-inst.(Qα, Qmf ; t, q) =

∑
|~Y |=k

Z vect.
~Y

(Qα; t, q)

Nf∏
f=1

Z fund.
~Y

(Qα, Qmf ; t, q). (A.5)

B q-W3 Kac-Shapovalov matrix at level-two

The Kac-Shapovalov matrix for q-deformed W3 algebra at level-two

G(2) (w1, w2, w3) =
〈w|W 1

2 W 1
−2|w〉 〈w|W 1

2 (W 1
−1)2|w〉 〈w|W 1

2 W 1
−1W 2

−1|w〉 〈w|W 1
2 W 2

−2|w〉 〈w|W 1
2 (W 2

−1)2|w〉

〈w|(W 1
1 )2W 1

−2|w〉 〈w|(W 1
1 )2(W 1

−1)2|w〉 〈w|(W 1
1 )2W 1

−1W 2
−1|w〉 〈w|(W 1

1 )2W 2
−2|w〉 〈w|(W 1

1 )2(W 2
−1)2|w〉

〈w|W 2
1 W 1

1 W 1
−2|w〉 〈w|W 2

1 W 1
1 (W 1

−1)2|w〉 〈w|W 2
1 W 1

1 W 1
−1W 2

−1|w〉 〈w|W 2
1 W 1

1 W 2
−2|w〉 〈w|W 2

1 W 1
1 (W 2

−1)2|w〉

〈w|W 2
2 W 1

−2|w〉 〈w|W 2
2 (W 1

−1)2|w〉 〈w|W 2
2 W 1

−1W 2
−1|w〉 〈w|W 2

2 W 2
−2|w〉 〈w|W 2

2 (W 2
−1)2|w〉

〈w|(W 2
1 )2W 1

−2|w〉 〈w|(W 2
1 )2(W 1

−1)2|w〉 〈w|(W 2
1 )2W 1

−1W 2
−1|w〉 〈w|(W 2

1 )2W 2
−2|w〉 〈w|(W 2

1 )2(W 2
−1)2|w〉

 ,

is a symmetric matrix, whose matrix elements are given by

G(2)
11 = −f 11

1 G(1)
11 − f11

2 (w1)
2 + d4 w2, (B.1)

G(2)
22 =

(
1 − f11

2

) (
G(1)

11

)2

+
(
−f 11

1

(
1 − f 11

1

)2
(w1)

2 + d2 w2

)
G(1)

11

−
(
2f 11

1

(
1 − f 11

1

)
d1 w1 + f 12

1 d2 w1

)
G(1)

12 − f11
1 (d1)

2G(1)
22 , (B.2)

G(2)
33 =

(
1 − f11

2

) (
G(1)

12

)2

− f11
1

(
f 12

1

)2
(w2)

2 G(1)
11

+
(
2f11

1 f12
1 w1w2 + d1d2

)
G(1)

12 +
((

1 − f 11
1

)
d2w2 − f 11

1 (w1)
2)G(1)

22 , (B.3)

G(2)
44 = −f 11

1 G(1)
22 − f11

2 (w2)
2 + d4 w1, (B.4)

G(2)
55 =

(
1 − f11

2

)2 (G(1)
22

)2

− f11
1 (d1)

2 G(1)
11 −

(
2f 11

1

(
1 − f 11

1

)
d1w2 + f 12

1 d2w2

)
G(1)

12

+
(
d2w1 − f 11

1

(
1 − f 11

1

)2
(w2)

2
)
G(1)

22 , (B.5)
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G(2)
12 = −

(
f11

1

(
1 − f11

1

)
w1 + f 11

2 w1

)
G(1)

11 +
(
d3 − f 11

1 d1

)
G(1)

12 , (B.6)

G(2)
13 = −

(
f11

1

(
1 − f11

1

)
w1 + f 11

2 w1

)
G(1)

12 +
(
d3 − f 11

1 d1

)
G(1)

22 , (B.7)

G(2)
14 = −f12

1 G(1)
12 − f 12

2 w1w2 + d6, (B.8)

G(2)
15 = −f12

1 w2 G(1)
12 +

((
f 12

1

)2
w1 − f12

2 w1

)
G(1)

22 , (B.9)

G(2)
23 =

(
1 − f 11

2

) (
−f 11

1 (w1)
2 + d2w2

)
G(1)

12 +
(
f 11

1

(
1 − f 11

1

)
f12

1 w1w2 + d1d2

)
G(1)

11

+
(
f11

1 f 12
1 d1w2 +

(
1 − f 11

1

) (
d2w2 − f 11

1 (w1)
2)) G(1)

12 − f 11
1 d1w1 G(1)

22 , (B.10)

G(2)
24 = −f12

2 w2 G(1)
11 − f 12

1 (1 − f11
1 )w1 G(1)

12 − f12
1 d1 G(1)

22 , (B.11)

G(2)
25 =

(
G(1)

12

)2

− f 12
2 G(1)

11 G
(1)
22 − f12

1

(
1 − f 11

1

)
w1d1 G(1)

11

+
(
d3 − f 12

1

(
1 − f 11

1

)2
w1w2 − f 12

1 (d1)
2
)
G(1)

12 − f12
1

(
1 − f 11

1

)
d1w2G(1)

22 , (B.12)

G(2)
34 =

((
f12

1

)2
w2 − f12

2 w2

)
G(1)

12 − f 12
1 w1 G(1)

22 , (B.13)

G(2)
35 =

(
f12

1

)2
w2d1G(1)

11 +
((

1 − f 12
1

)
G(1)

22 + f 12
1

(
f 12

1

(
1 − f 11

1

)
(w2)

2 − w1d1

))
G(1)

12

+
(
d3 − f 12

1

(
1 − f 11

1

)
w1w2

)
G(1)

22 , (B.14)

G(2)
45 =

(
d3 − f 11

1 d1

)
G(1)

12 −
(
f11

1

(
1 − f 11

1

)
w2 + f11

2 w2

)
G(1)

22 . (B.15)

Despite this seeming complexity, the determinant of this matrix, that is the Kac determi-

nant at level two, takes the following factorized form as expected from the representation

theory

det G(2)
(
Q1, Q2, Q3 = (Q1Q2)

−1
)

=
(1 − q)8 (1 − t)8 (1 + q)2 (1 + t)2

(tq)15(Q1Q2)8(t2 + tq + q2)(t2 − tq + q2)

× (qQ2 − tQ1)
2 (qQ2 − t2Q1

) (
q2Q2 − tQ1

)
(tQ2 − qQ1)

2 (tQ2 − q2Q1

) (
t2Q2 − qQ1

)
×
(
qQ2

1Q2 − t
)2 (

qQ2
1Q2 − t2

) (
q2Q2

1Q2 − t
) (

tQ2
1Q2 − q

)2 (
tQ2

1Q2 − q2
) (

t2Q2
1Q2 − q

)
×
(
qQ1Q

2
2 − t

)2 (
qQ1Q

2
2 − t2

) (
q2Q1Q

2
2 − t

) (
tQ1Q

2
2 − q

)2 (
tQ1Q

2
2 − q2

) (
t2Q1Q

2
2 − q

)
.

This factor leads to the denominator of the two-instanton partition function of 5d SU(3)

gauge theories thought the AGT correspondence.
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C q-W4 Kac-Shapovalov matrix at level-one

The level one Kac matrix for q-W4 algebra in our convention of the basis of the Verma

module is

G(1) (w1, w2, w3, w4) =

 〈w|W 1
1 W 1

−1|w〉 〈w|W 1
1 W 2

−1|w〉 〈w|W 1
1 W 3

−1|w〉
〈w|W 2

1 W 1
−1|w〉 〈w|W 2

1 W 2
−1|w〉 〈w|W 2

1 W 3
−1|w〉

〈w|W 3
1 W 1

−1|w〉 〈w|W 3
1 W 2

−1|w〉 〈w|W 3
1 W 3

−1|w〉

 . (C.1)

It is easy to compute these matrix elements by using the commutation relations. We

then obtain the following expression

G(1)
11 = −f 11

1 (w1)
2 + d2w2, (C.2)

G(1)
22 = −f 22

1 (w2)
2 + d2w1w3 + d4

(1 − qp)(1 − t−1p)

(1 − p)(1 − p2)
+ c d2

1 + p2

1 − p2
(C.3)

G(1)
33 = −f 33

1 (w3)
2 + d2w2, (C.4)

G(1)
12 = −f 12

1 w1w2 + d3w3, (C.5)

G(1)
13 = −f 13

1 w1w3 + d4, (C.6)

G(1)
23 = −f 23

1 w2w3 + d3w1. (C.7)

See Section.2 for the definitions of fαβ, c and dn.
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